common_testing.py 4.74 KB
Newer Older
facebook-github-bot's avatar
facebook-github-bot committed
1
2
3
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import unittest
Nikhila Ravi's avatar
Nikhila Ravi committed
4
from pathlib import Path
Roman Shapovalov's avatar
Roman Shapovalov committed
5
from typing import Callable, Optional, Union
6
7

import numpy as np
facebook-github-bot's avatar
facebook-github-bot committed
8
import torch
Nikhila Ravi's avatar
Nikhila Ravi committed
9
10
11
12
13
14
15
16
17
from PIL import Image


def load_rgb_image(filename: str, data_dir: Union[str, Path]):
    filepath = data_dir / filename
    with Image.open(filepath) as raw_image:
        image = torch.from_numpy(np.array(raw_image) / 255.0)
    image = image.to(dtype=torch.float32)
    return image[..., :3]
facebook-github-bot's avatar
facebook-github-bot committed
18
19


Roman Shapovalov's avatar
Roman Shapovalov committed
20
21
22
TensorOrArray = Union[torch.Tensor, np.ndarray]


facebook-github-bot's avatar
facebook-github-bot committed
23
24
25
26
27
class TestCaseMixin(unittest.TestCase):
    def assertSeparate(self, tensor1, tensor2) -> None:
        """
        Verify that tensor1 and tensor2 have their data in distinct locations.
        """
28
        self.assertNotEqual(tensor1.storage().data_ptr(), tensor2.storage().data_ptr())
facebook-github-bot's avatar
facebook-github-bot committed
29

Georgia Gkioxari's avatar
Georgia Gkioxari committed
30
31
32
33
    def assertNotSeparate(self, tensor1, tensor2) -> None:
        """
        Verify that tensor1 and tensor2 have their data in the same locations.
        """
34
        self.assertEqual(tensor1.storage().data_ptr(), tensor2.storage().data_ptr())
Georgia Gkioxari's avatar
Georgia Gkioxari committed
35

facebook-github-bot's avatar
facebook-github-bot committed
36
37
38
39
40
41
42
43
    def assertAllSeparate(self, tensor_list) -> None:
        """
        Verify that all tensors in tensor_list have their data in
        distinct locations.
        """
        ptrs = [i.storage().data_ptr() for i in tensor_list]
        self.assertCountEqual(ptrs, set(ptrs))

Roman Shapovalov's avatar
Roman Shapovalov committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    def assertNormsClose(
        self,
        input: TensorOrArray,
        other: TensorOrArray,
        norm_fn: Callable[[TensorOrArray], TensorOrArray],
        *,
        rtol: float = 1e-05,
        atol: float = 1e-08,
        equal_nan: bool = False,
        msg: Optional[str] = None,
    ) -> None:
        """
        Verifies that two tensors or arrays have the same shape and are close
            given absolute and relative tolerance; raises AssertionError otherwise.
            A custom norm function is computed before comparison. If no such pre-
            processing needed, pass `torch.abs` or, equivalently, call `assertClose`.
        Args:
            input, other: two tensors or two arrays.
            norm_fn: The function evaluates
                `all(norm_fn(input - other) <= atol + rtol * norm_fn(other))`.
                norm_fn is a tensor -> tensor function; the output has:
                    * all entries non-negative,
                    * shape defined by the input shape only.
            rtol, atol, equal_nan: as for torch.allclose.
            msg: message in case the assertion is violated.
        Note:
            Optional arguments here are all keyword-only, to avoid confusion
            with msg arguments on other assert functions.
        """

        self.assertEqual(np.shape(input), np.shape(other))

        diff = norm_fn(input - other)
        other_ = norm_fn(other)

        # We want to generalise allclose(input, output), which is essentially
        #  all(diff <= atol + rtol * other)
        # but with a sophisticated handling non-finite values.
        # We work that around by calling allclose() with the following arguments:
        # allclose(diff + other_, other_). This computes what we want because
        #  all(|diff + other_ - other_| <= atol + rtol * |other_|) ==
        #    all(|norm_fn(input - other)| <= atol + rtol * |norm_fn(other)|) ==
        #    all(norm_fn(input - other) <= atol + rtol * norm_fn(other)).

        backend = torch if torch.is_tensor(input) else np
        close = backend.allclose(
            diff + other_, other_, rtol=rtol, atol=atol, equal_nan=equal_nan
        )

        self.assertTrue(close, msg)

facebook-github-bot's avatar
facebook-github-bot committed
95
96
    def assertClose(
        self,
Roman Shapovalov's avatar
Roman Shapovalov committed
97
98
        input: TensorOrArray,
        other: TensorOrArray,
facebook-github-bot's avatar
facebook-github-bot committed
99
100
101
        *,
        rtol: float = 1e-05,
        atol: float = 1e-08,
Roman Shapovalov's avatar
Roman Shapovalov committed
102
103
        equal_nan: bool = False,
        msg: Optional[str] = None,
facebook-github-bot's avatar
facebook-github-bot committed
104
105
    ) -> None:
        """
Roman Shapovalov's avatar
Roman Shapovalov committed
106
107
108
109
        Verifies that two tensors or arrays have the same shape and are close
            given absolute and relative tolerance, i.e. checks
            `all(|input - other| <= atol + rtol * |other|)`;
            raises AssertionError otherwise.
facebook-github-bot's avatar
facebook-github-bot committed
110
111
112
        Args:
            input, other: two tensors or two arrays.
            rtol, atol, equal_nan: as for torch.allclose.
Roman Shapovalov's avatar
Roman Shapovalov committed
113
            msg: message in case the assertion is violated.
facebook-github-bot's avatar
facebook-github-bot committed
114
115
116
117
118
119
120
        Note:
            Optional arguments here are all keyword-only, to avoid confusion
            with msg arguments on other assert functions.
        """

        self.assertEqual(np.shape(input), np.shape(other))

Roman Shapovalov's avatar
Roman Shapovalov committed
121
122
123
124
125
        backend = torch if torch.is_tensor(input) else np
        close = backend.allclose(
            input, other, rtol=rtol, atol=atol, equal_nan=equal_nan
        )

Jeremy Reizenstein's avatar
Jeremy Reizenstein committed
126
127
128
129
        if not close and msg is None:
            max_diff = backend.abs(input - other).max()
            self.fail(f"Not close. max diff {max_diff}.")

Roman Shapovalov's avatar
Roman Shapovalov committed
130
        self.assertTrue(close, msg)