common_testing.py 7.76 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
facebook-github-bot's avatar
facebook-github-bot committed
6

7
import os
facebook-github-bot's avatar
facebook-github-bot committed
8
import unittest
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
9
from numbers import Real
Nikhila Ravi's avatar
Nikhila Ravi committed
10
from pathlib import Path
Roman Shapovalov's avatar
Roman Shapovalov committed
11
from typing import Callable, Optional, Union
12
13

import numpy as np
facebook-github-bot's avatar
facebook-github-bot committed
14
import torch
Nikhila Ravi's avatar
Nikhila Ravi committed
15
16
17
from PIL import Image


Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
18
19
20
21
22
23
24
25
26
def interactive_testing_requested() -> bool:
    """
    Certain tests are only useful when run interactively, and so are not regularly run.
    These are activated by this funciton returning True, which the user requests by
    setting the environment variable `PYTORCH3D_INTERACTIVE_TESTING`.
    """
    return os.environ.get("PYTORCH3D_INTERACTIVE_TESTING", False)


27
28
29
30
31
32
33
34
35
36
def get_tests_dir() -> Path:
    """
    Returns Path for the directory containing this file.
    """
    return Path(__file__).resolve().parent


def get_pytorch3d_dir() -> Path:
    """
    Returns Path for the root PyTorch3D directory.
37

38
    Meta internal systems need a special case here.
39
    """
40
41
    if os.environ.get("INSIDE_RE_WORKER") is not None:
        return Path(__file__).resolve().parent
42
43
    elif os.environ.get("CONDA_BUILD_STATE", "") == "TEST":
        return Path(os.environ["SRC_DIR"])
44
45
    else:
        return Path(__file__).resolve().parent.parent
46
47


Nikhila Ravi's avatar
Nikhila Ravi committed
48
def load_rgb_image(filename: str, data_dir: Union[str, Path]):
Nikhila Ravi's avatar
Nikhila Ravi committed
49
    filepath = os.path.join(data_dir, filename)
Nikhila Ravi's avatar
Nikhila Ravi committed
50
51
52
53
    with Image.open(filepath) as raw_image:
        image = torch.from_numpy(np.array(raw_image) / 255.0)
    image = image.to(dtype=torch.float32)
    return image[..., :3]
facebook-github-bot's avatar
facebook-github-bot committed
54
55


Roman Shapovalov's avatar
Roman Shapovalov committed
56
57
58
TensorOrArray = Union[torch.Tensor, np.ndarray]


Nikhila Ravi's avatar
Nikhila Ravi committed
59
60
61
62
63
64
65
66
def get_random_cuda_device() -> str:
    """
    Function to get a random GPU device from the
    available devices. This is useful for testing
    that custom cuda kernels can support inputs on
    any device without having to set the device explicitly.
    """
    num_devices = torch.cuda.device_count()
Nikhila Ravi's avatar
Nikhila Ravi committed
67
68
69
70
    device_id = (
        torch.randint(high=num_devices, size=(1,)).item() if num_devices > 1 else 0
    )
    return "cuda:%d" % device_id
Nikhila Ravi's avatar
Nikhila Ravi committed
71
72


facebook-github-bot's avatar
facebook-github-bot committed
73
74
75
76
77
class TestCaseMixin(unittest.TestCase):
    def assertSeparate(self, tensor1, tensor2) -> None:
        """
        Verify that tensor1 and tensor2 have their data in distinct locations.
        """
78
        self.assertNotEqual(tensor1.storage().data_ptr(), tensor2.storage().data_ptr())
facebook-github-bot's avatar
facebook-github-bot committed
79

Georgia Gkioxari's avatar
Georgia Gkioxari committed
80
81
82
83
    def assertNotSeparate(self, tensor1, tensor2) -> None:
        """
        Verify that tensor1 and tensor2 have their data in the same locations.
        """
84
        self.assertEqual(tensor1.storage().data_ptr(), tensor2.storage().data_ptr())
Georgia Gkioxari's avatar
Georgia Gkioxari committed
85

facebook-github-bot's avatar
facebook-github-bot committed
86
87
88
89
90
91
92
93
    def assertAllSeparate(self, tensor_list) -> None:
        """
        Verify that all tensors in tensor_list have their data in
        distinct locations.
        """
        ptrs = [i.storage().data_ptr() for i in tensor_list]
        self.assertCountEqual(ptrs, set(ptrs))

Roman Shapovalov's avatar
Roman Shapovalov committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    def assertNormsClose(
        self,
        input: TensorOrArray,
        other: TensorOrArray,
        norm_fn: Callable[[TensorOrArray], TensorOrArray],
        *,
        rtol: float = 1e-05,
        atol: float = 1e-08,
        equal_nan: bool = False,
        msg: Optional[str] = None,
    ) -> None:
        """
        Verifies that two tensors or arrays have the same shape and are close
            given absolute and relative tolerance; raises AssertionError otherwise.
            A custom norm function is computed before comparison. If no such pre-
            processing needed, pass `torch.abs` or, equivalently, call `assertClose`.
        Args:
            input, other: two tensors or two arrays.
            norm_fn: The function evaluates
                `all(norm_fn(input - other) <= atol + rtol * norm_fn(other))`.
                norm_fn is a tensor -> tensor function; the output has:
                    * all entries non-negative,
                    * shape defined by the input shape only.
            rtol, atol, equal_nan: as for torch.allclose.
            msg: message in case the assertion is violated.
        Note:
            Optional arguments here are all keyword-only, to avoid confusion
            with msg arguments on other assert functions.
        """

        self.assertEqual(np.shape(input), np.shape(other))

        diff = norm_fn(input - other)
        other_ = norm_fn(other)

Patrick Labatut's avatar
Patrick Labatut committed
129
        # We want to generalize allclose(input, output), which is essentially
Roman Shapovalov's avatar
Roman Shapovalov committed
130
131
132
133
134
135
136
137
        #  all(diff <= atol + rtol * other)
        # but with a sophisticated handling non-finite values.
        # We work that around by calling allclose() with the following arguments:
        # allclose(diff + other_, other_). This computes what we want because
        #  all(|diff + other_ - other_| <= atol + rtol * |other_|) ==
        #    all(|norm_fn(input - other)| <= atol + rtol * |norm_fn(other)|) ==
        #    all(norm_fn(input - other) <= atol + rtol * norm_fn(other)).

138
        self.assertClose(
139
            diff + other_, other_, rtol=rtol, atol=atol, equal_nan=equal_nan, msg=msg
Roman Shapovalov's avatar
Roman Shapovalov committed
140
141
        )

facebook-github-bot's avatar
facebook-github-bot committed
142
143
    def assertClose(
        self,
Roman Shapovalov's avatar
Roman Shapovalov committed
144
145
        input: TensorOrArray,
        other: TensorOrArray,
facebook-github-bot's avatar
facebook-github-bot committed
146
147
148
        *,
        rtol: float = 1e-05,
        atol: float = 1e-08,
Roman Shapovalov's avatar
Roman Shapovalov committed
149
150
        equal_nan: bool = False,
        msg: Optional[str] = None,
facebook-github-bot's avatar
facebook-github-bot committed
151
152
    ) -> None:
        """
Roman Shapovalov's avatar
Roman Shapovalov committed
153
154
155
156
        Verifies that two tensors or arrays have the same shape and are close
            given absolute and relative tolerance, i.e. checks
            `all(|input - other| <= atol + rtol * |other|)`;
            raises AssertionError otherwise.
facebook-github-bot's avatar
facebook-github-bot committed
157
158
159
        Args:
            input, other: two tensors or two arrays.
            rtol, atol, equal_nan: as for torch.allclose.
Roman Shapovalov's avatar
Roman Shapovalov committed
160
            msg: message in case the assertion is violated.
facebook-github-bot's avatar
facebook-github-bot committed
161
162
163
164
165
166
167
        Note:
            Optional arguments here are all keyword-only, to avoid confusion
            with msg arguments on other assert functions.
        """

        self.assertEqual(np.shape(input), np.shape(other))

Roman Shapovalov's avatar
Roman Shapovalov committed
168
169
170
171
172
        backend = torch if torch.is_tensor(input) else np
        close = backend.allclose(
            input, other, rtol=rtol, atol=atol, equal_nan=equal_nan
        )

173
174
175
        if close:
            return

176
177
178
179
180
181
182
183
184
185
186
        # handle bool case
        if backend == torch and input.dtype == torch.bool:
            diff = (input != other).float()
            ratio = diff
        if backend == np and input.dtype == bool:
            diff = (input != other).astype(float)
            ratio = diff
        else:
            diff = backend.abs(input + 0.0 - other)
            ratio = diff / backend.abs(other)

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        try_relative = (diff <= atol) | (backend.isfinite(ratio) & (ratio > 0))
        if try_relative.all():
            if backend == np:
                # Avoid a weirdness with zero dimensional arrays.
                ratio = np.array(ratio)
            ratio[diff <= atol] = 0
            extra = f" Max relative diff {ratio.max()}"
        else:
            extra = ""
        shape = tuple(input.shape)
        loc = np.unravel_index(int(diff.argmax()), shape)
        max_diff = diff.max()
        err = f"Not close. Max diff {max_diff}.{extra} Shape {shape}. At {loc}."
        if msg is not None:
            self.fail(f"{msg} {err}")
        self.fail(err)
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
203

204
205
206
    def assertConstant(
        self, input: TensorOrArray, value: Real, *, atol: float = 0
    ) -> None:
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
207
208
209
210
211
        """
        Asserts input is entirely filled with value.

        Args:
            input: tensor or array
212
213
            value: expected value
            atol: tolerance
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
214
        """
215
216
217
218
219
220
221
222
        mn, mx = input.min(), input.max()
        msg = f"values in range [{mn}, {mx}], not {value}, shape {input.shape}"
        if atol == 0:
            self.assertEqual(input.min(), value, msg=msg)
            self.assertEqual(input.max(), value, msg=msg)
        else:
            self.assertGreater(input.min(), value - atol, msg=msg)
            self.assertLess(input.max(), value + atol, msg=msg)