llama.go 21.5 KB
Newer Older
1
2
package llama

3
4
//go:generate make -j 8

5
/*
6
7
#cgo CFLAGS: -O3 -std=c17 -DGGML_BUILD=1 -DNDEBUG -DLOG_DISABLE_LOGS -DGGML_USE_LLAMAFILE -DGGML_USE_CPU -DGGML_USE_CPU_AARCH64
#cgo CXXFLAGS: -O3 -std=c++17 -DGGML_BUILD=1 -DNDEBUG -DLOG_DISABLE_LOGS -DGGML_USE_LLAMAFILE -DGGML_USE_CPU -DGGML_USE_CPU_AARCH64
8
9
#cgo amd64,avx CFLAGS: -mavx
#cgo amd64,avx CXXFLAGS: -mavx
10
11
#cgo amd64,avx2 CFLAGS: -mavx2 -mfma -mf16c
#cgo amd64,avx2 CXXFLAGS: -mavx2 -mfma -mf16c
12
13
14
15
16
17
18
19
#cgo amd64,avx512 CFLAGS: -mavx512f -mavx512dq -mavx512bw
#cgo amd64,avx512 CXXFLAGS: -mavx512f -mavx512dq -mavx512bw
#cgo amd64,avx512bf16 CFLAGS: -mavx512bf16 -D__AVX512BF16__
#cgo amd64,avx512bf16 CXXFLAGS: -mavx512bf16 -D__AVX512BF16__
#cgo amd64,avx512vbmi CFLAGS: -mavx512vbmi -D__AVX512VBMI__
#cgo amd64,avx512vbmi CXXFLAGS: -mavx512vbmi -D__AVX512VBMI__
#cgo amd64,avx512vnni CFLAGS: -mavx512vnni -D__AVX512VNNI__
#cgo amd64,avx512vnni CXXFLAGS: -mavx512vnni -D__AVX512VNNI__
20
21
22
23
24
25
#cgo amd64,f16c CFLAGS: -mf16c
#cgo amd64,f16c CXXFLAGS: -mf16c
#cgo amd64,fma CFLAGS: -mfma
#cgo amd64,fma CXXFLAGS: -mfma
#cgo cuda CFLAGS: -fPIE -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
26
27
28
29
#cgo cuda_jetpack5 LDFLAGS: -lggml_cuda_jetpack5
#cgo cuda_jetpack6 LDFLAGS: -lggml_cuda_jetpack6
#cgo cuda_v11 LDFLAGS: -lggml_cuda_v11
#cgo cuda_v12 LDFLAGS: -lggml_cuda_v12
30
31
32
#cgo darwin,amd64 CFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
#cgo darwin,amd64 CXXFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers
#cgo darwin,amd64 LDFLAGS: -framework Foundation
33
34
35
#cgo darwin,amd64,avx2 CFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
#cgo darwin,amd64,avx2 CXXFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64
#cgo darwin,amd64,avx2 LDFLAGS: -framework Accelerate
36
37
#cgo darwin,arm64 CFLAGS: -DGGML_USE_METAL -DGGML_USE_ACCELERATE -DGGML_METAL_EMBED_LIBRARY -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64 -DGGML_USE_BLAS -DGGML_BLAS_USE_ACCELERATE
#cgo darwin,arm64 CXXFLAGS: -DGGML_USE_METAL -DGGML_USE_ACCELERATE -DGGML_METAL_EMBED_LIBRARY -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64 -DGGML_USE_BLAS -DGGML_BLAS_USE_ACCELERATE
38
#cgo darwin,arm64 LDFLAGS: -framework Foundation -framework Metal -framework MetalKit -framework Accelerate
39
40
#cgo linux CFLAGS: -D_GNU_SOURCE
#cgo linux CXXFLAGS: -D_GNU_SOURCE
41
#cgo linux LDFLAGS: -ldl
42
#cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/linux-amd64
43
44
#cgo linux,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
#cgo linux,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
45
#cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/linux-arm64
46
47
#cgo linux,arm64,sve CFLAGS: -march=armv8.6-a+sve
#cgo linux,arm64,sve CXXFLAGS: -march=armv8.6-a+sve
48
49
50
51
#cgo linux,cuda LDFLAGS: -lcuda -lcudart -lcublas -lcublasLt -lpthread -lrt -lresolv
#cgo linux,rocm LDFLAGS: -lpthread -lrt -lresolv
#cgo rocm CFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIP -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
#cgo rocm CXXFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIP -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1
52
#cgo rocm LDFLAGS: -L${SRCDIR} -lggml_rocm -lhipblas -lamdhip64 -lrocblas
53
54
#cgo windows CFLAGS: -Wno-discarded-qualifiers -D_WIN32_WINNT=0x602
#cgo windows CXXFLAGS: -D_WIN32_WINNT=0x602
55
#cgo windows LDFLAGS: -lmsvcrt -static-libstdc++ -static-libgcc -static
56
#cgo windows,amd64 LDFLAGS: -L${SRCDIR}/build/windows-amd64
57
58
#cgo windows,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
#cgo windows,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA
59
#cgo windows,arm64 LDFLAGS: -L${SRCDIR}/build/windows-arm64
60
61
62
63
64
65
#cgo windows,cuda LDFLAGS: -lcuda -lcudart -lcublas -lcublasLt
#cgo windows,rocm LDFLAGS: -lggml_rocm -lhipblas -lamdhip64 -lrocblas

#include <stdlib.h>
#include "llama.h"
#include "clip.h"
66
#include "ggml.h"
67
#include "llava.h"
68
#include "mllama.h"
69
70
#include "sampling_ext.h"

71
72
extern bool llamaProgressCallback(float progress, void *user_data);
extern void llamaLog(int level, char* text, void* user_data);
73
74
75
76
77
78
79
80
81
82
83

typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER;
COMPILER inline get_compiler() {
#if defined(__clang__)
	return COMP_CLANG;
#elif defined(__GNUC__)
	return COMP_GCC;
#else
	return UNKNOWN_COMPILER;
#endif
}
84

85
86
87
88
*/
import "C"

import (
89
	"bytes"
90
	_ "embed"
91
	"encoding/json"
92
93
	"errors"
	"fmt"
94
	"log/slog"
95
96
	"runtime"
	"runtime/cgo"
Jesse Gross's avatar
Jesse Gross committed
97
	"slices"
98
	"strings"
99
	"sync/atomic"
100
101
102
103
104
105
106
107
	"unsafe"
)

func BackendInit() {
	C.llama_backend_init()
}

func PrintSystemInfo() string {
108
109
110
111
112
113
114
115
116
117
	var compiler string
	switch C.get_compiler() {
	case C.COMP_UNKNOWN:
		compiler = "cgo(unknown_compiler)"
	case C.COMP_GCC:
		compiler = "cgo(gcc)"
	case C.COMP_CLANG:
		compiler = "cgo(clang)"
	}
	return C.GoString(C.llama_print_system_info()) + compiler
118
119
}

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
var logLevel atomic.Int32

func init() {
	logLevel.Store(int32(C.GGML_LOG_LEVEL_INFO))
	C.llama_log_set((C.ggml_log_callback)(C.llamaLog), nil)
}

func EnableDebug() {
	logLevel.Store(int32(C.GGML_LOG_LEVEL_DEBUG))
}

//export llamaLog
func llamaLog(level int32, text *C.char, _ unsafe.Pointer) {
	if level < logLevel.Load() {
		return
	}

	fmt.Print(C.GoString(text))
}

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
func GetModelArch(modelPath string) (string, error) {
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))

	gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)})
	if gguf_ctx == nil {
		return "", errors.New("unable to load model file")
	}
	defer C.gguf_free(gguf_ctx)

	key := C.CString("general.architecture")
	defer C.free(unsafe.Pointer(key))
	arch_index := C.gguf_find_key(gguf_ctx, key)
	if int(arch_index) < 0 {
		return "", errors.New("unknown model architecture")
	}

	arch := C.gguf_get_val_str(gguf_ctx, arch_index)

	return C.GoString(arch), nil
}

162
163
164
165
type ContextParams struct {
	c C.struct_llama_context_params
}

166
func NewContextParams(numCtx int, batchSize int, numSeqMax int, threads int, flashAttention bool, kvCacheType string) ContextParams {
167
168
169
170
171
172
173
174
	params := C.llama_context_default_params()
	params.n_ctx = C.uint(numCtx)
	params.n_batch = C.uint(batchSize)
	params.n_seq_max = C.uint(numSeqMax)
	params.n_threads = C.int(threads)
	params.n_threads_batch = params.n_threads
	params.embeddings = C.bool(true)
	params.flash_attn = C.bool(flashAttention)
175
176
177
	params.type_k = kvCacheTypeFromStr(strings.ToLower(kvCacheType))
	params.type_v = kvCacheTypeFromStr(strings.ToLower(kvCacheType))

178
179
180
	return ContextParams{c: params}
}

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
// kvCacheTypeFromStr converts a string cache type to the corresponding GGML type value
func kvCacheTypeFromStr(s string) C.enum_ggml_type {
	if s == "" {
		return C.GGML_TYPE_F16
	}

	switch s {
	case "q8_0":
		return C.GGML_TYPE_Q8_0
	case "q4_0":
		return C.GGML_TYPE_Q4_0
	default:
		return C.GGML_TYPE_F16
	}
}

197
198
199
200
201
type Context struct {
	c          *C.struct_llama_context
	numThreads int
}

202
var ErrKvCacheFull = errors.New("could not find a kv cache slot")
203
204
205
206
207
208
209
210
211
212
213
214
215

func (c *Context) Decode(batch *Batch) error {
	// Positive return values does not mean a fatal error, but rather a warning.
	//   0 - success
	//   1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
	// < 0 - error
	code := int(C.llama_decode(c.c, batch.c))

	if code < 0 {
		return fmt.Errorf("llama_decode failed with code %d", code)
	}

	if code > 0 {
216
		return ErrKvCacheFull
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
	}

	return nil
}

func (c *Context) Model() *Model {
	return &Model{c: C.llama_get_model(c.c)}
}

func (c *Context) KvCacheSeqAdd(seqId int, p0 int, p1 int, delta int) {
	C.llama_kv_cache_seq_add(c.c, C.int(seqId), C.int(p0), C.int(p1), C.int(delta))
}

func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
	return bool(C.llama_kv_cache_seq_rm(c.c, C.int(seqId), C.int(p0), C.int(p1)))
}

func (c *Context) KvCacheSeqCp(srcSeqId int, dstSeqId int, p0 int, p1 int) {
	C.llama_kv_cache_seq_cp(c.c, C.int(srcSeqId), C.int(dstSeqId), C.int(p0), C.int(p1))
}

238
239
240
241
242
243
244
245
func (c *Context) KvCacheClear() {
	C.llama_kv_cache_clear(c.c)
}

func (c *Context) KvCacheDefrag() {
	C.llama_kv_cache_defrag(c.c)
}

246
247
248
249
250
251
252
253
254
255
256
// Get the embeddings for a sequence id
func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
	embeddings := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
	if embeddings == nil {
		return nil
	}

	return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
}

func (c *Context) GetEmbeddingsIth(i int) []float32 {
257
258
259
260
261
262
	embeddings := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
	if embeddings == nil {
		return nil
	}

	return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd())
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
}

type ModelParams struct {
	NumGpuLayers int
	MainGpu      int
	UseMmap      bool
	UseMlock     bool
	TensorSplit  []float32
	Progress     func(float32)
	VocabOnly    bool
}

//export llamaProgressCallback
func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
	handle := *(*cgo.Handle)(userData)
	callback := handle.Value().(func(float32))
	callback(float32(progress))
	return true
}

283
func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
	cparams := C.llama_model_default_params()
	cparams.n_gpu_layers = C.int(params.NumGpuLayers)
	cparams.main_gpu = C.int32_t(params.MainGpu)
	cparams.use_mmap = C.bool(params.UseMmap)
	cparams.use_mlock = C.bool(params.UseMlock)
	cparams.vocab_only = C.bool(params.VocabOnly)

	if len(params.TensorSplit) > 0 {
		tensorSplitData := &params.TensorSplit[0]

		var tensorSplitPin runtime.Pinner
		tensorSplitPin.Pin(tensorSplitData)
		defer tensorSplitPin.Unpin()

		cparams.tensor_split = (*C.float)(unsafe.Pointer(tensorSplitData))
	}

	if params.Progress != nil {
		handle := cgo.NewHandle(params.Progress)
		defer handle.Delete()

		var handlePin runtime.Pinner
		handlePin.Pin(&handle)
		defer handlePin.Unpin()

		cparams.progress_callback = C.llama_progress_callback(C.llamaProgressCallback)
		cparams.progress_callback_user_data = unsafe.Pointer(&handle)
	}

313
	m := Model{c: C.llama_load_model_from_file(C.CString(modelPath), cparams)}
Jesse Gross's avatar
Jesse Gross committed
314
	if m.c == nil {
315
316
317
318
		return nil, fmt.Errorf("unable to load model: %s", modelPath)
	}

	return &m, nil
319
320
321
322
323
324
}

func FreeModel(model *Model) {
	C.llama_free_model(model.c)
}

325
326
func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
	c := Context{
327
328
329
		c:          C.llama_new_context_with_model(model.c, params.c),
		numThreads: int(params.c.n_threads),
	}
Jesse Gross's avatar
Jesse Gross committed
330
	if c.c == nil {
331
332
333
334
		return nil, errors.New("unable to create llama context")
	}

	return &c, nil
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
}

func (m *Model) NumVocab() int {
	return int(C.llama_n_vocab(m.c))
}

func (m *Model) TokenIsEog(token int) bool {
	return bool(C.llama_token_is_eog(m.c, C.llama_token(token)))
}

func (m *Model) AddBOSToken() bool {
	return bool(C.llama_add_bos_token(m.c))
}

func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float32, threads int) error {
	cLoraPath := C.CString(loraPath)
	defer C.free(unsafe.Pointer(cLoraPath))

	loraAdapter := C.llama_lora_adapter_init(m.c, cLoraPath)
Jesse Gross's avatar
Jesse Gross committed
354
355
356
	if loraAdapter == nil {
		return errors.New("unable to load lora")
	}
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

	err := -1
	if loraAdapter != nil {
		err = int(C.llama_lora_adapter_set(context.c, loraAdapter, C.float(scale)))
	}
	if err != 0 {
		return errors.New("error applying lora from file")
	}

	return nil
}

type Batch struct {
	c         C.struct_llama_batch
	batchSize int
372
	maxSeq    int
373
374
375
	embedSize int
}

376
377
378
// Creates a new batch for either word tokens or image embeddings (if embedSize is non-zero).
// Batches cannot contain both types at the same time. batchSize is the maximum number of entries
// that can be added per sequence
Jesse Gross's avatar
Jesse Gross committed
379
380
func NewBatch(batchSize int, maxSeq int, embedSize int) (*Batch, error) {
	b := Batch{
381
382
383
384
		c:         C.llama_batch_init(C.int(batchSize*maxSeq), C.int(embedSize), C.int(maxSeq)),
		batchSize: batchSize,
		maxSeq:    maxSeq,
		embedSize: embedSize,
385
	}
Jesse Gross's avatar
Jesse Gross committed
386
387
388
389
390
391
392
393
394
395
396
397

	// Check to see if any of the allocations in llama_batch_init() failed
	nilPointer := (embedSize == 0 && b.c.token == nil) || (embedSize != 0 && b.c.embd == nil) ||
		b.c.pos == nil || b.c.n_seq_id == nil || b.c.seq_id == nil || b.c.logits == nil ||
		slices.Contains(unsafe.Slice(b.c.seq_id, b.allocSize()), nil)

	if nilPointer {
		C.llama_batch_free(b.c)
		return nil, fmt.Errorf("unable to allocate batch (batchSize=%v maxSeq=%v embedSize=%v)", batchSize, maxSeq, embedSize)
	}

	return &b, nil
398
399
}

400
401
402
403
404
405
406
407
func (b *Batch) Size() int {
	return b.batchSize
}

func (b *Batch) allocSize() int {
	return b.batchSize * b.maxSeq
}

408
409
410
411
412
413
414
415
416
417
418
419
func (b *Batch) NumTokens() int {
	return int(b.c.n_tokens)
}

func (b *Batch) IsEmbedding() bool {
	return b.embedSize != 0
}

// Add adds either a token or an image embedding to the batch depending on the type
// when the batch was initialized. The other argument will be ignored. Adds to the
// batch with the given position for the given sequence ids, and optionally instructs
// to include logits.
420
func (b *Batch) Add(token int, embed []float32, pos int, logits bool, seqIds ...int) {
421
	if !b.IsEmbedding() {
422
		unsafe.Slice(b.c.token, b.allocSize())[b.c.n_tokens] = C.llama_token(token)
423
	} else {
424
		copy(unsafe.Slice((*float32)(b.c.embd), b.allocSize()*b.embedSize)[int(b.c.n_tokens)*b.embedSize:], embed)
425
	}
426
427
	unsafe.Slice(b.c.pos, b.allocSize())[b.c.n_tokens] = C.llama_pos(pos)
	unsafe.Slice(b.c.n_seq_id, b.allocSize())[b.c.n_tokens] = C.int(len(seqIds))
428
429

	for i, s := range seqIds {
430
		unsafe.Slice((unsafe.Slice(b.c.seq_id, b.allocSize())[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
431
432
433
	}

	if logits {
434
		unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 1
435
436
	} else {
		unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 0
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
	}

	b.c.n_tokens += 1
}

func (b *Batch) Clear() {
	b.c.n_tokens = 0
}

func (b *Batch) Free() {
	b.batchSize = 0
	C.llama_batch_free(b.c)
}

type Model struct {
	c *C.struct_llama_model
}

func (m *Model) TokenToPiece(token int) string {
	tokenLen := 12
	buf := make([]byte, tokenLen)
	tokenLen = int(C.llama_token_to_piece(
		m.c,
		C.int32_t(token),
		(*C.char)(unsafe.Pointer(&buf[0])),
		C.int32_t(tokenLen),
		C.int32_t(0),
		C.bool(true),
	))
	if tokenLen < 0 {
		tokenLen = -tokenLen

		buf = make([]byte, tokenLen)
		C.llama_token_to_piece(
			m.c,
			C.int32_t(token),
			(*C.char)(unsafe.Pointer(&buf[0])),
			C.int32_t(tokenLen),
			C.int32_t(0),
			C.bool(true),
		)
	}
	return strings.TrimRight(string(buf), "\x00")
}

func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int, error) {
	maxTokens := len(text) + 2
	cTokens := make([]C.llama_token, maxTokens)
	cText := C.CString(text)
	defer C.free(unsafe.Pointer(cText))

	result := C.llama_tokenize(
		m.c,
		cText,
		C.int32_t(len(text)),
		&cTokens[0],
		C.int32_t(maxTokens),
		C.bool(addSpecial),
		C.bool(parseSpecial),
	)

	// if the result is negative, reallocate and retry with the correct buffer size
	if result < 0 {
		maxTokens = int(-result)
		cTokens = make([]C.llama_token, maxTokens)
		result = C.llama_tokenize(
			m.c,
			cText,
			C.int32_t(len(text)),
			&cTokens[0],
			C.int32_t(maxTokens),
			C.bool(addSpecial),
			C.bool(parseSpecial),
		)
		if result < 0 {
			return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
		}
	}

	tokens := make([]int, result)
	for i := range result {
		tokens[i] = int(cTokens[i])
	}

	return tokens, nil
}

func (m *Model) NEmbd() int {
	return int(C.llama_n_embd(m.c))
}

func Quantize(infile, outfile string, ftype uint32) error {
	cinfile := C.CString(infile)
	defer C.free(unsafe.Pointer(cinfile))

	coutfile := C.CString(outfile)
	defer C.free(unsafe.Pointer(coutfile))

	params := C.llama_model_quantize_default_params()
	params.nthread = -1
	params.ftype = ftype

	if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
		return fmt.Errorf("llama_model_quantize: %d", rc)
	}

	return nil
}

546
// vision processing
547
type ClipContext struct {
548
	c *C.struct_clip_ctx
549
550
}

551
func NewClipContext(llamaContext *Context, modelPath string) (*ClipContext, error) {
552
553
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))
554
	c := C.clip_model_load(mp, 1)
Jesse Gross's avatar
Jesse Gross committed
555
556
557
	if c == nil {
		return nil, fmt.Errorf("unable to load clip model: %v", modelPath)
	}
558

559
560
561
562
	projEmbedSize := int(C.clip_n_mmproj_embd(c))
	modelEmbedSize := llamaContext.Model().NEmbd()
	if projEmbedSize != modelEmbedSize {
		return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
563
564
	}

565
	return &ClipContext{c: c}, nil
566
567
568
}

func (c *ClipContext) Free() {
569
	C.clip_free(c.c)
570
571
}

Jesse Gross's avatar
Jesse Gross committed
572
func (c *ClipContext) NewEmbed(llamaContext *Context, data []byte) ([][]float32, error) {
573
	l := C.llava_image_embed_make_with_bytes(c.c, C.int(llamaContext.numThreads), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))
Jesse Gross's avatar
Jesse Gross committed
574
575
576
	if l == nil {
		return nil, errors.New("unable to make llava embedding from image")
	}
577

578
	numTokens := int(l.n_image_pos)
579
580
	numEmbed := llamaContext.Model().NEmbd()

581
	s := unsafe.Slice((*float32)(l.embed), numEmbed*numTokens)
582
583
584
585
586
587
588
589
590

	embed := make([][]float32, numTokens)
	rows := make([]float32, len(s))
	copy(rows, s)

	for i := range embed {
		embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
	}

591
	C.llava_image_embed_free(l)
592

Jesse Gross's avatar
Jesse Gross committed
593
	return embed, nil
594
595
}

596
597
598
599
600
601
602
603
type MllamaContext struct {
	c *C.struct_mllama_ctx
}

func NewMllamaContext(llamaContext *Context, modelPath string) (*MllamaContext, error) {
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))
	c := C.mllama_model_load(mp, 1)
Jesse Gross's avatar
Jesse Gross committed
604
605
606
	if c == nil {
		return nil, fmt.Errorf("unable to load mllama model: %v", modelPath)
	}
607
608
609
610
611
612
613
614
615
616
617
618
619
620

	projEmbedSize := int(C.mllama_n_embd(c))
	modelEmbedSize := llamaContext.Model().NEmbd()
	if projEmbedSize != modelEmbedSize {
		return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
	}

	return &MllamaContext{c: c}, nil
}

func (m *MllamaContext) Free() {
	C.mllama_free(m.c)
}

Jesse Gross's avatar
Jesse Gross committed
621
func (m *MllamaContext) NewEmbed(llamaContext *Context, data []byte, aspectRatioId int) ([][]float32, error) {
622
623
624
	img := C.mllama_image_init()
	defer C.mllama_image_free(img)

Jesse Gross's avatar
Jesse Gross committed
625
626
627
628
	ok := bool(C.mllama_image_load_from_data(unsafe.Pointer(&data[0]), C.int(len(data)), 560, 560, 3, 4, C.int(aspectRatioId), img))
	if !ok {
		return nil, errors.New("unable to load mllama image data")
	}
629

630
	rows := make([]float32, m.EmbedSize(llamaContext))
Jesse Gross's avatar
Jesse Gross committed
631
632
633
634
	ok = bool(C.mllama_image_encode(m.c, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0]))))
	if !ok {
		return nil, errors.New("unable to make mllama embedding from image")
	}
635

636
637
	embed := make([][]float32, 1)
	embed[0] = rows
638

Jesse Gross's avatar
Jesse Gross committed
639
	return embed, nil
640
641
}

642
643
644
func (m *MllamaContext) EmbedSize(llamaContext *Context) int {
	numTokens := int(C.mllama_n_positions(m.c) * C.mllama_n_tiles(m.c))
	numEmbed := llamaContext.Model().NEmbd()
645

646
647
	return numTokens * numEmbed
}
648

649
650
func (c *Context) SetCrossAttention(state bool) {
	C.llama_set_cross_attention(c.c, C.bool(state))
651
652
}

653
654
655
656
func (c *Context) Synchronize() {
	C.llama_synchronize(c.c)
}

657
658
659
// sampling
// TODO: this is a temporary wrapper to allow calling C++ code from CGo
type SamplingContext struct {
660
	c *C.struct_common_sampler
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
}

type SamplingParams struct {
	TopK           int
	TopP           float32
	MinP           float32
	TypicalP       float32
	Temp           float32
	RepeatLastN    int
	PenaltyRepeat  float32
	PenaltyFreq    float32
	PenaltyPresent float32
	Mirostat       int
	MirostatTau    float32
	MirostatEta    float32
	PenalizeNl     bool
	Seed           uint32
	Grammar        string
}

Jesse Gross's avatar
Jesse Gross committed
681
func NewSamplingContext(model *Model, params SamplingParams) (*SamplingContext, error) {
682
	var cparams C.struct_common_sampler_cparams
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
	cparams.top_k = C.int32_t(params.TopK)
	cparams.top_p = C.float(params.TopP)
	cparams.min_p = C.float(params.MinP)
	cparams.typical_p = C.float(params.TypicalP)
	cparams.temp = C.float(params.Temp)
	cparams.penalty_last_n = C.int32_t(params.RepeatLastN)
	cparams.penalty_repeat = C.float(params.PenaltyRepeat)
	cparams.penalty_freq = C.float(params.PenaltyFreq)
	cparams.penalty_present = C.float(params.PenaltyFreq)
	cparams.mirostat = C.int32_t(params.Mirostat)
	cparams.mirostat_tau = C.float(params.MirostatTau)
	cparams.mirostat_eta = C.float(params.MirostatEta)
	cparams.penalize_nl = C.bool(params.PenalizeNl)
	cparams.seed = C.uint32_t(params.Seed)

	grammar := C.CString(params.Grammar)
	defer C.free(unsafe.Pointer(grammar))

	cparams.grammar = grammar
702
	context := &SamplingContext{c: C.common_sampler_cinit(model.c, &cparams)}
Jesse Gross's avatar
Jesse Gross committed
703
704
705
706
	if context.c == nil {
		return nil, errors.New("unable to create sampling context")
	}

707
	runtime.SetFinalizer(context, func(s *SamplingContext) { C.common_sampler_cfree(s.c) })
708

Jesse Gross's avatar
Jesse Gross committed
709
	return context, nil
710
711
712
}

func (s *SamplingContext) Reset() {
713
	C.common_sampler_creset(s.c)
714
715
}

716
func (s *SamplingContext) Sample(llamaContext *Context, idx int) int {
717
	return int(C.common_sampler_csample(s.c, llamaContext.c, C.int(idx)))
718
719
}

720
func (s *SamplingContext) Accept(id int, applyGrammar bool) {
721
	C.common_sampler_caccept(s.c, C.llama_token(id), C.bool(applyGrammar))
722
}
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752

type JsonSchema struct {
	Defs       map[string]any `json:"$defs,omitempty"`
	Properties map[string]any `json:"properties,omitempty"`
	Required   []string       `json:"required,omitempty"`
	Title      string         `json:"title,omitempty"`
	Type       string         `json:"type,omitempty"`
}

func (js JsonSchema) AsGrammar() string {
	var b bytes.Buffer
	if err := json.NewEncoder(&b).Encode(js); err != nil {
		return ""
	}

	cStr := C.CString(b.String())
	defer C.free(unsafe.Pointer(cStr))

	// Allocate buffer for grammar output with reasonable size
	const maxLen = 32768 // 32KB
	buf := make([]byte, maxLen)

	// Call C function to convert schema to grammar
	length := C.schema_to_grammar(cStr, (*C.char)(unsafe.Pointer(&buf[0])), C.size_t(maxLen))
	if length == 0 {
		slog.Warn("unable to convert schema to grammar")
	}

	return string(buf[:length])
}