llama.go 17.8 KB
Newer Older
1
2
3
package llama

/*
Michael Yang's avatar
Michael Yang committed
4
5
6
7
8
9
10
#cgo CFLAGS: -std=c11
#cgo CXXFLAGS: -std=c++17
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/include
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/common
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/examples/llava
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/src
#cgo CPPFLAGS: -I${SRCDIR}/../ml/backend/ggml/ggml/include
11
12

#include <stdlib.h>
Michael Yang's avatar
Michael Yang committed
13
#include "ggml.h"
14
15
16
#include "llama.h"
#include "clip.h"
#include "llava.h"
Michael Yang's avatar
Michael Yang committed
17

18
#include "mllama.h"
19
20
#include "sampling_ext.h"

21
22
extern bool llamaProgressCallback(float progress, void *user_data);
extern void llamaLog(int level, char* text, void* user_data);
23
24
25
26
27
28
29
30
31
32
33

typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER;
COMPILER inline get_compiler() {
#if defined(__clang__)
	return COMP_CLANG;
#elif defined(__GNUC__)
	return COMP_GCC;
#else
	return UNKNOWN_COMPILER;
#endif
}
34

35
36
37
38
39
40
41
*/
import "C"

import (
	_ "embed"
	"errors"
	"fmt"
42
	"os"
43
44
	"runtime"
	"runtime/cgo"
Jesse Gross's avatar
Jesse Gross committed
45
	"slices"
46
	"strings"
47
	"sync/atomic"
48
	"unsafe"
Michael Yang's avatar
Michael Yang committed
49
50
51
52
53

	_ "github.com/ollama/ollama/llama/llama.cpp/common"
	_ "github.com/ollama/ollama/llama/llama.cpp/examples/llava"
	_ "github.com/ollama/ollama/llama/llama.cpp/src"
	"github.com/ollama/ollama/ml/backend/ggml/ggml/src"
54
55
56
)

func BackendInit() {
Michael Yang's avatar
Michael Yang committed
57
	ggml.OnceLoad()
58
59
60
61
	C.llama_backend_init()
}

func PrintSystemInfo() string {
62
63
64
65
66
67
68
69
70
71
	var compiler string
	switch C.get_compiler() {
	case C.COMP_UNKNOWN:
		compiler = "cgo(unknown_compiler)"
	case C.COMP_GCC:
		compiler = "cgo(gcc)"
	case C.COMP_CLANG:
		compiler = "cgo(clang)"
	}
	return C.GoString(C.llama_print_system_info()) + compiler
72
73
}

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
var logLevel atomic.Int32

func init() {
	logLevel.Store(int32(C.GGML_LOG_LEVEL_INFO))
	C.llama_log_set((C.ggml_log_callback)(C.llamaLog), nil)
}

func EnableDebug() {
	logLevel.Store(int32(C.GGML_LOG_LEVEL_DEBUG))
}

//export llamaLog
func llamaLog(level int32, text *C.char, _ unsafe.Pointer) {
	if level < logLevel.Load() {
		return
	}

91
	fmt.Fprint(os.Stderr, C.GoString(text))
92
93
}

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
func GetModelArch(modelPath string) (string, error) {
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))

	gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)})
	if gguf_ctx == nil {
		return "", errors.New("unable to load model file")
	}
	defer C.gguf_free(gguf_ctx)

	key := C.CString("general.architecture")
	defer C.free(unsafe.Pointer(key))
	arch_index := C.gguf_find_key(gguf_ctx, key)
	if int(arch_index) < 0 {
		return "", errors.New("unknown model architecture")
	}

	arch := C.gguf_get_val_str(gguf_ctx, arch_index)

	return C.GoString(arch), nil
}

116
117
118
119
type ContextParams struct {
	c C.struct_llama_context_params
}

120
func NewContextParams(numCtx int, batchSize int, numSeqMax int, threads int, flashAttention bool, kvCacheType string) ContextParams {
121
122
123
124
125
126
127
128
	params := C.llama_context_default_params()
	params.n_ctx = C.uint(numCtx)
	params.n_batch = C.uint(batchSize)
	params.n_seq_max = C.uint(numSeqMax)
	params.n_threads = C.int(threads)
	params.n_threads_batch = params.n_threads
	params.embeddings = C.bool(true)
	params.flash_attn = C.bool(flashAttention)
129
130
131
	params.type_k = kvCacheTypeFromStr(strings.ToLower(kvCacheType))
	params.type_v = kvCacheTypeFromStr(strings.ToLower(kvCacheType))

132
133
134
	return ContextParams{c: params}
}

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
// kvCacheTypeFromStr converts a string cache type to the corresponding GGML type value
func kvCacheTypeFromStr(s string) C.enum_ggml_type {
	if s == "" {
		return C.GGML_TYPE_F16
	}

	switch s {
	case "q8_0":
		return C.GGML_TYPE_Q8_0
	case "q4_0":
		return C.GGML_TYPE_Q4_0
	default:
		return C.GGML_TYPE_F16
	}
}

151
152
153
154
155
type Context struct {
	c          *C.struct_llama_context
	numThreads int
}

156
var ErrKvCacheFull = errors.New("could not find a kv cache slot")
157
158
159
160
161
162
163
164
165
166
167
168
169

func (c *Context) Decode(batch *Batch) error {
	// Positive return values does not mean a fatal error, but rather a warning.
	//   0 - success
	//   1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
	// < 0 - error
	code := int(C.llama_decode(c.c, batch.c))

	if code < 0 {
		return fmt.Errorf("llama_decode failed with code %d", code)
	}

	if code > 0 {
170
		return ErrKvCacheFull
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
	}

	return nil
}

func (c *Context) Model() *Model {
	return &Model{c: C.llama_get_model(c.c)}
}

func (c *Context) KvCacheSeqAdd(seqId int, p0 int, p1 int, delta int) {
	C.llama_kv_cache_seq_add(c.c, C.int(seqId), C.int(p0), C.int(p1), C.int(delta))
}

func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
	return bool(C.llama_kv_cache_seq_rm(c.c, C.int(seqId), C.int(p0), C.int(p1)))
}

func (c *Context) KvCacheSeqCp(srcSeqId int, dstSeqId int, p0 int, p1 int) {
	C.llama_kv_cache_seq_cp(c.c, C.int(srcSeqId), C.int(dstSeqId), C.int(p0), C.int(p1))
}

192
193
194
195
196
197
198
199
func (c *Context) KvCacheClear() {
	C.llama_kv_cache_clear(c.c)
}

func (c *Context) KvCacheDefrag() {
	C.llama_kv_cache_defrag(c.c)
}

200
201
202
203
204
205
206
207
208
209
210
// Get the embeddings for a sequence id
func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
	embeddings := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
	if embeddings == nil {
		return nil
	}

	return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
}

func (c *Context) GetEmbeddingsIth(i int) []float32 {
211
212
213
214
215
216
	embeddings := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
	if embeddings == nil {
		return nil
	}

	return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
}

type ModelParams struct {
	NumGpuLayers int
	MainGpu      int
	UseMmap      bool
	UseMlock     bool
	TensorSplit  []float32
	Progress     func(float32)
	VocabOnly    bool
}

//export llamaProgressCallback
func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
	handle := *(*cgo.Handle)(userData)
	callback := handle.Value().(func(float32))
	callback(float32(progress))
	return true
}

237
func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
	cparams := C.llama_model_default_params()
	cparams.n_gpu_layers = C.int(params.NumGpuLayers)
	cparams.main_gpu = C.int32_t(params.MainGpu)
	cparams.use_mmap = C.bool(params.UseMmap)
	cparams.use_mlock = C.bool(params.UseMlock)
	cparams.vocab_only = C.bool(params.VocabOnly)

	if len(params.TensorSplit) > 0 {
		tensorSplitData := &params.TensorSplit[0]

		var tensorSplitPin runtime.Pinner
		tensorSplitPin.Pin(tensorSplitData)
		defer tensorSplitPin.Unpin()

		cparams.tensor_split = (*C.float)(unsafe.Pointer(tensorSplitData))
	}

	if params.Progress != nil {
		handle := cgo.NewHandle(params.Progress)
		defer handle.Delete()

		var handlePin runtime.Pinner
		handlePin.Pin(&handle)
		defer handlePin.Unpin()

		cparams.progress_callback = C.llama_progress_callback(C.llamaProgressCallback)
		cparams.progress_callback_user_data = unsafe.Pointer(&handle)
	}

267
	m := Model{c: C.llama_load_model_from_file(C.CString(modelPath), cparams)}
Jesse Gross's avatar
Jesse Gross committed
268
	if m.c == nil {
269
270
271
272
		return nil, fmt.Errorf("unable to load model: %s", modelPath)
	}

	return &m, nil
273
274
275
276
277
278
}

func FreeModel(model *Model) {
	C.llama_free_model(model.c)
}

279
280
func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
	c := Context{
281
282
283
		c:          C.llama_new_context_with_model(model.c, params.c),
		numThreads: int(params.c.n_threads),
	}
Jesse Gross's avatar
Jesse Gross committed
284
	if c.c == nil {
285
286
287
288
		return nil, errors.New("unable to create llama context")
	}

	return &c, nil
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
}

func (m *Model) NumVocab() int {
	return int(C.llama_n_vocab(m.c))
}

func (m *Model) TokenIsEog(token int) bool {
	return bool(C.llama_token_is_eog(m.c, C.llama_token(token)))
}

func (m *Model) AddBOSToken() bool {
	return bool(C.llama_add_bos_token(m.c))
}

func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float32, threads int) error {
	cLoraPath := C.CString(loraPath)
	defer C.free(unsafe.Pointer(cLoraPath))

	loraAdapter := C.llama_lora_adapter_init(m.c, cLoraPath)
Jesse Gross's avatar
Jesse Gross committed
308
309
310
	if loraAdapter == nil {
		return errors.New("unable to load lora")
	}
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

	err := -1
	if loraAdapter != nil {
		err = int(C.llama_lora_adapter_set(context.c, loraAdapter, C.float(scale)))
	}
	if err != 0 {
		return errors.New("error applying lora from file")
	}

	return nil
}

type Batch struct {
	c         C.struct_llama_batch
	batchSize int
326
	maxSeq    int
327
328
329
	embedSize int
}

330
331
332
// Creates a new batch for either word tokens or image embeddings (if embedSize is non-zero).
// Batches cannot contain both types at the same time. batchSize is the maximum number of entries
// that can be added per sequence
Jesse Gross's avatar
Jesse Gross committed
333
334
func NewBatch(batchSize int, maxSeq int, embedSize int) (*Batch, error) {
	b := Batch{
335
336
337
338
		c:         C.llama_batch_init(C.int(batchSize*maxSeq), C.int(embedSize), C.int(maxSeq)),
		batchSize: batchSize,
		maxSeq:    maxSeq,
		embedSize: embedSize,
339
	}
Jesse Gross's avatar
Jesse Gross committed
340
341
342
343
344
345
346
347
348
349
350
351

	// Check to see if any of the allocations in llama_batch_init() failed
	nilPointer := (embedSize == 0 && b.c.token == nil) || (embedSize != 0 && b.c.embd == nil) ||
		b.c.pos == nil || b.c.n_seq_id == nil || b.c.seq_id == nil || b.c.logits == nil ||
		slices.Contains(unsafe.Slice(b.c.seq_id, b.allocSize()), nil)

	if nilPointer {
		C.llama_batch_free(b.c)
		return nil, fmt.Errorf("unable to allocate batch (batchSize=%v maxSeq=%v embedSize=%v)", batchSize, maxSeq, embedSize)
	}

	return &b, nil
352
353
}

354
355
356
357
358
359
360
361
func (b *Batch) Size() int {
	return b.batchSize
}

func (b *Batch) allocSize() int {
	return b.batchSize * b.maxSeq
}

362
363
364
365
366
367
368
369
370
371
372
373
func (b *Batch) NumTokens() int {
	return int(b.c.n_tokens)
}

func (b *Batch) IsEmbedding() bool {
	return b.embedSize != 0
}

// Add adds either a token or an image embedding to the batch depending on the type
// when the batch was initialized. The other argument will be ignored. Adds to the
// batch with the given position for the given sequence ids, and optionally instructs
// to include logits.
374
func (b *Batch) Add(token int, embed []float32, pos int, logits bool, seqIds ...int) {
375
	if !b.IsEmbedding() {
376
		unsafe.Slice(b.c.token, b.allocSize())[b.c.n_tokens] = C.llama_token(token)
377
	} else {
378
		copy(unsafe.Slice((*float32)(b.c.embd), b.allocSize()*b.embedSize)[int(b.c.n_tokens)*b.embedSize:], embed)
379
	}
380
381
	unsafe.Slice(b.c.pos, b.allocSize())[b.c.n_tokens] = C.llama_pos(pos)
	unsafe.Slice(b.c.n_seq_id, b.allocSize())[b.c.n_tokens] = C.int(len(seqIds))
382
383

	for i, s := range seqIds {
384
		unsafe.Slice((unsafe.Slice(b.c.seq_id, b.allocSize())[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
385
386
387
	}

	if logits {
388
		unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 1
389
390
	} else {
		unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 0
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
	}

	b.c.n_tokens += 1
}

func (b *Batch) Clear() {
	b.c.n_tokens = 0
}

func (b *Batch) Free() {
	b.batchSize = 0
	C.llama_batch_free(b.c)
}

type Model struct {
	c *C.struct_llama_model
}

func (m *Model) TokenToPiece(token int) string {
	tokenLen := 12
	buf := make([]byte, tokenLen)
	tokenLen = int(C.llama_token_to_piece(
		m.c,
		C.int32_t(token),
		(*C.char)(unsafe.Pointer(&buf[0])),
		C.int32_t(tokenLen),
		C.int32_t(0),
		C.bool(true),
	))
	if tokenLen < 0 {
		tokenLen = -tokenLen

		buf = make([]byte, tokenLen)
		C.llama_token_to_piece(
			m.c,
			C.int32_t(token),
			(*C.char)(unsafe.Pointer(&buf[0])),
			C.int32_t(tokenLen),
			C.int32_t(0),
			C.bool(true),
		)
	}
	return strings.TrimRight(string(buf), "\x00")
}

func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int, error) {
	maxTokens := len(text) + 2
	cTokens := make([]C.llama_token, maxTokens)
	cText := C.CString(text)
	defer C.free(unsafe.Pointer(cText))

	result := C.llama_tokenize(
		m.c,
		cText,
		C.int32_t(len(text)),
		&cTokens[0],
		C.int32_t(maxTokens),
		C.bool(addSpecial),
		C.bool(parseSpecial),
	)

	// if the result is negative, reallocate and retry with the correct buffer size
	if result < 0 {
		maxTokens = int(-result)
		cTokens = make([]C.llama_token, maxTokens)
		result = C.llama_tokenize(
			m.c,
			cText,
			C.int32_t(len(text)),
			&cTokens[0],
			C.int32_t(maxTokens),
			C.bool(addSpecial),
			C.bool(parseSpecial),
		)
		if result < 0 {
			return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
		}
	}

	tokens := make([]int, result)
	for i := range result {
		tokens[i] = int(cTokens[i])
	}

	return tokens, nil
}

func (m *Model) NEmbd() int {
	return int(C.llama_n_embd(m.c))
}

func Quantize(infile, outfile string, ftype uint32) error {
	cinfile := C.CString(infile)
	defer C.free(unsafe.Pointer(cinfile))

	coutfile := C.CString(outfile)
	defer C.free(unsafe.Pointer(coutfile))

	params := C.llama_model_quantize_default_params()
	params.nthread = -1
	params.ftype = ftype

	if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
		return fmt.Errorf("llama_model_quantize: %d", rc)
	}

	return nil
}

500
// vision processing
501
type ClipContext struct {
502
	c *C.struct_clip_ctx
503
504
}

505
func NewClipContext(llamaContext *Context, modelPath string) (*ClipContext, error) {
506
507
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))
508
	c := C.clip_model_load(mp, 1)
Jesse Gross's avatar
Jesse Gross committed
509
510
511
	if c == nil {
		return nil, fmt.Errorf("unable to load clip model: %v", modelPath)
	}
512

513
514
515
516
	projEmbedSize := int(C.clip_n_mmproj_embd(c))
	modelEmbedSize := llamaContext.Model().NEmbd()
	if projEmbedSize != modelEmbedSize {
		return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
517
518
	}

519
	return &ClipContext{c: c}, nil
520
521
522
}

func (c *ClipContext) Free() {
523
	C.clip_free(c.c)
524
525
}

Jesse Gross's avatar
Jesse Gross committed
526
func (c *ClipContext) NewEmbed(llamaContext *Context, data []byte) ([][]float32, error) {
527
	l := C.llava_image_embed_make_with_bytes(c.c, C.int(llamaContext.numThreads), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))
Jesse Gross's avatar
Jesse Gross committed
528
529
530
	if l == nil {
		return nil, errors.New("unable to make llava embedding from image")
	}
531

532
	numTokens := int(l.n_image_pos)
533
534
	numEmbed := llamaContext.Model().NEmbd()

535
	s := unsafe.Slice((*float32)(l.embed), numEmbed*numTokens)
536
537
538
539
540
541
542
543
544

	embed := make([][]float32, numTokens)
	rows := make([]float32, len(s))
	copy(rows, s)

	for i := range embed {
		embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
	}

545
	C.llava_image_embed_free(l)
546

Jesse Gross's avatar
Jesse Gross committed
547
	return embed, nil
548
549
}

550
551
552
553
554
555
556
557
type MllamaContext struct {
	c *C.struct_mllama_ctx
}

func NewMllamaContext(llamaContext *Context, modelPath string) (*MllamaContext, error) {
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))
	c := C.mllama_model_load(mp, 1)
Jesse Gross's avatar
Jesse Gross committed
558
559
560
	if c == nil {
		return nil, fmt.Errorf("unable to load mllama model: %v", modelPath)
	}
561
562
563
564
565
566
567
568
569
570
571
572
573
574

	projEmbedSize := int(C.mllama_n_embd(c))
	modelEmbedSize := llamaContext.Model().NEmbd()
	if projEmbedSize != modelEmbedSize {
		return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
	}

	return &MllamaContext{c: c}, nil
}

func (m *MllamaContext) Free() {
	C.mllama_free(m.c)
}

Jesse Gross's avatar
Jesse Gross committed
575
func (m *MllamaContext) NewEmbed(llamaContext *Context, data []byte, aspectRatioId int) ([][]float32, error) {
576
577
578
	img := C.mllama_image_init()
	defer C.mllama_image_free(img)

Jesse Gross's avatar
Jesse Gross committed
579
580
581
582
	ok := bool(C.mllama_image_load_from_data(unsafe.Pointer(&data[0]), C.int(len(data)), 560, 560, 3, 4, C.int(aspectRatioId), img))
	if !ok {
		return nil, errors.New("unable to load mllama image data")
	}
583

584
	rows := make([]float32, m.EmbedSize(llamaContext))
Jesse Gross's avatar
Jesse Gross committed
585
586
587
588
	ok = bool(C.mllama_image_encode(m.c, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0]))))
	if !ok {
		return nil, errors.New("unable to make mllama embedding from image")
	}
589

590
591
	embed := make([][]float32, 1)
	embed[0] = rows
592

Jesse Gross's avatar
Jesse Gross committed
593
	return embed, nil
594
595
}

596
597
598
func (m *MllamaContext) EmbedSize(llamaContext *Context) int {
	numTokens := int(C.mllama_n_positions(m.c) * C.mllama_n_tiles(m.c))
	numEmbed := llamaContext.Model().NEmbd()
599

600
601
	return numTokens * numEmbed
}
602

603
604
func (c *Context) SetCrossAttention(state bool) {
	C.llama_set_cross_attention(c.c, C.bool(state))
605
606
}

607
608
609
610
func (c *Context) Synchronize() {
	C.llama_synchronize(c.c)
}

611
612
613
// sampling
// TODO: this is a temporary wrapper to allow calling C++ code from CGo
type SamplingContext struct {
614
	c *C.struct_common_sampler
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
}

type SamplingParams struct {
	TopK           int
	TopP           float32
	MinP           float32
	TypicalP       float32
	Temp           float32
	RepeatLastN    int
	PenaltyRepeat  float32
	PenaltyFreq    float32
	PenaltyPresent float32
	Mirostat       int
	MirostatTau    float32
	MirostatEta    float32
	PenalizeNl     bool
	Seed           uint32
	Grammar        string
}

Jesse Gross's avatar
Jesse Gross committed
635
func NewSamplingContext(model *Model, params SamplingParams) (*SamplingContext, error) {
636
	var cparams C.struct_common_sampler_cparams
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
	cparams.top_k = C.int32_t(params.TopK)
	cparams.top_p = C.float(params.TopP)
	cparams.min_p = C.float(params.MinP)
	cparams.typical_p = C.float(params.TypicalP)
	cparams.temp = C.float(params.Temp)
	cparams.penalty_last_n = C.int32_t(params.RepeatLastN)
	cparams.penalty_repeat = C.float(params.PenaltyRepeat)
	cparams.penalty_freq = C.float(params.PenaltyFreq)
	cparams.penalty_present = C.float(params.PenaltyFreq)
	cparams.mirostat = C.int32_t(params.Mirostat)
	cparams.mirostat_tau = C.float(params.MirostatTau)
	cparams.mirostat_eta = C.float(params.MirostatEta)
	cparams.seed = C.uint32_t(params.Seed)

	grammar := C.CString(params.Grammar)
	defer C.free(unsafe.Pointer(grammar))

	cparams.grammar = grammar
655
	context := &SamplingContext{c: C.common_sampler_cinit(model.c, &cparams)}
Jesse Gross's avatar
Jesse Gross committed
656
657
658
659
	if context.c == nil {
		return nil, errors.New("unable to create sampling context")
	}

660
	runtime.SetFinalizer(context, func(s *SamplingContext) { C.common_sampler_cfree(s.c) })
661

Jesse Gross's avatar
Jesse Gross committed
662
	return context, nil
663
664
665
}

func (s *SamplingContext) Reset() {
666
	C.common_sampler_creset(s.c)
667
668
}

669
func (s *SamplingContext) Sample(llamaContext *Context, idx int) int {
670
	return int(C.common_sampler_csample(s.c, llamaContext.c, C.int(idx)))
671
672
}

673
func (s *SamplingContext) Accept(id int, applyGrammar bool) {
674
	C.common_sampler_caccept(s.c, C.llama_token(id), C.bool(applyGrammar))
675
}
676

677
678
679
680
// SchemaToGrammar converts the provided JSON schema to a grammar. It returns
// nil if the provided schema is invalid JSON or an invalid JSON schema.
func SchemaToGrammar(schema []byte) []byte {
	cStr := C.CString(string(schema))
681
682
683
684
685
686
687
	defer C.free(unsafe.Pointer(cStr))

	// Allocate buffer for grammar output with reasonable size
	const maxLen = 32768 // 32KB
	buf := make([]byte, maxLen)

	// Call C function to convert schema to grammar
688
689
690
691
	n := C.schema_to_grammar(cStr, (*C.char)(unsafe.Pointer(&buf[0])), C.size_t(maxLen))
	if n == 0 {
		// preserve nil
		return nil
692
	}
693
	return buf[:n]
694
}