llama.go 17.9 KB
Newer Older
1
2
3
package llama

/*
Michael Yang's avatar
Michael Yang committed
4
5
6
7
8
9
10
#cgo CFLAGS: -std=c11
#cgo CXXFLAGS: -std=c++17
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/include
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/common
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/examples/llava
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/src
#cgo CPPFLAGS: -I${SRCDIR}/../ml/backend/ggml/ggml/include
11
12

#include <stdlib.h>
Michael Yang's avatar
Michael Yang committed
13
#include "ggml.h"
14
15
16
#include "llama.h"
#include "clip.h"
#include "llava.h"
Michael Yang's avatar
Michael Yang committed
17

18
#include "mllama.h"
19
20
#include "sampling_ext.h"

21
22
extern bool llamaProgressCallback(float progress, void *user_data);
extern void llamaLog(int level, char* text, void* user_data);
23
24
25
26
27
28
29
30
31
32
33

typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER;
COMPILER inline get_compiler() {
#if defined(__clang__)
	return COMP_CLANG;
#elif defined(__GNUC__)
	return COMP_GCC;
#else
	return UNKNOWN_COMPILER;
#endif
}
34

35
36
37
38
39
40
41
*/
import "C"

import (
	_ "embed"
	"errors"
	"fmt"
42
	"os"
43
44
	"runtime"
	"runtime/cgo"
Jesse Gross's avatar
Jesse Gross committed
45
	"slices"
46
	"strings"
47
	"sync/atomic"
48
	"unsafe"
Michael Yang's avatar
Michael Yang committed
49
50
51
52
53

	_ "github.com/ollama/ollama/llama/llama.cpp/common"
	_ "github.com/ollama/ollama/llama/llama.cpp/examples/llava"
	_ "github.com/ollama/ollama/llama/llama.cpp/src"
	"github.com/ollama/ollama/ml/backend/ggml/ggml/src"
54
55
56
)

func BackendInit() {
Michael Yang's avatar
Michael Yang committed
57
	ggml.OnceLoad()
58
59
60
61
	C.llama_backend_init()
}

func PrintSystemInfo() string {
62
63
64
65
66
67
68
69
70
71
	var compiler string
	switch C.get_compiler() {
	case C.COMP_UNKNOWN:
		compiler = "cgo(unknown_compiler)"
	case C.COMP_GCC:
		compiler = "cgo(gcc)"
	case C.COMP_CLANG:
		compiler = "cgo(clang)"
	}
	return C.GoString(C.llama_print_system_info()) + compiler
72
73
}

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
var logLevel atomic.Int32

func init() {
	logLevel.Store(int32(C.GGML_LOG_LEVEL_INFO))
	C.llama_log_set((C.ggml_log_callback)(C.llamaLog), nil)
}

func EnableDebug() {
	logLevel.Store(int32(C.GGML_LOG_LEVEL_DEBUG))
}

//export llamaLog
func llamaLog(level int32, text *C.char, _ unsafe.Pointer) {
	if level < logLevel.Load() {
		return
	}

91
	fmt.Fprint(os.Stderr, C.GoString(text))
92
93
}

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
func GetModelArch(modelPath string) (string, error) {
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))

	gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)})
	if gguf_ctx == nil {
		return "", errors.New("unable to load model file")
	}
	defer C.gguf_free(gguf_ctx)

	key := C.CString("general.architecture")
	defer C.free(unsafe.Pointer(key))
	arch_index := C.gguf_find_key(gguf_ctx, key)
	if int(arch_index) < 0 {
		return "", errors.New("unknown model architecture")
	}

	arch := C.gguf_get_val_str(gguf_ctx, arch_index)

	return C.GoString(arch), nil
}

116
117
118
119
type ContextParams struct {
	c C.struct_llama_context_params
}

120
func NewContextParams(numCtx int, batchSize int, numSeqMax int, threads int, flashAttention bool, kvCacheType string) ContextParams {
121
122
123
124
125
126
127
128
	params := C.llama_context_default_params()
	params.n_ctx = C.uint(numCtx)
	params.n_batch = C.uint(batchSize)
	params.n_seq_max = C.uint(numSeqMax)
	params.n_threads = C.int(threads)
	params.n_threads_batch = params.n_threads
	params.embeddings = C.bool(true)
	params.flash_attn = C.bool(flashAttention)
129
130
131
	params.type_k = kvCacheTypeFromStr(strings.ToLower(kvCacheType))
	params.type_v = kvCacheTypeFromStr(strings.ToLower(kvCacheType))

132
133
134
	return ContextParams{c: params}
}

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
// kvCacheTypeFromStr converts a string cache type to the corresponding GGML type value
func kvCacheTypeFromStr(s string) C.enum_ggml_type {
	if s == "" {
		return C.GGML_TYPE_F16
	}

	switch s {
	case "q8_0":
		return C.GGML_TYPE_Q8_0
	case "q4_0":
		return C.GGML_TYPE_Q4_0
	default:
		return C.GGML_TYPE_F16
	}
}

151
152
153
154
155
type Context struct {
	c          *C.struct_llama_context
	numThreads int
}

156
var ErrKvCacheFull = errors.New("could not find a kv cache slot")
157
158
159
160
161
162
163
164
165
166
167
168
169

func (c *Context) Decode(batch *Batch) error {
	// Positive return values does not mean a fatal error, but rather a warning.
	//   0 - success
	//   1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
	// < 0 - error
	code := int(C.llama_decode(c.c, batch.c))

	if code < 0 {
		return fmt.Errorf("llama_decode failed with code %d", code)
	}

	if code > 0 {
170
		return ErrKvCacheFull
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
	}

	return nil
}

func (c *Context) Model() *Model {
	return &Model{c: C.llama_get_model(c.c)}
}

func (c *Context) KvCacheSeqAdd(seqId int, p0 int, p1 int, delta int) {
	C.llama_kv_cache_seq_add(c.c, C.int(seqId), C.int(p0), C.int(p1), C.int(delta))
}

func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
	return bool(C.llama_kv_cache_seq_rm(c.c, C.int(seqId), C.int(p0), C.int(p1)))
}

func (c *Context) KvCacheSeqCp(srcSeqId int, dstSeqId int, p0 int, p1 int) {
	C.llama_kv_cache_seq_cp(c.c, C.int(srcSeqId), C.int(dstSeqId), C.int(p0), C.int(p1))
}

192
193
194
195
196
197
198
199
func (c *Context) KvCacheClear() {
	C.llama_kv_cache_clear(c.c)
}

func (c *Context) KvCacheDefrag() {
	C.llama_kv_cache_defrag(c.c)
}

200
201
// Get the embeddings for a sequence id
func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
202
203
	e := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
	if e == nil {
204
205
206
		return nil
	}

207
208
209
	embeddings := make([]float32, c.Model().NEmbd())
	_ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
	return embeddings
210
211
212
}

func (c *Context) GetEmbeddingsIth(i int) []float32 {
213
214
	e := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
	if e == nil {
215
216
217
		return nil
	}

218
219
220
	embeddings := make([]float32, c.Model().NEmbd())
	_ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
	return embeddings
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
}

type ModelParams struct {
	NumGpuLayers int
	MainGpu      int
	UseMmap      bool
	UseMlock     bool
	TensorSplit  []float32
	Progress     func(float32)
	VocabOnly    bool
}

//export llamaProgressCallback
func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
	handle := *(*cgo.Handle)(userData)
	callback := handle.Value().(func(float32))
	callback(float32(progress))
	return true
}

241
func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
	cparams := C.llama_model_default_params()
	cparams.n_gpu_layers = C.int(params.NumGpuLayers)
	cparams.main_gpu = C.int32_t(params.MainGpu)
	cparams.use_mmap = C.bool(params.UseMmap)
	cparams.use_mlock = C.bool(params.UseMlock)
	cparams.vocab_only = C.bool(params.VocabOnly)

	if len(params.TensorSplit) > 0 {
		tensorSplitData := &params.TensorSplit[0]

		var tensorSplitPin runtime.Pinner
		tensorSplitPin.Pin(tensorSplitData)
		defer tensorSplitPin.Unpin()

		cparams.tensor_split = (*C.float)(unsafe.Pointer(tensorSplitData))
	}

	if params.Progress != nil {
		handle := cgo.NewHandle(params.Progress)
		defer handle.Delete()

		var handlePin runtime.Pinner
		handlePin.Pin(&handle)
		defer handlePin.Unpin()

		cparams.progress_callback = C.llama_progress_callback(C.llamaProgressCallback)
		cparams.progress_callback_user_data = unsafe.Pointer(&handle)
	}

271
	m := Model{c: C.llama_load_model_from_file(C.CString(modelPath), cparams)}
Jesse Gross's avatar
Jesse Gross committed
272
	if m.c == nil {
273
274
275
276
		return nil, fmt.Errorf("unable to load model: %s", modelPath)
	}

	return &m, nil
277
278
279
280
281
282
}

func FreeModel(model *Model) {
	C.llama_free_model(model.c)
}

283
284
func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
	c := Context{
285
286
287
		c:          C.llama_new_context_with_model(model.c, params.c),
		numThreads: int(params.c.n_threads),
	}
Jesse Gross's avatar
Jesse Gross committed
288
	if c.c == nil {
289
290
291
292
		return nil, errors.New("unable to create llama context")
	}

	return &c, nil
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
}

func (m *Model) NumVocab() int {
	return int(C.llama_n_vocab(m.c))
}

func (m *Model) TokenIsEog(token int) bool {
	return bool(C.llama_token_is_eog(m.c, C.llama_token(token)))
}

func (m *Model) AddBOSToken() bool {
	return bool(C.llama_add_bos_token(m.c))
}

func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float32, threads int) error {
	cLoraPath := C.CString(loraPath)
	defer C.free(unsafe.Pointer(cLoraPath))

	loraAdapter := C.llama_lora_adapter_init(m.c, cLoraPath)
Jesse Gross's avatar
Jesse Gross committed
312
313
314
	if loraAdapter == nil {
		return errors.New("unable to load lora")
	}
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

	err := -1
	if loraAdapter != nil {
		err = int(C.llama_lora_adapter_set(context.c, loraAdapter, C.float(scale)))
	}
	if err != 0 {
		return errors.New("error applying lora from file")
	}

	return nil
}

type Batch struct {
	c         C.struct_llama_batch
	batchSize int
330
	maxSeq    int
331
332
333
	embedSize int
}

334
335
336
// Creates a new batch for either word tokens or image embeddings (if embedSize is non-zero).
// Batches cannot contain both types at the same time. batchSize is the maximum number of entries
// that can be added per sequence
Jesse Gross's avatar
Jesse Gross committed
337
338
func NewBatch(batchSize int, maxSeq int, embedSize int) (*Batch, error) {
	b := Batch{
339
340
341
342
		c:         C.llama_batch_init(C.int(batchSize*maxSeq), C.int(embedSize), C.int(maxSeq)),
		batchSize: batchSize,
		maxSeq:    maxSeq,
		embedSize: embedSize,
343
	}
Jesse Gross's avatar
Jesse Gross committed
344
345
346
347
348
349
350
351
352
353
354
355

	// Check to see if any of the allocations in llama_batch_init() failed
	nilPointer := (embedSize == 0 && b.c.token == nil) || (embedSize != 0 && b.c.embd == nil) ||
		b.c.pos == nil || b.c.n_seq_id == nil || b.c.seq_id == nil || b.c.logits == nil ||
		slices.Contains(unsafe.Slice(b.c.seq_id, b.allocSize()), nil)

	if nilPointer {
		C.llama_batch_free(b.c)
		return nil, fmt.Errorf("unable to allocate batch (batchSize=%v maxSeq=%v embedSize=%v)", batchSize, maxSeq, embedSize)
	}

	return &b, nil
356
357
}

358
359
360
361
362
363
364
365
func (b *Batch) Size() int {
	return b.batchSize
}

func (b *Batch) allocSize() int {
	return b.batchSize * b.maxSeq
}

366
367
368
369
370
371
372
373
374
375
376
377
func (b *Batch) NumTokens() int {
	return int(b.c.n_tokens)
}

func (b *Batch) IsEmbedding() bool {
	return b.embedSize != 0
}

// Add adds either a token or an image embedding to the batch depending on the type
// when the batch was initialized. The other argument will be ignored. Adds to the
// batch with the given position for the given sequence ids, and optionally instructs
// to include logits.
378
func (b *Batch) Add(token int, embed []float32, pos int, logits bool, seqIds ...int) {
379
	if !b.IsEmbedding() {
380
		unsafe.Slice(b.c.token, b.allocSize())[b.c.n_tokens] = C.llama_token(token)
381
	} else {
382
		copy(unsafe.Slice((*float32)(b.c.embd), b.allocSize()*b.embedSize)[int(b.c.n_tokens)*b.embedSize:], embed)
383
	}
384
385
	unsafe.Slice(b.c.pos, b.allocSize())[b.c.n_tokens] = C.llama_pos(pos)
	unsafe.Slice(b.c.n_seq_id, b.allocSize())[b.c.n_tokens] = C.int(len(seqIds))
386
387

	for i, s := range seqIds {
388
		unsafe.Slice((unsafe.Slice(b.c.seq_id, b.allocSize())[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
389
390
391
	}

	if logits {
392
		unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 1
393
394
	} else {
		unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 0
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
	}

	b.c.n_tokens += 1
}

func (b *Batch) Clear() {
	b.c.n_tokens = 0
}

func (b *Batch) Free() {
	b.batchSize = 0
	C.llama_batch_free(b.c)
}

type Model struct {
	c *C.struct_llama_model
}

func (m *Model) TokenToPiece(token int) string {
	tokenLen := 12
	buf := make([]byte, tokenLen)
	tokenLen = int(C.llama_token_to_piece(
		m.c,
		C.int32_t(token),
		(*C.char)(unsafe.Pointer(&buf[0])),
		C.int32_t(tokenLen),
		C.int32_t(0),
		C.bool(true),
	))
	if tokenLen < 0 {
		tokenLen = -tokenLen

		buf = make([]byte, tokenLen)
		C.llama_token_to_piece(
			m.c,
			C.int32_t(token),
			(*C.char)(unsafe.Pointer(&buf[0])),
			C.int32_t(tokenLen),
			C.int32_t(0),
			C.bool(true),
		)
	}
	return strings.TrimRight(string(buf), "\x00")
}

func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int, error) {
	maxTokens := len(text) + 2
	cTokens := make([]C.llama_token, maxTokens)
	cText := C.CString(text)
	defer C.free(unsafe.Pointer(cText))

	result := C.llama_tokenize(
		m.c,
		cText,
		C.int32_t(len(text)),
		&cTokens[0],
		C.int32_t(maxTokens),
		C.bool(addSpecial),
		C.bool(parseSpecial),
	)

	// if the result is negative, reallocate and retry with the correct buffer size
	if result < 0 {
		maxTokens = int(-result)
		cTokens = make([]C.llama_token, maxTokens)
		result = C.llama_tokenize(
			m.c,
			cText,
			C.int32_t(len(text)),
			&cTokens[0],
			C.int32_t(maxTokens),
			C.bool(addSpecial),
			C.bool(parseSpecial),
		)
		if result < 0 {
			return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
		}
	}

	tokens := make([]int, result)
	for i := range result {
		tokens[i] = int(cTokens[i])
	}

	return tokens, nil
}

func (m *Model) NEmbd() int {
	return int(C.llama_n_embd(m.c))
}

func Quantize(infile, outfile string, ftype uint32) error {
	cinfile := C.CString(infile)
	defer C.free(unsafe.Pointer(cinfile))

	coutfile := C.CString(outfile)
	defer C.free(unsafe.Pointer(coutfile))

	params := C.llama_model_quantize_default_params()
	params.nthread = -1
	params.ftype = ftype

	if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
		return fmt.Errorf("llama_model_quantize: %d", rc)
	}

	return nil
}

504
// vision processing
505
type ClipContext struct {
506
	c *C.struct_clip_ctx
507
508
}

509
func NewClipContext(llamaContext *Context, modelPath string) (*ClipContext, error) {
510
511
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))
512
	c := C.clip_model_load(mp, 1)
Jesse Gross's avatar
Jesse Gross committed
513
514
515
	if c == nil {
		return nil, fmt.Errorf("unable to load clip model: %v", modelPath)
	}
516

517
518
519
520
	projEmbedSize := int(C.clip_n_mmproj_embd(c))
	modelEmbedSize := llamaContext.Model().NEmbd()
	if projEmbedSize != modelEmbedSize {
		return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
521
522
	}

523
	return &ClipContext{c: c}, nil
524
525
526
}

func (c *ClipContext) Free() {
527
	C.clip_free(c.c)
528
529
}

Jesse Gross's avatar
Jesse Gross committed
530
func (c *ClipContext) NewEmbed(llamaContext *Context, data []byte) ([][]float32, error) {
531
	l := C.llava_image_embed_make_with_bytes(c.c, C.int(llamaContext.numThreads), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))
Jesse Gross's avatar
Jesse Gross committed
532
533
534
	if l == nil {
		return nil, errors.New("unable to make llava embedding from image")
	}
535

536
	numTokens := int(l.n_image_pos)
537
538
	numEmbed := llamaContext.Model().NEmbd()

539
	s := unsafe.Slice((*float32)(l.embed), numEmbed*numTokens)
540
541
542
543
544
545
546
547
548

	embed := make([][]float32, numTokens)
	rows := make([]float32, len(s))
	copy(rows, s)

	for i := range embed {
		embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
	}

549
	C.llava_image_embed_free(l)
550

Jesse Gross's avatar
Jesse Gross committed
551
	return embed, nil
552
553
}

554
555
556
557
558
559
560
561
type MllamaContext struct {
	c *C.struct_mllama_ctx
}

func NewMllamaContext(llamaContext *Context, modelPath string) (*MllamaContext, error) {
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))
	c := C.mllama_model_load(mp, 1)
Jesse Gross's avatar
Jesse Gross committed
562
563
564
	if c == nil {
		return nil, fmt.Errorf("unable to load mllama model: %v", modelPath)
	}
565
566
567
568
569
570
571
572
573
574
575
576
577
578

	projEmbedSize := int(C.mllama_n_embd(c))
	modelEmbedSize := llamaContext.Model().NEmbd()
	if projEmbedSize != modelEmbedSize {
		return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
	}

	return &MllamaContext{c: c}, nil
}

func (m *MllamaContext) Free() {
	C.mllama_free(m.c)
}

Jesse Gross's avatar
Jesse Gross committed
579
func (m *MllamaContext) NewEmbed(llamaContext *Context, data []byte, aspectRatioId int) ([][]float32, error) {
580
581
582
	img := C.mllama_image_init()
	defer C.mllama_image_free(img)

Jesse Gross's avatar
Jesse Gross committed
583
584
585
586
	ok := bool(C.mllama_image_load_from_data(unsafe.Pointer(&data[0]), C.int(len(data)), 560, 560, 3, 4, C.int(aspectRatioId), img))
	if !ok {
		return nil, errors.New("unable to load mllama image data")
	}
587

588
	rows := make([]float32, m.EmbedSize(llamaContext))
Jesse Gross's avatar
Jesse Gross committed
589
590
591
592
	ok = bool(C.mllama_image_encode(m.c, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0]))))
	if !ok {
		return nil, errors.New("unable to make mllama embedding from image")
	}
593

594
595
	embed := make([][]float32, 1)
	embed[0] = rows
596

Jesse Gross's avatar
Jesse Gross committed
597
	return embed, nil
598
599
}

600
601
602
func (m *MllamaContext) EmbedSize(llamaContext *Context) int {
	numTokens := int(C.mllama_n_positions(m.c) * C.mllama_n_tiles(m.c))
	numEmbed := llamaContext.Model().NEmbd()
603

604
605
	return numTokens * numEmbed
}
606

607
608
func (c *Context) SetCrossAttention(state bool) {
	C.llama_set_cross_attention(c.c, C.bool(state))
609
610
}

611
612
613
614
func (c *Context) Synchronize() {
	C.llama_synchronize(c.c)
}

615
616
617
// sampling
// TODO: this is a temporary wrapper to allow calling C++ code from CGo
type SamplingContext struct {
618
	c *C.struct_common_sampler
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
}

type SamplingParams struct {
	TopK           int
	TopP           float32
	MinP           float32
	TypicalP       float32
	Temp           float32
	RepeatLastN    int
	PenaltyRepeat  float32
	PenaltyFreq    float32
	PenaltyPresent float32
	Mirostat       int
	MirostatTau    float32
	MirostatEta    float32
	PenalizeNl     bool
	Seed           uint32
	Grammar        string
}

Jesse Gross's avatar
Jesse Gross committed
639
func NewSamplingContext(model *Model, params SamplingParams) (*SamplingContext, error) {
640
	var cparams C.struct_common_sampler_cparams
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
	cparams.top_k = C.int32_t(params.TopK)
	cparams.top_p = C.float(params.TopP)
	cparams.min_p = C.float(params.MinP)
	cparams.typical_p = C.float(params.TypicalP)
	cparams.temp = C.float(params.Temp)
	cparams.penalty_last_n = C.int32_t(params.RepeatLastN)
	cparams.penalty_repeat = C.float(params.PenaltyRepeat)
	cparams.penalty_freq = C.float(params.PenaltyFreq)
	cparams.penalty_present = C.float(params.PenaltyFreq)
	cparams.mirostat = C.int32_t(params.Mirostat)
	cparams.mirostat_tau = C.float(params.MirostatTau)
	cparams.mirostat_eta = C.float(params.MirostatEta)
	cparams.seed = C.uint32_t(params.Seed)

	grammar := C.CString(params.Grammar)
	defer C.free(unsafe.Pointer(grammar))

	cparams.grammar = grammar
659
	context := &SamplingContext{c: C.common_sampler_cinit(model.c, &cparams)}
Jesse Gross's avatar
Jesse Gross committed
660
661
662
663
	if context.c == nil {
		return nil, errors.New("unable to create sampling context")
	}

664
	runtime.SetFinalizer(context, func(s *SamplingContext) { C.common_sampler_cfree(s.c) })
665

Jesse Gross's avatar
Jesse Gross committed
666
	return context, nil
667
668
669
}

func (s *SamplingContext) Reset() {
670
	C.common_sampler_creset(s.c)
671
672
}

673
func (s *SamplingContext) Sample(llamaContext *Context, idx int) int {
674
	return int(C.common_sampler_csample(s.c, llamaContext.c, C.int(idx)))
675
676
}

677
func (s *SamplingContext) Accept(id int, applyGrammar bool) {
678
	C.common_sampler_caccept(s.c, C.llama_token(id), C.bool(applyGrammar))
679
}
680

681
682
683
684
// SchemaToGrammar converts the provided JSON schema to a grammar. It returns
// nil if the provided schema is invalid JSON or an invalid JSON schema.
func SchemaToGrammar(schema []byte) []byte {
	cStr := C.CString(string(schema))
685
686
687
688
689
690
691
	defer C.free(unsafe.Pointer(cStr))

	// Allocate buffer for grammar output with reasonable size
	const maxLen = 32768 // 32KB
	buf := make([]byte, maxLen)

	// Call C function to convert schema to grammar
692
693
694
695
	n := C.schema_to_grammar(cStr, (*C.char)(unsafe.Pointer(&buf[0])), C.size_t(maxLen))
	if n == 0 {
		// preserve nil
		return nil
696
	}
697
	return buf[:n]
698
}