"torchvision/vscode:/vscode.git/clone" did not exist on "5f4b5794bb361ce6c6d1b31e39b97c95cff766be"
common_testing.py 1.87 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.


import numpy as np
import unittest
import torch


class TestCaseMixin(unittest.TestCase):
    def assertSeparate(self, tensor1, tensor2) -> None:
        """
        Verify that tensor1 and tensor2 have their data in distinct locations.
        """
        self.assertNotEqual(
            tensor1.storage().data_ptr(), tensor2.storage().data_ptr()
        )

Georgia Gkioxari's avatar
Georgia Gkioxari committed
18
19
20
21
22
23
24
25
    def assertNotSeparate(self, tensor1, tensor2) -> None:
        """
        Verify that tensor1 and tensor2 have their data in the same locations.
        """
        self.assertEqual(
            tensor1.storage().data_ptr(), tensor2.storage().data_ptr()
        )

facebook-github-bot's avatar
facebook-github-bot committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
    def assertAllSeparate(self, tensor_list) -> None:
        """
        Verify that all tensors in tensor_list have their data in
        distinct locations.
        """
        ptrs = [i.storage().data_ptr() for i in tensor_list]
        self.assertCountEqual(ptrs, set(ptrs))

    def assertClose(
        self,
        input,
        other,
        *,
        rtol: float = 1e-05,
        atol: float = 1e-08,
        equal_nan: bool = False
    ) -> None:
        """
        Verify that two tensors or arrays are the same shape and close.
        Args:
            input, other: two tensors or two arrays.
            rtol, atol, equal_nan: as for torch.allclose.
        Note:
            Optional arguments here are all keyword-only, to avoid confusion
            with msg arguments on other assert functions.
        """

        self.assertEqual(np.shape(input), np.shape(other))

        if torch.is_tensor(input):
            close = torch.allclose(
                input, other, rtol=rtol, atol=atol, equal_nan=equal_nan
            )
        else:
            close = np.allclose(
                input, other, rtol=rtol, atol=atol, equal_nan=equal_nan
            )
        self.assertTrue(close)