common_testing.py 5.61 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest
Nikhila Ravi's avatar
Nikhila Ravi committed
4
from pathlib import Path
Roman Shapovalov's avatar
Roman Shapovalov committed
5
from typing import Callable, Optional, Union
6
7

import numpy as np
facebook-github-bot's avatar
facebook-github-bot committed
8
import torch
Nikhila Ravi's avatar
Nikhila Ravi committed
9
10
11
12
13
14
15
16
17
from PIL import Image


def load_rgb_image(filename: str, data_dir: Union[str, Path]):
    filepath = data_dir / filename
    with Image.open(filepath) as raw_image:
        image = torch.from_numpy(np.array(raw_image) / 255.0)
    image = image.to(dtype=torch.float32)
    return image[..., :3]
facebook-github-bot's avatar
facebook-github-bot committed
18
19


Roman Shapovalov's avatar
Roman Shapovalov committed
20
21
22
TensorOrArray = Union[torch.Tensor, np.ndarray]


Nikhila Ravi's avatar
Nikhila Ravi committed
23
24
25
26
27
28
29
30
def get_random_cuda_device() -> str:
    """
    Function to get a random GPU device from the
    available devices. This is useful for testing
    that custom cuda kernels can support inputs on
    any device without having to set the device explicitly.
    """
    num_devices = torch.cuda.device_count()
Nikhila Ravi's avatar
Nikhila Ravi committed
31
32
33
34
    device_id = (
        torch.randint(high=num_devices, size=(1,)).item() if num_devices > 1 else 0
    )
    return "cuda:%d" % device_id
Nikhila Ravi's avatar
Nikhila Ravi committed
35
36


facebook-github-bot's avatar
facebook-github-bot committed
37
38
39
40
41
class TestCaseMixin(unittest.TestCase):
    def assertSeparate(self, tensor1, tensor2) -> None:
        """
        Verify that tensor1 and tensor2 have their data in distinct locations.
        """
42
        self.assertNotEqual(tensor1.storage().data_ptr(), tensor2.storage().data_ptr())
facebook-github-bot's avatar
facebook-github-bot committed
43

Georgia Gkioxari's avatar
Georgia Gkioxari committed
44
45
46
47
    def assertNotSeparate(self, tensor1, tensor2) -> None:
        """
        Verify that tensor1 and tensor2 have their data in the same locations.
        """
48
        self.assertEqual(tensor1.storage().data_ptr(), tensor2.storage().data_ptr())
Georgia Gkioxari's avatar
Georgia Gkioxari committed
49

facebook-github-bot's avatar
facebook-github-bot committed
50
51
52
53
54
55
56
57
    def assertAllSeparate(self, tensor_list) -> None:
        """
        Verify that all tensors in tensor_list have their data in
        distinct locations.
        """
        ptrs = [i.storage().data_ptr() for i in tensor_list]
        self.assertCountEqual(ptrs, set(ptrs))

Roman Shapovalov's avatar
Roman Shapovalov committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    def assertNormsClose(
        self,
        input: TensorOrArray,
        other: TensorOrArray,
        norm_fn: Callable[[TensorOrArray], TensorOrArray],
        *,
        rtol: float = 1e-05,
        atol: float = 1e-08,
        equal_nan: bool = False,
        msg: Optional[str] = None,
    ) -> None:
        """
        Verifies that two tensors or arrays have the same shape and are close
            given absolute and relative tolerance; raises AssertionError otherwise.
            A custom norm function is computed before comparison. If no such pre-
            processing needed, pass `torch.abs` or, equivalently, call `assertClose`.
        Args:
            input, other: two tensors or two arrays.
            norm_fn: The function evaluates
                `all(norm_fn(input - other) <= atol + rtol * norm_fn(other))`.
                norm_fn is a tensor -> tensor function; the output has:
                    * all entries non-negative,
                    * shape defined by the input shape only.
            rtol, atol, equal_nan: as for torch.allclose.
            msg: message in case the assertion is violated.
        Note:
            Optional arguments here are all keyword-only, to avoid confusion
            with msg arguments on other assert functions.
        """

        self.assertEqual(np.shape(input), np.shape(other))

        diff = norm_fn(input - other)
        other_ = norm_fn(other)

        # We want to generalise allclose(input, output), which is essentially
        #  all(diff <= atol + rtol * other)
        # but with a sophisticated handling non-finite values.
        # We work that around by calling allclose() with the following arguments:
        # allclose(diff + other_, other_). This computes what we want because
        #  all(|diff + other_ - other_| <= atol + rtol * |other_|) ==
        #    all(|norm_fn(input - other)| <= atol + rtol * |norm_fn(other)|) ==
        #    all(norm_fn(input - other) <= atol + rtol * norm_fn(other)).

102
        self.assertClose(
Roman Shapovalov's avatar
Roman Shapovalov committed
103
104
105
            diff + other_, other_, rtol=rtol, atol=atol, equal_nan=equal_nan
        )

facebook-github-bot's avatar
facebook-github-bot committed
106
107
    def assertClose(
        self,
Roman Shapovalov's avatar
Roman Shapovalov committed
108
109
        input: TensorOrArray,
        other: TensorOrArray,
facebook-github-bot's avatar
facebook-github-bot committed
110
111
112
        *,
        rtol: float = 1e-05,
        atol: float = 1e-08,
Roman Shapovalov's avatar
Roman Shapovalov committed
113
114
        equal_nan: bool = False,
        msg: Optional[str] = None,
facebook-github-bot's avatar
facebook-github-bot committed
115
116
    ) -> None:
        """
Roman Shapovalov's avatar
Roman Shapovalov committed
117
118
119
120
        Verifies that two tensors or arrays have the same shape and are close
            given absolute and relative tolerance, i.e. checks
            `all(|input - other| <= atol + rtol * |other|)`;
            raises AssertionError otherwise.
facebook-github-bot's avatar
facebook-github-bot committed
121
122
123
        Args:
            input, other: two tensors or two arrays.
            rtol, atol, equal_nan: as for torch.allclose.
Roman Shapovalov's avatar
Roman Shapovalov committed
124
            msg: message in case the assertion is violated.
facebook-github-bot's avatar
facebook-github-bot committed
125
126
127
128
129
130
131
        Note:
            Optional arguments here are all keyword-only, to avoid confusion
            with msg arguments on other assert functions.
        """

        self.assertEqual(np.shape(input), np.shape(other))

Roman Shapovalov's avatar
Roman Shapovalov committed
132
133
134
135
136
        backend = torch if torch.is_tensor(input) else np
        close = backend.allclose(
            input, other, rtol=rtol, atol=atol, equal_nan=equal_nan
        )

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
137
        if not close and msg is None:
138
139
140
141
142
143
144
145
146
147
148
149
150
151
            diff = backend.abs(input - other) + 0.0
            ratio = diff / backend.abs(other)
            try_relative = (diff <= atol) | (backend.isfinite(ratio) & (ratio > 0))
            if try_relative.all():
                if backend == np:
                    # Avoid a weirdness with zero dimensional arrays.
                    ratio = np.array(ratio)
                ratio[diff <= atol] = 0
                extra = f" Max relative diff {ratio.max()}"
            else:
                extra = ""
            shape = tuple(input.shape)
            max_diff = diff.max()
            self.fail(f"Not close. Max diff {max_diff}.{extra} Shape {shape}.")
Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
152

Roman Shapovalov's avatar
Roman Shapovalov committed
153
        self.assertTrue(close, msg)