common_testing.py 1.8 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


import unittest
5
6

import numpy as np
facebook-github-bot's avatar
facebook-github-bot committed
7
8
9
10
11
12
13
14
import torch


class TestCaseMixin(unittest.TestCase):
    def assertSeparate(self, tensor1, tensor2) -> None:
        """
        Verify that tensor1 and tensor2 have their data in distinct locations.
        """
15
        self.assertNotEqual(tensor1.storage().data_ptr(), tensor2.storage().data_ptr())
facebook-github-bot's avatar
facebook-github-bot committed
16

Georgia Gkioxari's avatar
Georgia Gkioxari committed
17
18
19
20
    def assertNotSeparate(self, tensor1, tensor2) -> None:
        """
        Verify that tensor1 and tensor2 have their data in the same locations.
        """
21
        self.assertEqual(tensor1.storage().data_ptr(), tensor2.storage().data_ptr())
Georgia Gkioxari's avatar
Georgia Gkioxari committed
22

facebook-github-bot's avatar
facebook-github-bot committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    def assertAllSeparate(self, tensor_list) -> None:
        """
        Verify that all tensors in tensor_list have their data in
        distinct locations.
        """
        ptrs = [i.storage().data_ptr() for i in tensor_list]
        self.assertCountEqual(ptrs, set(ptrs))

    def assertClose(
        self,
        input,
        other,
        *,
        rtol: float = 1e-05,
        atol: float = 1e-08,
        equal_nan: bool = False
    ) -> None:
        """
        Verify that two tensors or arrays are the same shape and close.
        Args:
            input, other: two tensors or two arrays.
            rtol, atol, equal_nan: as for torch.allclose.
        Note:
            Optional arguments here are all keyword-only, to avoid confusion
            with msg arguments on other assert functions.
        """

        self.assertEqual(np.shape(input), np.shape(other))

        if torch.is_tensor(input):
            close = torch.allclose(
                input, other, rtol=rtol, atol=atol, equal_nan=equal_nan
            )
        else:
57
            close = np.allclose(input, other, rtol=rtol, atol=atol, equal_nan=equal_nan)
facebook-github-bot's avatar
facebook-github-bot committed
58
        self.assertTrue(close)