llama.go 18 KB
Newer Older
1
2
3
package llama

/*
Michael Yang's avatar
Michael Yang committed
4
5
6
7
8
9
10
#cgo CFLAGS: -std=c11
#cgo CXXFLAGS: -std=c++17
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/include
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/common
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/examples/llava
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/src
#cgo CPPFLAGS: -I${SRCDIR}/../ml/backend/ggml/ggml/include
11
12

#include <stdlib.h>
Michael Yang's avatar
Michael Yang committed
13
#include "ggml.h"
14
15
16
#include "llama.h"
#include "clip.h"
#include "llava.h"
17
#include "gguf.h"
Michael Yang's avatar
Michael Yang committed
18

19
#include "mllama.h"
20
21
#include "sampling_ext.h"

22
23
extern bool llamaProgressCallback(float progress, void *user_data);
extern void llamaLog(int level, char* text, void* user_data);
24
25
26
27
28
29
30
31
32
33
34

typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER;
COMPILER inline get_compiler() {
#if defined(__clang__)
	return COMP_CLANG;
#elif defined(__GNUC__)
	return COMP_GCC;
#else
	return UNKNOWN_COMPILER;
#endif
}
35

36
37
38
39
*/
import "C"

import (
40
	"context"
41
42
43
	_ "embed"
	"errors"
	"fmt"
44
	"log/slog"
45
	"os"
46
47
	"runtime"
	"runtime/cgo"
Jesse Gross's avatar
Jesse Gross committed
48
	"slices"
49
50
	"strings"
	"unsafe"
Michael Yang's avatar
Michael Yang committed
51
52
53
54

	_ "github.com/ollama/ollama/llama/llama.cpp/common"
	_ "github.com/ollama/ollama/llama/llama.cpp/examples/llava"
	_ "github.com/ollama/ollama/llama/llama.cpp/src"
55
	ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
56
57
)

58
59
60
61
62
63
64
65
66
67
68
69
func init() {
	C.llama_log_set(C.ggml_log_callback(C.llamaLog), nil)
}

//export llamaLog
func llamaLog(level C.int, text *C.char, _ unsafe.Pointer) {
	// slog levels zeros INFO and are multiples of 4
	if slog.Default().Enabled(context.TODO(), slog.Level(int(level-C.GGML_LOG_LEVEL_INFO)*4)) {
		fmt.Fprint(os.Stderr, C.GoString(text))
	}
}

70
func BackendInit() {
Michael Yang's avatar
Michael Yang committed
71
	ggml.OnceLoad()
72
73
74
75
	C.llama_backend_init()
}

func PrintSystemInfo() string {
76
77
78
79
80
81
82
83
84
85
	var compiler string
	switch C.get_compiler() {
	case C.COMP_UNKNOWN:
		compiler = "cgo(unknown_compiler)"
	case C.COMP_GCC:
		compiler = "cgo(gcc)"
	case C.COMP_CLANG:
		compiler = "cgo(clang)"
	}
	return C.GoString(C.llama_print_system_info()) + compiler
86
87
}

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
func GetModelArch(modelPath string) (string, error) {
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))

	gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)})
	if gguf_ctx == nil {
		return "", errors.New("unable to load model file")
	}
	defer C.gguf_free(gguf_ctx)

	key := C.CString("general.architecture")
	defer C.free(unsafe.Pointer(key))
	arch_index := C.gguf_find_key(gguf_ctx, key)
	if int(arch_index) < 0 {
		return "", errors.New("unknown model architecture")
	}

	arch := C.gguf_get_val_str(gguf_ctx, arch_index)

	return C.GoString(arch), nil
}

110
111
112
113
type ContextParams struct {
	c C.struct_llama_context_params
}

114
func NewContextParams(numCtx int, batchSize int, numSeqMax int, threads int, flashAttention bool, kvCacheType string) ContextParams {
115
116
117
118
119
120
121
122
	params := C.llama_context_default_params()
	params.n_ctx = C.uint(numCtx)
	params.n_batch = C.uint(batchSize)
	params.n_seq_max = C.uint(numSeqMax)
	params.n_threads = C.int(threads)
	params.n_threads_batch = params.n_threads
	params.embeddings = C.bool(true)
	params.flash_attn = C.bool(flashAttention)
123
124
125
	params.type_k = kvCacheTypeFromStr(strings.ToLower(kvCacheType))
	params.type_v = kvCacheTypeFromStr(strings.ToLower(kvCacheType))

126
127
128
	return ContextParams{c: params}
}

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
// kvCacheTypeFromStr converts a string cache type to the corresponding GGML type value
func kvCacheTypeFromStr(s string) C.enum_ggml_type {
	if s == "" {
		return C.GGML_TYPE_F16
	}

	switch s {
	case "q8_0":
		return C.GGML_TYPE_Q8_0
	case "q4_0":
		return C.GGML_TYPE_Q4_0
	default:
		return C.GGML_TYPE_F16
	}
}

145
146
147
148
149
type Context struct {
	c          *C.struct_llama_context
	numThreads int
}

150
var ErrKvCacheFull = errors.New("could not find a kv cache slot")
151
152
153
154
155
156
157
158
159
160
161
162
163

func (c *Context) Decode(batch *Batch) error {
	// Positive return values does not mean a fatal error, but rather a warning.
	//   0 - success
	//   1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
	// < 0 - error
	code := int(C.llama_decode(c.c, batch.c))

	if code < 0 {
		return fmt.Errorf("llama_decode failed with code %d", code)
	}

	if code > 0 {
164
		return ErrKvCacheFull
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
	}

	return nil
}

func (c *Context) Model() *Model {
	return &Model{c: C.llama_get_model(c.c)}
}

func (c *Context) KvCacheSeqAdd(seqId int, p0 int, p1 int, delta int) {
	C.llama_kv_cache_seq_add(c.c, C.int(seqId), C.int(p0), C.int(p1), C.int(delta))
}

func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
	return bool(C.llama_kv_cache_seq_rm(c.c, C.int(seqId), C.int(p0), C.int(p1)))
}

func (c *Context) KvCacheSeqCp(srcSeqId int, dstSeqId int, p0 int, p1 int) {
	C.llama_kv_cache_seq_cp(c.c, C.int(srcSeqId), C.int(dstSeqId), C.int(p0), C.int(p1))
}

186
187
188
189
190
191
192
193
func (c *Context) KvCacheClear() {
	C.llama_kv_cache_clear(c.c)
}

func (c *Context) KvCacheDefrag() {
	C.llama_kv_cache_defrag(c.c)
}

194
195
// Get the embeddings for a sequence id
func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
196
197
	e := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
	if e == nil {
198
199
200
		return nil
	}

201
202
203
	embeddings := make([]float32, c.Model().NEmbd())
	_ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
	return embeddings
204
205
206
}

func (c *Context) GetEmbeddingsIth(i int) []float32 {
207
208
	e := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
	if e == nil {
209
210
211
		return nil
	}

212
213
214
	embeddings := make([]float32, c.Model().NEmbd())
	_ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
	return embeddings
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
}

type ModelParams struct {
	NumGpuLayers int
	MainGpu      int
	UseMmap      bool
	UseMlock     bool
	TensorSplit  []float32
	Progress     func(float32)
	VocabOnly    bool
}

//export llamaProgressCallback
func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
	handle := *(*cgo.Handle)(userData)
	callback := handle.Value().(func(float32))
	callback(float32(progress))
	return true
}

235
func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
	cparams := C.llama_model_default_params()
	cparams.n_gpu_layers = C.int(params.NumGpuLayers)
	cparams.main_gpu = C.int32_t(params.MainGpu)
	cparams.use_mmap = C.bool(params.UseMmap)
	cparams.use_mlock = C.bool(params.UseMlock)
	cparams.vocab_only = C.bool(params.VocabOnly)

	if len(params.TensorSplit) > 0 {
		tensorSplitData := &params.TensorSplit[0]

		var tensorSplitPin runtime.Pinner
		tensorSplitPin.Pin(tensorSplitData)
		defer tensorSplitPin.Unpin()

		cparams.tensor_split = (*C.float)(unsafe.Pointer(tensorSplitData))
	}

	if params.Progress != nil {
		handle := cgo.NewHandle(params.Progress)
		defer handle.Delete()

		var handlePin runtime.Pinner
		handlePin.Pin(&handle)
		defer handlePin.Unpin()

		cparams.progress_callback = C.llama_progress_callback(C.llamaProgressCallback)
		cparams.progress_callback_user_data = unsafe.Pointer(&handle)
	}

265
	m := Model{c: C.llama_load_model_from_file(C.CString(modelPath), cparams)}
Jesse Gross's avatar
Jesse Gross committed
266
	if m.c == nil {
267
268
269
270
		return nil, fmt.Errorf("unable to load model: %s", modelPath)
	}

	return &m, nil
271
272
273
274
275
276
}

func FreeModel(model *Model) {
	C.llama_free_model(model.c)
}

277
278
func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
	c := Context{
279
280
281
		c:          C.llama_new_context_with_model(model.c, params.c),
		numThreads: int(params.c.n_threads),
	}
Jesse Gross's avatar
Jesse Gross committed
282
	if c.c == nil {
283
284
285
286
		return nil, errors.New("unable to create llama context")
	}

	return &c, nil
287
288
289
}

func (m *Model) NumVocab() int {
290
	return int(C.llama_n_vocab(m.Vocab()))
291
292
293
}

func (m *Model) TokenIsEog(token int) bool {
294
	return bool(C.llama_token_is_eog(m.Vocab(), C.llama_token(token)))
295
296
297
}

func (m *Model) AddBOSToken() bool {
298
	return bool(C.llama_add_bos_token(m.Vocab()))
299
300
301
302
303
304
}

func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float32, threads int) error {
	cLoraPath := C.CString(loraPath)
	defer C.free(unsafe.Pointer(cLoraPath))

305
	loraAdapter := C.llama_adapter_lora_init(m.c, cLoraPath)
Jesse Gross's avatar
Jesse Gross committed
306
307
308
	if loraAdapter == nil {
		return errors.New("unable to load lora")
	}
309
310
311

	err := -1
	if loraAdapter != nil {
312
		err = int(C.llama_set_adapter_lora(context.c, loraAdapter, C.float(scale)))
313
314
315
316
317
318
319
320
	}
	if err != 0 {
		return errors.New("error applying lora from file")
	}

	return nil
}

321
322
323
324
func (m *Model) Vocab() *C.struct_llama_vocab {
	return C.llama_model_get_vocab(m.c)
}

325
326
327
type Batch struct {
	c         C.struct_llama_batch
	batchSize int
328
	maxSeq    int
329
330
331
	embedSize int
}

332
333
334
// Creates a new batch for either word tokens or image embeddings (if embedSize is non-zero).
// Batches cannot contain both types at the same time. batchSize is the maximum number of entries
// that can be added per sequence
Jesse Gross's avatar
Jesse Gross committed
335
336
func NewBatch(batchSize int, maxSeq int, embedSize int) (*Batch, error) {
	b := Batch{
337
338
339
340
		c:         C.llama_batch_init(C.int(batchSize*maxSeq), C.int(embedSize), C.int(maxSeq)),
		batchSize: batchSize,
		maxSeq:    maxSeq,
		embedSize: embedSize,
341
	}
Jesse Gross's avatar
Jesse Gross committed
342
343
344
345
346
347
348
349
350
351
352
353

	// Check to see if any of the allocations in llama_batch_init() failed
	nilPointer := (embedSize == 0 && b.c.token == nil) || (embedSize != 0 && b.c.embd == nil) ||
		b.c.pos == nil || b.c.n_seq_id == nil || b.c.seq_id == nil || b.c.logits == nil ||
		slices.Contains(unsafe.Slice(b.c.seq_id, b.allocSize()), nil)

	if nilPointer {
		C.llama_batch_free(b.c)
		return nil, fmt.Errorf("unable to allocate batch (batchSize=%v maxSeq=%v embedSize=%v)", batchSize, maxSeq, embedSize)
	}

	return &b, nil
354
355
}

356
357
358
359
360
361
362
363
func (b *Batch) Size() int {
	return b.batchSize
}

func (b *Batch) allocSize() int {
	return b.batchSize * b.maxSeq
}

364
365
366
367
368
369
370
371
372
373
374
375
func (b *Batch) NumTokens() int {
	return int(b.c.n_tokens)
}

func (b *Batch) IsEmbedding() bool {
	return b.embedSize != 0
}

// Add adds either a token or an image embedding to the batch depending on the type
// when the batch was initialized. The other argument will be ignored. Adds to the
// batch with the given position for the given sequence ids, and optionally instructs
// to include logits.
376
func (b *Batch) Add(token int, embed []float32, pos int, logits bool, seqIds ...int) {
377
	if !b.IsEmbedding() {
378
		unsafe.Slice(b.c.token, b.allocSize())[b.c.n_tokens] = C.llama_token(token)
379
	} else {
380
		copy(unsafe.Slice((*float32)(b.c.embd), b.allocSize()*b.embedSize)[int(b.c.n_tokens)*b.embedSize:], embed)
381
	}
382
383
	unsafe.Slice(b.c.pos, b.allocSize())[b.c.n_tokens] = C.llama_pos(pos)
	unsafe.Slice(b.c.n_seq_id, b.allocSize())[b.c.n_tokens] = C.int(len(seqIds))
384
385

	for i, s := range seqIds {
386
		unsafe.Slice((unsafe.Slice(b.c.seq_id, b.allocSize())[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
387
388
389
	}

	if logits {
390
		unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 1
391
392
	} else {
		unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 0
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
	}

	b.c.n_tokens += 1
}

func (b *Batch) Clear() {
	b.c.n_tokens = 0
}

func (b *Batch) Free() {
	b.batchSize = 0
	C.llama_batch_free(b.c)
}

type Model struct {
	c *C.struct_llama_model
}

func (m *Model) TokenToPiece(token int) string {
	tokenLen := 12
	buf := make([]byte, tokenLen)
	tokenLen = int(C.llama_token_to_piece(
415
		m.Vocab(),
416
417
418
419
420
421
422
423
424
425
426
		C.int32_t(token),
		(*C.char)(unsafe.Pointer(&buf[0])),
		C.int32_t(tokenLen),
		C.int32_t(0),
		C.bool(true),
	))
	if tokenLen < 0 {
		tokenLen = -tokenLen

		buf = make([]byte, tokenLen)
		C.llama_token_to_piece(
427
			m.Vocab(),
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
			C.int32_t(token),
			(*C.char)(unsafe.Pointer(&buf[0])),
			C.int32_t(tokenLen),
			C.int32_t(0),
			C.bool(true),
		)
	}
	return strings.TrimRight(string(buf), "\x00")
}

func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int, error) {
	maxTokens := len(text) + 2
	cTokens := make([]C.llama_token, maxTokens)
	cText := C.CString(text)
	defer C.free(unsafe.Pointer(cText))

	result := C.llama_tokenize(
445
		m.Vocab(),
446
447
448
449
450
451
452
453
454
455
456
457
458
		cText,
		C.int32_t(len(text)),
		&cTokens[0],
		C.int32_t(maxTokens),
		C.bool(addSpecial),
		C.bool(parseSpecial),
	)

	// if the result is negative, reallocate and retry with the correct buffer size
	if result < 0 {
		maxTokens = int(-result)
		cTokens = make([]C.llama_token, maxTokens)
		result = C.llama_tokenize(
459
			m.Vocab(),
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
			cText,
			C.int32_t(len(text)),
			&cTokens[0],
			C.int32_t(maxTokens),
			C.bool(addSpecial),
			C.bool(parseSpecial),
		)
		if result < 0 {
			return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
		}
	}

	tokens := make([]int, result)
	for i := range result {
		tokens[i] = int(cTokens[i])
	}

	return tokens, nil
}

func (m *Model) NEmbd() int {
	return int(C.llama_n_embd(m.c))
}

func Quantize(infile, outfile string, ftype uint32) error {
	cinfile := C.CString(infile)
	defer C.free(unsafe.Pointer(cinfile))

	coutfile := C.CString(outfile)
	defer C.free(unsafe.Pointer(coutfile))

	params := C.llama_model_quantize_default_params()
	params.nthread = -1
	params.ftype = ftype

	if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
		return fmt.Errorf("llama_model_quantize: %d", rc)
	}

	return nil
}

502
// vision processing
503
type ClipContext struct {
504
	c *C.struct_clip_ctx
505
506
}

507
func NewClipContext(llamaContext *Context, modelPath string) (*ClipContext, error) {
508
509
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))
510
	c := C.clip_model_load(mp, 1)
Jesse Gross's avatar
Jesse Gross committed
511
512
513
	if c == nil {
		return nil, fmt.Errorf("unable to load clip model: %v", modelPath)
	}
514

515
516
517
518
	projEmbedSize := int(C.clip_n_mmproj_embd(c))
	modelEmbedSize := llamaContext.Model().NEmbd()
	if projEmbedSize != modelEmbedSize {
		return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
519
520
	}

521
	return &ClipContext{c: c}, nil
522
523
524
}

func (c *ClipContext) Free() {
525
	C.clip_free(c.c)
526
527
}

Jesse Gross's avatar
Jesse Gross committed
528
func (c *ClipContext) NewEmbed(llamaContext *Context, data []byte) ([][]float32, error) {
529
	l := C.llava_image_embed_make_with_bytes(c.c, C.int(llamaContext.numThreads), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))
Jesse Gross's avatar
Jesse Gross committed
530
531
532
	if l == nil {
		return nil, errors.New("unable to make llava embedding from image")
	}
533

534
	numTokens := int(l.n_image_pos)
535
536
	numEmbed := llamaContext.Model().NEmbd()

537
	s := unsafe.Slice((*float32)(l.embed), numEmbed*numTokens)
538
539
540
541
542
543
544
545
546

	embed := make([][]float32, numTokens)
	rows := make([]float32, len(s))
	copy(rows, s)

	for i := range embed {
		embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
	}

547
	C.llava_image_embed_free(l)
548

Jesse Gross's avatar
Jesse Gross committed
549
	return embed, nil
550
551
}

552
553
554
555
556
557
558
559
type MllamaContext struct {
	c *C.struct_mllama_ctx
}

func NewMllamaContext(llamaContext *Context, modelPath string) (*MllamaContext, error) {
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))
	c := C.mllama_model_load(mp, 1)
Jesse Gross's avatar
Jesse Gross committed
560
561
562
	if c == nil {
		return nil, fmt.Errorf("unable to load mllama model: %v", modelPath)
	}
563
564
565
566
567
568
569
570
571
572
573
574
575
576

	projEmbedSize := int(C.mllama_n_embd(c))
	modelEmbedSize := llamaContext.Model().NEmbd()
	if projEmbedSize != modelEmbedSize {
		return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
	}

	return &MllamaContext{c: c}, nil
}

func (m *MllamaContext) Free() {
	C.mllama_free(m.c)
}

Jesse Gross's avatar
Jesse Gross committed
577
func (m *MllamaContext) NewEmbed(llamaContext *Context, data []byte, aspectRatioId int) ([][]float32, error) {
578
579
580
	img := C.mllama_image_init()
	defer C.mllama_image_free(img)

Jesse Gross's avatar
Jesse Gross committed
581
582
583
584
	ok := bool(C.mllama_image_load_from_data(unsafe.Pointer(&data[0]), C.int(len(data)), 560, 560, 3, 4, C.int(aspectRatioId), img))
	if !ok {
		return nil, errors.New("unable to load mllama image data")
	}
585

586
	rows := make([]float32, m.EmbedSize(llamaContext))
Jesse Gross's avatar
Jesse Gross committed
587
588
589
590
	ok = bool(C.mllama_image_encode(m.c, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0]))))
	if !ok {
		return nil, errors.New("unable to make mllama embedding from image")
	}
591

592
593
	embed := make([][]float32, 1)
	embed[0] = rows
594

Jesse Gross's avatar
Jesse Gross committed
595
	return embed, nil
596
597
}

598
599
600
func (m *MllamaContext) EmbedSize(llamaContext *Context) int {
	numTokens := int(C.mllama_n_positions(m.c) * C.mllama_n_tiles(m.c))
	numEmbed := llamaContext.Model().NEmbd()
601

602
603
	return numTokens * numEmbed
}
604

605
606
func (c *Context) SetCrossAttention(state bool) {
	C.llama_set_cross_attention(c.c, C.bool(state))
607
608
}

609
610
611
612
func (c *Context) Synchronize() {
	C.llama_synchronize(c.c)
}

613
614
615
// sampling
// TODO: this is a temporary wrapper to allow calling C++ code from CGo
type SamplingContext struct {
616
	c *C.struct_common_sampler
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
}

type SamplingParams struct {
	TopK           int
	TopP           float32
	MinP           float32
	TypicalP       float32
	Temp           float32
	RepeatLastN    int
	PenaltyRepeat  float32
	PenaltyFreq    float32
	PenaltyPresent float32
	Mirostat       int
	MirostatTau    float32
	MirostatEta    float32
	PenalizeNl     bool
	Seed           uint32
	Grammar        string
}

Jesse Gross's avatar
Jesse Gross committed
637
func NewSamplingContext(model *Model, params SamplingParams) (*SamplingContext, error) {
638
	var cparams C.struct_common_sampler_cparams
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
	cparams.top_k = C.int32_t(params.TopK)
	cparams.top_p = C.float(params.TopP)
	cparams.min_p = C.float(params.MinP)
	cparams.typical_p = C.float(params.TypicalP)
	cparams.temp = C.float(params.Temp)
	cparams.penalty_last_n = C.int32_t(params.RepeatLastN)
	cparams.penalty_repeat = C.float(params.PenaltyRepeat)
	cparams.penalty_freq = C.float(params.PenaltyFreq)
	cparams.penalty_present = C.float(params.PenaltyFreq)
	cparams.mirostat = C.int32_t(params.Mirostat)
	cparams.mirostat_tau = C.float(params.MirostatTau)
	cparams.mirostat_eta = C.float(params.MirostatEta)
	cparams.seed = C.uint32_t(params.Seed)

	grammar := C.CString(params.Grammar)
	defer C.free(unsafe.Pointer(grammar))

	cparams.grammar = grammar
657
	context := &SamplingContext{c: C.common_sampler_cinit(model.c, &cparams)}
Jesse Gross's avatar
Jesse Gross committed
658
659
660
661
	if context.c == nil {
		return nil, errors.New("unable to create sampling context")
	}

662
	runtime.SetFinalizer(context, func(s *SamplingContext) { C.common_sampler_cfree(s.c) })
663

Jesse Gross's avatar
Jesse Gross committed
664
	return context, nil
665
666
667
}

func (s *SamplingContext) Reset() {
668
	C.common_sampler_creset(s.c)
669
670
}

671
func (s *SamplingContext) Sample(llamaContext *Context, idx int) int {
672
	return int(C.common_sampler_csample(s.c, llamaContext.c, C.int(idx)))
673
674
}

675
func (s *SamplingContext) Accept(id int, applyGrammar bool) {
676
	C.common_sampler_caccept(s.c, C.llama_token(id), C.bool(applyGrammar))
677
}
678

679
680
681
682
// SchemaToGrammar converts the provided JSON schema to a grammar. It returns
// nil if the provided schema is invalid JSON or an invalid JSON schema.
func SchemaToGrammar(schema []byte) []byte {
	cStr := C.CString(string(schema))
683
684
685
686
687
688
689
	defer C.free(unsafe.Pointer(cStr))

	// Allocate buffer for grammar output with reasonable size
	const maxLen = 32768 // 32KB
	buf := make([]byte, maxLen)

	// Call C function to convert schema to grammar
690
691
692
693
	n := C.schema_to_grammar(cStr, (*C.char)(unsafe.Pointer(&buf[0])), C.size_t(maxLen))
	if n == 0 {
		// preserve nil
		return nil
694
	}
695
	return buf[:n]
696
}