common_testing.py 6.69 KB
Newer Older
1
# Copyright (c) Meta Platforms, Inc. and affiliates.
Patrick Labatut's avatar
Patrick Labatut committed
2
3
4
5
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
facebook-github-bot's avatar
facebook-github-bot committed
6

7
import os
facebook-github-bot's avatar
facebook-github-bot committed
8
import unittest
Nikhila Ravi's avatar
Nikhila Ravi committed
9
from pathlib import Path
Roman Shapovalov's avatar
Roman Shapovalov committed
10
from typing import Callable, Optional, Union
11
12

import numpy as np
facebook-github-bot's avatar
facebook-github-bot committed
13
import torch
Nikhila Ravi's avatar
Nikhila Ravi committed
14
15
16
from PIL import Image


17
18
19
20
21
22
23
24
25
26
def get_tests_dir() -> Path:
    """
    Returns Path for the directory containing this file.
    """
    return Path(__file__).resolve().parent


def get_pytorch3d_dir() -> Path:
    """
    Returns Path for the root PyTorch3D directory.
27
28

    Facebook internal systems need a special case here.
29
    """
30
31
    if os.environ.get("INSIDE_RE_WORKER") is not None:
        return Path(__file__).resolve().parent
32
33
    elif os.environ.get("CONDA_BUILD_STATE", "") == "TEST":
        return Path(os.environ["SRC_DIR"])
34
35
    else:
        return Path(__file__).resolve().parent.parent
36
37


Nikhila Ravi's avatar
Nikhila Ravi committed
38
def load_rgb_image(filename: str, data_dir: Union[str, Path]):
Nikhila Ravi's avatar
Nikhila Ravi committed
39
    filepath = os.path.join(data_dir, filename)
Nikhila Ravi's avatar
Nikhila Ravi committed
40
41
42
43
    with Image.open(filepath) as raw_image:
        image = torch.from_numpy(np.array(raw_image) / 255.0)
    image = image.to(dtype=torch.float32)
    return image[..., :3]
facebook-github-bot's avatar
facebook-github-bot committed
44
45


Roman Shapovalov's avatar
Roman Shapovalov committed
46
47
48
TensorOrArray = Union[torch.Tensor, np.ndarray]


Nikhila Ravi's avatar
Nikhila Ravi committed
49
50
51
52
53
54
55
56
def get_random_cuda_device() -> str:
    """
    Function to get a random GPU device from the
    available devices. This is useful for testing
    that custom cuda kernels can support inputs on
    any device without having to set the device explicitly.
    """
    num_devices = torch.cuda.device_count()
Nikhila Ravi's avatar
Nikhila Ravi committed
57
58
59
60
    device_id = (
        torch.randint(high=num_devices, size=(1,)).item() if num_devices > 1 else 0
    )
    return "cuda:%d" % device_id
Nikhila Ravi's avatar
Nikhila Ravi committed
61
62


facebook-github-bot's avatar
facebook-github-bot committed
63
64
65
66
67
class TestCaseMixin(unittest.TestCase):
    def assertSeparate(self, tensor1, tensor2) -> None:
        """
        Verify that tensor1 and tensor2 have their data in distinct locations.
        """
68
        self.assertNotEqual(tensor1.storage().data_ptr(), tensor2.storage().data_ptr())
facebook-github-bot's avatar
facebook-github-bot committed
69

Georgia Gkioxari's avatar
Georgia Gkioxari committed
70
71
72
73
    def assertNotSeparate(self, tensor1, tensor2) -> None:
        """
        Verify that tensor1 and tensor2 have their data in the same locations.
        """
74
        self.assertEqual(tensor1.storage().data_ptr(), tensor2.storage().data_ptr())
Georgia Gkioxari's avatar
Georgia Gkioxari committed
75

facebook-github-bot's avatar
facebook-github-bot committed
76
77
78
79
80
81
82
83
    def assertAllSeparate(self, tensor_list) -> None:
        """
        Verify that all tensors in tensor_list have their data in
        distinct locations.
        """
        ptrs = [i.storage().data_ptr() for i in tensor_list]
        self.assertCountEqual(ptrs, set(ptrs))

Roman Shapovalov's avatar
Roman Shapovalov committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    def assertNormsClose(
        self,
        input: TensorOrArray,
        other: TensorOrArray,
        norm_fn: Callable[[TensorOrArray], TensorOrArray],
        *,
        rtol: float = 1e-05,
        atol: float = 1e-08,
        equal_nan: bool = False,
        msg: Optional[str] = None,
    ) -> None:
        """
        Verifies that two tensors or arrays have the same shape and are close
            given absolute and relative tolerance; raises AssertionError otherwise.
            A custom norm function is computed before comparison. If no such pre-
            processing needed, pass `torch.abs` or, equivalently, call `assertClose`.
        Args:
            input, other: two tensors or two arrays.
            norm_fn: The function evaluates
                `all(norm_fn(input - other) <= atol + rtol * norm_fn(other))`.
                norm_fn is a tensor -> tensor function; the output has:
                    * all entries non-negative,
                    * shape defined by the input shape only.
            rtol, atol, equal_nan: as for torch.allclose.
            msg: message in case the assertion is violated.
        Note:
            Optional arguments here are all keyword-only, to avoid confusion
            with msg arguments on other assert functions.
        """

        self.assertEqual(np.shape(input), np.shape(other))

        diff = norm_fn(input - other)
        other_ = norm_fn(other)

Patrick Labatut's avatar
Patrick Labatut committed
119
        # We want to generalize allclose(input, output), which is essentially
Roman Shapovalov's avatar
Roman Shapovalov committed
120
121
122
123
124
125
126
127
        #  all(diff <= atol + rtol * other)
        # but with a sophisticated handling non-finite values.
        # We work that around by calling allclose() with the following arguments:
        # allclose(diff + other_, other_). This computes what we want because
        #  all(|diff + other_ - other_| <= atol + rtol * |other_|) ==
        #    all(|norm_fn(input - other)| <= atol + rtol * |norm_fn(other)|) ==
        #    all(norm_fn(input - other) <= atol + rtol * norm_fn(other)).

128
        self.assertClose(
129
            diff + other_, other_, rtol=rtol, atol=atol, equal_nan=equal_nan, msg=msg
Roman Shapovalov's avatar
Roman Shapovalov committed
130
131
        )

facebook-github-bot's avatar
facebook-github-bot committed
132
133
    def assertClose(
        self,
Roman Shapovalov's avatar
Roman Shapovalov committed
134
135
        input: TensorOrArray,
        other: TensorOrArray,
facebook-github-bot's avatar
facebook-github-bot committed
136
137
138
        *,
        rtol: float = 1e-05,
        atol: float = 1e-08,
Roman Shapovalov's avatar
Roman Shapovalov committed
139
140
        equal_nan: bool = False,
        msg: Optional[str] = None,
facebook-github-bot's avatar
facebook-github-bot committed
141
142
    ) -> None:
        """
Roman Shapovalov's avatar
Roman Shapovalov committed
143
144
145
146
        Verifies that two tensors or arrays have the same shape and are close
            given absolute and relative tolerance, i.e. checks
            `all(|input - other| <= atol + rtol * |other|)`;
            raises AssertionError otherwise.
facebook-github-bot's avatar
facebook-github-bot committed
147
148
149
        Args:
            input, other: two tensors or two arrays.
            rtol, atol, equal_nan: as for torch.allclose.
Roman Shapovalov's avatar
Roman Shapovalov committed
150
            msg: message in case the assertion is violated.
facebook-github-bot's avatar
facebook-github-bot committed
151
152
153
154
155
156
157
        Note:
            Optional arguments here are all keyword-only, to avoid confusion
            with msg arguments on other assert functions.
        """

        self.assertEqual(np.shape(input), np.shape(other))

Roman Shapovalov's avatar
Roman Shapovalov committed
158
159
160
161
162
        backend = torch if torch.is_tensor(input) else np
        close = backend.allclose(
            input, other, rtol=rtol, atol=atol, equal_nan=equal_nan
        )

163
164
165
        if close:
            return

166
167
168
169
170
171
172
173
174
175
176
        # handle bool case
        if backend == torch and input.dtype == torch.bool:
            diff = (input != other).float()
            ratio = diff
        if backend == np and input.dtype == bool:
            diff = (input != other).astype(float)
            ratio = diff
        else:
            diff = backend.abs(input + 0.0 - other)
            ratio = diff / backend.abs(other)

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
        try_relative = (diff <= atol) | (backend.isfinite(ratio) & (ratio > 0))
        if try_relative.all():
            if backend == np:
                # Avoid a weirdness with zero dimensional arrays.
                ratio = np.array(ratio)
            ratio[diff <= atol] = 0
            extra = f" Max relative diff {ratio.max()}"
        else:
            extra = ""
        shape = tuple(input.shape)
        loc = np.unravel_index(int(diff.argmax()), shape)
        max_diff = diff.max()
        err = f"Not close. Max diff {max_diff}.{extra} Shape {shape}. At {loc}."
        if msg is not None:
            self.fail(f"{msg} {err}")
        self.fail(err)