llama.go 18.5 KB
Newer Older
1
2
3
package llama

/*
Michael Yang's avatar
Michael Yang committed
4
#cgo CFLAGS: -std=c11
5
#cgo windows CFLAGS: -Wno-dll-attribute-on-redeclaration
Michael Yang's avatar
Michael Yang committed
6
7
8
#cgo CXXFLAGS: -std=c++17
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/include
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/common
9
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/vendor
10
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/tools/mtmd
Michael Yang's avatar
Michael Yang committed
11
12
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/src
#cgo CPPFLAGS: -I${SRCDIR}/../ml/backend/ggml/ggml/include
13
14

#include <stdlib.h>
Michael Yang's avatar
Michael Yang committed
15
#include "ggml.h"
16
#include "llama.h"
17
18
#include "mtmd.h"
#include "mtmd-helper.h"
19
#include "gguf.h"
Michael Yang's avatar
Michael Yang committed
20

21
22
#include "sampling_ext.h"

23
24
extern bool llamaProgressCallback(float progress, void *user_data);
extern void llamaLog(int level, char* text, void* user_data);
25
26
27
28
*/
import "C"

import (
29
	"context"
30
31
32
	_ "embed"
	"errors"
	"fmt"
33
	"log/slog"
34
	"os"
35
36
	"runtime"
	"runtime/cgo"
Jesse Gross's avatar
Jesse Gross committed
37
	"slices"
38
	"strings"
39
	"sync"
40
	"unsafe"
Michael Yang's avatar
Michael Yang committed
41
42
43

	_ "github.com/ollama/ollama/llama/llama.cpp/common"
	_ "github.com/ollama/ollama/llama/llama.cpp/src"
44
	_ "github.com/ollama/ollama/llama/llama.cpp/tools/mtmd"
45
	ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
46
47
)

48
49
50
51
52
53
54
55
56
57
58
59
func init() {
	C.llama_log_set(C.ggml_log_callback(C.llamaLog), nil)
}

//export llamaLog
func llamaLog(level C.int, text *C.char, _ unsafe.Pointer) {
	// slog levels zeros INFO and are multiples of 4
	if slog.Default().Enabled(context.TODO(), slog.Level(int(level-C.GGML_LOG_LEVEL_INFO)*4)) {
		fmt.Fprint(os.Stderr, C.GoString(text))
	}
}

60
func BackendInit() {
Michael Yang's avatar
Michael Yang committed
61
	ggml.OnceLoad()
62
63
64
	C.llama_backend_init()
}

Jesse Gross's avatar
Jesse Gross committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
func EnumerateGPUs() []string {
	var ids []string

	for i := range C.ggml_backend_dev_count() {
		device := C.ggml_backend_dev_get(i)

		if C.ggml_backend_dev_type(device) == C.GGML_BACKEND_DEVICE_TYPE_GPU {
			var props C.struct_ggml_backend_dev_props
			C.ggml_backend_dev_get_props(device, &props)
			ids = append(ids, C.GoString(props.id))
		}
	}

	return ids
}

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
func GetModelArch(modelPath string) (string, error) {
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))

	gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)})
	if gguf_ctx == nil {
		return "", errors.New("unable to load model file")
	}
	defer C.gguf_free(gguf_ctx)

	key := C.CString("general.architecture")
	defer C.free(unsafe.Pointer(key))
	arch_index := C.gguf_find_key(gguf_ctx, key)
	if int(arch_index) < 0 {
		return "", errors.New("unknown model architecture")
	}

	arch := C.gguf_get_val_str(gguf_ctx, arch_index)

	return C.GoString(arch), nil
}

103
104
105
106
type ContextParams struct {
	c C.struct_llama_context_params
}

107
func NewContextParams(numCtx int, batchSize int, numSeqMax int, threads int, flashAttention bool, kvCacheType string) ContextParams {
108
109
110
111
112
113
114
115
	params := C.llama_context_default_params()
	params.n_ctx = C.uint(numCtx)
	params.n_batch = C.uint(batchSize)
	params.n_seq_max = C.uint(numSeqMax)
	params.n_threads = C.int(threads)
	params.n_threads_batch = params.n_threads
	params.embeddings = C.bool(true)
	params.flash_attn = C.bool(flashAttention)
116
117
118
	params.type_k = kvCacheTypeFromStr(strings.ToLower(kvCacheType))
	params.type_v = kvCacheTypeFromStr(strings.ToLower(kvCacheType))

119
120
121
	return ContextParams{c: params}
}

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
// kvCacheTypeFromStr converts a string cache type to the corresponding GGML type value
func kvCacheTypeFromStr(s string) C.enum_ggml_type {
	if s == "" {
		return C.GGML_TYPE_F16
	}

	switch s {
	case "q8_0":
		return C.GGML_TYPE_Q8_0
	case "q4_0":
		return C.GGML_TYPE_Q4_0
	default:
		return C.GGML_TYPE_F16
	}
}

138
139
140
141
142
type Context struct {
	c          *C.struct_llama_context
	numThreads int
}

143
var ErrKvCacheFull = errors.New("could not find a kv cache slot")
144
145
146
147
148
149
150
151
152
153
154
155
156

func (c *Context) Decode(batch *Batch) error {
	// Positive return values does not mean a fatal error, but rather a warning.
	//   0 - success
	//   1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
	// < 0 - error
	code := int(C.llama_decode(c.c, batch.c))

	if code < 0 {
		return fmt.Errorf("llama_decode failed with code %d", code)
	}

	if code > 0 {
157
		return ErrKvCacheFull
158
159
160
161
162
163
164
165
166
167
	}

	return nil
}

func (c *Context) Model() *Model {
	return &Model{c: C.llama_get_model(c.c)}
}

func (c *Context) KvCacheSeqAdd(seqId int, p0 int, p1 int, delta int) {
168
	C.llama_memory_seq_add(C.llama_get_memory(c.c), C.int(seqId), C.int(p0), C.int(p1), C.int(delta))
169
170
171
}

func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
172
	return bool(C.llama_memory_seq_rm(C.llama_get_memory(c.c), C.int(seqId), C.int(p0), C.int(p1)))
173
174
175
}

func (c *Context) KvCacheSeqCp(srcSeqId int, dstSeqId int, p0 int, p1 int) {
176
	C.llama_memory_seq_cp(C.llama_get_memory(c.c), C.int(srcSeqId), C.int(dstSeqId), C.int(p0), C.int(p1))
177
178
}

179
func (c *Context) KvCacheClear() {
180
	C.llama_memory_clear(C.llama_get_memory(c.c), true)
181
182
}

183
func (c *Context) KvCacheCanShift() bool {
184
	return bool(C.llama_memory_can_shift(C.llama_get_memory(c.c)))
185
186
}

187
188
// Get the embeddings for a sequence id
func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
189
190
	e := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
	if e == nil {
191
192
193
		return nil
	}

194
195
196
	embeddings := make([]float32, c.Model().NEmbd())
	_ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
	return embeddings
197
198
199
}

func (c *Context) GetEmbeddingsIth(i int) []float32 {
200
201
	e := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
	if e == nil {
202
203
204
		return nil
	}

205
206
207
	embeddings := make([]float32, c.Model().NEmbd())
	_ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
	return embeddings
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
}

type ModelParams struct {
	NumGpuLayers int
	MainGpu      int
	UseMmap      bool
	TensorSplit  []float32
	Progress     func(float32)
	VocabOnly    bool
}

//export llamaProgressCallback
func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
	handle := *(*cgo.Handle)(userData)
	callback := handle.Value().(func(float32))
	callback(float32(progress))
	return true
}

227
func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
	cparams := C.llama_model_default_params()
	cparams.n_gpu_layers = C.int(params.NumGpuLayers)
	cparams.main_gpu = C.int32_t(params.MainGpu)
	cparams.use_mmap = C.bool(params.UseMmap)
	cparams.vocab_only = C.bool(params.VocabOnly)

	if len(params.TensorSplit) > 0 {
		tensorSplitData := &params.TensorSplit[0]

		var tensorSplitPin runtime.Pinner
		tensorSplitPin.Pin(tensorSplitData)
		defer tensorSplitPin.Unpin()

		cparams.tensor_split = (*C.float)(unsafe.Pointer(tensorSplitData))
	}

	if params.Progress != nil {
		handle := cgo.NewHandle(params.Progress)
		defer handle.Delete()

		var handlePin runtime.Pinner
		handlePin.Pin(&handle)
		defer handlePin.Unpin()

		cparams.progress_callback = C.llama_progress_callback(C.llamaProgressCallback)
		cparams.progress_callback_user_data = unsafe.Pointer(&handle)
	}

256
	m := Model{c: C.llama_model_load_from_file(C.CString(modelPath), cparams)}
Jesse Gross's avatar
Jesse Gross committed
257
	if m.c == nil {
258
259
260
261
		return nil, fmt.Errorf("unable to load model: %s", modelPath)
	}

	return &m, nil
262
263
264
}

func FreeModel(model *Model) {
265
	C.llama_model_free(model.c)
266
267
}

268
269
func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
	c := Context{
270
		c:          C.llama_init_from_model(model.c, params.c),
271
272
		numThreads: int(params.c.n_threads),
	}
Jesse Gross's avatar
Jesse Gross committed
273
	if c.c == nil {
274
275
276
277
		return nil, errors.New("unable to create llama context")
	}

	return &c, nil
278
279
280
}

func (m *Model) NumVocab() int {
281
	return int(C.llama_vocab_n_tokens(m.Vocab()))
282
283
284
}

func (m *Model) TokenIsEog(token int) bool {
285
	return bool(C.llama_vocab_is_eog(m.Vocab(), C.llama_token(token)))
286
287
288
}

func (m *Model) AddBOSToken() bool {
289
	return bool(C.llama_vocab_get_add_bos(m.Vocab()))
290
291
292
293
294
295
}

func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float32, threads int) error {
	cLoraPath := C.CString(loraPath)
	defer C.free(unsafe.Pointer(cLoraPath))

296
	loraAdapter := C.llama_adapter_lora_init(m.c, cLoraPath)
Jesse Gross's avatar
Jesse Gross committed
297
298
299
	if loraAdapter == nil {
		return errors.New("unable to load lora")
	}
300
301
302

	err := -1
	if loraAdapter != nil {
303
		err = int(C.llama_set_adapter_lora(context.c, loraAdapter, C.float(scale)))
304
305
306
307
308
309
310
311
	}
	if err != 0 {
		return errors.New("error applying lora from file")
	}

	return nil
}

312
313
314
315
func (m *Model) Vocab() *C.struct_llama_vocab {
	return C.llama_model_get_vocab(m.c)
}

316
317
318
type Batch struct {
	c         C.struct_llama_batch
	batchSize int
319
	maxSeq    int
320
321
322
	embedSize int
}

323
324
325
// Creates a new batch for either word tokens or image embeddings (if embedSize is non-zero).
// Batches cannot contain both types at the same time. batchSize is the maximum number of entries
// that can be added per sequence
Jesse Gross's avatar
Jesse Gross committed
326
327
func NewBatch(batchSize int, maxSeq int, embedSize int) (*Batch, error) {
	b := Batch{
328
329
330
331
		c:         C.llama_batch_init(C.int(batchSize*maxSeq), C.int(embedSize), C.int(maxSeq)),
		batchSize: batchSize,
		maxSeq:    maxSeq,
		embedSize: embedSize,
332
	}
Jesse Gross's avatar
Jesse Gross committed
333
334
335
336
337
338
339
340
341
342
343
344

	// Check to see if any of the allocations in llama_batch_init() failed
	nilPointer := (embedSize == 0 && b.c.token == nil) || (embedSize != 0 && b.c.embd == nil) ||
		b.c.pos == nil || b.c.n_seq_id == nil || b.c.seq_id == nil || b.c.logits == nil ||
		slices.Contains(unsafe.Slice(b.c.seq_id, b.allocSize()), nil)

	if nilPointer {
		C.llama_batch_free(b.c)
		return nil, fmt.Errorf("unable to allocate batch (batchSize=%v maxSeq=%v embedSize=%v)", batchSize, maxSeq, embedSize)
	}

	return &b, nil
345
346
}

347
348
349
350
351
352
353
354
func (b *Batch) Size() int {
	return b.batchSize
}

func (b *Batch) allocSize() int {
	return b.batchSize * b.maxSeq
}

355
356
357
358
359
360
361
362
363
364
365
366
func (b *Batch) NumTokens() int {
	return int(b.c.n_tokens)
}

func (b *Batch) IsEmbedding() bool {
	return b.embedSize != 0
}

// Add adds either a token or an image embedding to the batch depending on the type
// when the batch was initialized. The other argument will be ignored. Adds to the
// batch with the given position for the given sequence ids, and optionally instructs
// to include logits.
367
func (b *Batch) Add(token int, embed []float32, pos int, logits bool, seqIds ...int) {
368
	if !b.IsEmbedding() {
369
		unsafe.Slice(b.c.token, b.allocSize())[b.c.n_tokens] = C.llama_token(token)
370
	} else {
371
		copy(unsafe.Slice((*float32)(b.c.embd), b.allocSize()*b.embedSize)[int(b.c.n_tokens)*b.embedSize:], embed)
372
	}
373
374
	unsafe.Slice(b.c.pos, b.allocSize())[b.c.n_tokens] = C.llama_pos(pos)
	unsafe.Slice(b.c.n_seq_id, b.allocSize())[b.c.n_tokens] = C.int(len(seqIds))
375
376

	for i, s := range seqIds {
377
		unsafe.Slice((unsafe.Slice(b.c.seq_id, b.allocSize())[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
378
379
380
	}

	if logits {
381
		unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 1
382
383
	} else {
		unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 0
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
	}

	b.c.n_tokens += 1
}

func (b *Batch) Clear() {
	b.c.n_tokens = 0
}

func (b *Batch) Free() {
	b.batchSize = 0
	C.llama_batch_free(b.c)
}

type Model struct {
	c *C.struct_llama_model
}

func (m *Model) TokenToPiece(token int) string {
	tokenLen := 12
	buf := make([]byte, tokenLen)
	tokenLen = int(C.llama_token_to_piece(
406
		m.Vocab(),
407
408
409
410
411
412
413
414
415
416
417
		C.int32_t(token),
		(*C.char)(unsafe.Pointer(&buf[0])),
		C.int32_t(tokenLen),
		C.int32_t(0),
		C.bool(true),
	))
	if tokenLen < 0 {
		tokenLen = -tokenLen

		buf = make([]byte, tokenLen)
		C.llama_token_to_piece(
418
			m.Vocab(),
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
			C.int32_t(token),
			(*C.char)(unsafe.Pointer(&buf[0])),
			C.int32_t(tokenLen),
			C.int32_t(0),
			C.bool(true),
		)
	}
	return strings.TrimRight(string(buf), "\x00")
}

func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int, error) {
	maxTokens := len(text) + 2
	cTokens := make([]C.llama_token, maxTokens)
	cText := C.CString(text)
	defer C.free(unsafe.Pointer(cText))

	result := C.llama_tokenize(
436
		m.Vocab(),
437
438
439
440
441
442
443
444
445
446
447
448
449
		cText,
		C.int32_t(len(text)),
		&cTokens[0],
		C.int32_t(maxTokens),
		C.bool(addSpecial),
		C.bool(parseSpecial),
	)

	// if the result is negative, reallocate and retry with the correct buffer size
	if result < 0 {
		maxTokens = int(-result)
		cTokens = make([]C.llama_token, maxTokens)
		result = C.llama_tokenize(
450
			m.Vocab(),
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
			cText,
			C.int32_t(len(text)),
			&cTokens[0],
			C.int32_t(maxTokens),
			C.bool(addSpecial),
			C.bool(parseSpecial),
		)
		if result < 0 {
			return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
		}
	}

	tokens := make([]int, result)
	for i := range result {
		tokens[i] = int(cTokens[i])
	}

	return tokens, nil
}

func (m *Model) NEmbd() int {
472
	return int(C.llama_model_n_embd(m.c))
473
474
}

475
// vision processing
476
477
type MtmdContext struct {
	c *C.struct_mtmd_context
478
479
}

480
func NewMtmdContext(llamaContext *Context, modelPath string) (*MtmdContext, error) {
481
482
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))
483
484
	// TODO: Support non-default params
	cp := C.mtmd_context_params_default()
485

486
487
488
489
	// NOTE: The model and projector embedding lengths are checked during init
	c := C.mtmd_init_from_file(mp, C.llama_get_model(llamaContext.c), cp)
	if c == nil {
		return nil, fmt.Errorf("unable to load mmtd model: %v", modelPath)
490
491
	}

492
	return &MtmdContext{c: c}, nil
493
494
}

495
496
func (c *MtmdContext) Free() {
	C.mtmd_free(c.c)
497
498
}

499
500
501
502
503
504
505
506
func (c *MtmdContext) NewEmbed(llamaContext *Context, data []byte) ([][]float32, error) {
	// Initialize the input chunks pointer
	ic := C.mtmd_input_chunks_init()
	defer C.mtmd_input_chunks_free(ic)

	// Initialize an empty text prompt so we can tokenize
	it := C.mtmd_input_text_init(C.mtmd_default_marker(), true, true)
	defer C.mtmd_input_text_free(it)
507

508
509
510
511
512
513
514
515
516
	// Initialize a bitmap with the image data
	bm := C.mtmd_helper_bitmap_init_from_buf(c.c, (*C.uchar)(unsafe.Pointer(&data[0])), C.size_t(len(data)))
	defer C.mtmd_bitmap_free(bm)

	// Tokenize the image
	if C.int32_t(0) != C.mtmd_tokenize(c.c, ic, it, &bm, 1) {
		return nil, errors.New("unable to tokenize mtmd embedding from image")
	}
	nChunks := C.mtmd_input_chunks_size(ic)
517
	numEmbed := llamaContext.Model().NEmbd()
518
519
520
521
522
523
524
525
526
527
528
	lastChunkSize := 0
	for i := range int(nChunks) {
		chunk := C.mtmd_input_chunks_get(ic, C.size_t(i))
		numTokens := int(C.mtmd_input_chunk_get_n_tokens(chunk))
		lastChunkSize = numTokens

		// Encode the chunk
		if C.int32_t(0) != C.mtmd_encode_chunk(c.c, chunk) {
			return nil, errors.New("unable to encode mtmd image chunk")
		}
	}
529

530
531
532
533
534
535
	// Get the embeddings
	embed := make([][]float32, lastChunkSize)
	embd := C.mtmd_get_output_embd(c.c)
	if nil == embd {
		return nil, errors.New("failed to get image embedding")
	}
536

537
538
	// Extend the embedding array for each token
	s := unsafe.Slice((*float32)(embd), numEmbed*lastChunkSize)
539
540
	rows := make([]float32, len(s))
	copy(rows, s)
541
	for i := range lastChunkSize {
542
543
544
		embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
	}

Jesse Gross's avatar
Jesse Gross committed
545
	return embed, nil
546
547
}

548
549
550
551
func (c *Context) Synchronize() {
	C.llama_synchronize(c.c)
}

552
553
554
// sampling
// TODO: this is a temporary wrapper to allow calling C++ code from CGo
type SamplingContext struct {
555
	c *C.struct_common_sampler
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
}

type SamplingParams struct {
	TopK           int
	TopP           float32
	MinP           float32
	TypicalP       float32
	Temp           float32
	RepeatLastN    int
	PenaltyRepeat  float32
	PenaltyFreq    float32
	PenaltyPresent float32
	PenalizeNl     bool
	Seed           uint32
	Grammar        string
}

Jesse Gross's avatar
Jesse Gross committed
573
func NewSamplingContext(model *Model, params SamplingParams) (*SamplingContext, error) {
574
	var cparams C.struct_common_sampler_cparams
575
576
577
578
579
580
581
582
	cparams.top_k = C.int32_t(params.TopK)
	cparams.top_p = C.float(params.TopP)
	cparams.min_p = C.float(params.MinP)
	cparams.typical_p = C.float(params.TypicalP)
	cparams.temp = C.float(params.Temp)
	cparams.penalty_last_n = C.int32_t(params.RepeatLastN)
	cparams.penalty_repeat = C.float(params.PenaltyRepeat)
	cparams.penalty_freq = C.float(params.PenaltyFreq)
583
	cparams.penalty_present = C.float(params.PenaltyPresent)
584
585
586
587
588
589
	cparams.seed = C.uint32_t(params.Seed)

	grammar := C.CString(params.Grammar)
	defer C.free(unsafe.Pointer(grammar))

	cparams.grammar = grammar
590
	context := &SamplingContext{c: C.common_sampler_cinit(model.c, &cparams)}
Jesse Gross's avatar
Jesse Gross committed
591
592
593
594
	if context.c == nil {
		return nil, errors.New("unable to create sampling context")
	}

595
	runtime.SetFinalizer(context, func(s *SamplingContext) { C.common_sampler_cfree(s.c) })
596

Jesse Gross's avatar
Jesse Gross committed
597
	return context, nil
598
599
600
}

func (s *SamplingContext) Reset() {
601
	C.common_sampler_creset(s.c)
602
603
}

604
func (s *SamplingContext) Sample(llamaContext *Context, idx int) int {
605
	return int(C.common_sampler_csample(s.c, llamaContext.c, C.int(idx)))
606
607
}

608
func (s *SamplingContext) Accept(id int, applyGrammar bool) {
609
	C.common_sampler_caccept(s.c, C.llama_token(id), C.bool(applyGrammar))
610
}
611

612
613
614
615
// SchemaToGrammar converts the provided JSON schema to a grammar. It returns
// nil if the provided schema is invalid JSON or an invalid JSON schema.
func SchemaToGrammar(schema []byte) []byte {
	cStr := C.CString(string(schema))
616
617
	defer C.free(unsafe.Pointer(cStr))

618
	// Allocate buffer for grammar based on schema length but with upper bound
619
	maxLen := max(32768, min(1024*1024, len(schema)*4))
620
621
622
	buf := make([]byte, maxLen)

	// Call C function to convert schema to grammar
623
624
625
626
	n := C.schema_to_grammar(cStr, (*C.char)(unsafe.Pointer(&buf[0])), C.size_t(maxLen))
	if n == 0 {
		// preserve nil
		return nil
627
	}
628
	return buf[:n]
629
}
630

631
632
633
634
635
636
637
638
type TokenData struct {
	ID    int32
	Logit float32
}

type Grammar struct {
	c  *C.struct_llama_grammar
	mu sync.Mutex
639
640
}

641
func NewGrammar(grammar string, vocabIds []uint32, vocabValues []string, eogTokens []int32) *Grammar {
642
643
644
	cGrammar := C.CString(grammar)
	defer C.free(unsafe.Pointer(cGrammar))

645
646
647
648
	cTokens := make([]C.uint32_t, len(vocabIds))
	for i, token := range vocabIds {
		cTokens[i] = C.uint32_t(token)
	}
649

650
651
652
653
654
655
656
657
658
659
660
	cPieces := make([]*C.char, len(vocabValues))
	for i, piece := range vocabValues {
		cPieces[i] = C.CString(piece)
		defer C.free(unsafe.Pointer(cPieces[i]))
	}

	cEogTokens := make([]C.uint32_t, len(eogTokens))
	for i, token := range eogTokens {
		cEogTokens[i] = C.uint32_t(token)
	}

661
	g := C.grammar_init(cGrammar, unsafe.SliceData(cTokens), C.size_t(len(cTokens)), unsafe.SliceData(cPieces), unsafe.SliceData(cEogTokens), C.size_t(len(cEogTokens)))
662
663
664
	if g == nil {
		return nil
	}
665

666
	return &Grammar{c: g}
667
668
}

669
670
671
672
673
674
675
func (g *Grammar) Free() {
	g.mu.Lock()
	defer g.mu.Unlock()
	if g.c != nil {
		C.grammar_free(g.c)
		g.c = nil
	}
676
677
}

678
679
680
681
682
683
684
685
func (g *Grammar) Apply(tokens []TokenData) {
	g.mu.Lock()
	defer g.mu.Unlock()

	if g.c == nil {
		return
	}

686
687
688
	tds := make([]C.struct_llama_token_data, len(tokens))
	for i, token := range tokens {
		tds[i] = C.struct_llama_token_data{
689
			id:    C.int32_t(token.ID),
690
691
692
693
694
695
696
697
698
699
700
701
702
703
			logit: C.float(token.Logit),
			p:     C.float(0.0),
		}
	}
	tda := &C.llama_token_data_array{
		data:     (*C.struct_llama_token_data)(unsafe.Pointer(&tds[0])),
		size:     C.size_t(len(tokens)),
		selected: C.int64_t(-1),
		sorted:   C.bool(false),
	}
	var pinner runtime.Pinner
	pinner.Pin(&tds[0])
	defer pinner.Unpin()

704
	C.grammar_apply(g.c, tda)
705
706
707
708
	for i := range tokens {
		tokens[i].Logit = float32(tds[i].logit)
	}
}
709
710
711
712
713
714
715
716
717
718
719
720

func (g *Grammar) Accept(token int32) {
	g.mu.Lock()
	defer g.mu.Unlock()

	// Check if grammar was freed
	if g.c == nil {
		return
	}

	C.grammar_accept(g.c, C.llama_token(token))
}