- 14 Aug, 2025 2 commits
-
-
Jesse Gross authored
This changes the memory allocation strategy from upfront estimation to tracking actual allocations done by the engine and reacting to that. The goal is avoid issues caused by both under-estimation (crashing) and over-estimation (low performance due to under-utilized GPUs). It is currently opt-in and can be enabled for models running on the Ollama engine by setting OLLAMA_NEW_ESTIMATES=1. Behavior in other cases is unchanged and will continue to use the existing estimates.
-
Michael Yang authored
* TEMPORARY: Update the llama.cpp upstream to my fork's Granite Four branch This will be redone once my branch is merged upstream in llama.cpp * feat: Update all patches There are a number that are no longer needed at all: - 0003-embeddings: Embeddings entirely overhauled on master - 0008-ensure-KV-cache-is-fully-defragmented: KV caching entirely overhauled on master - 0019-metal-add-mean-kernel-14267: Merged upstream - 0020-CUDA-add-mean-operation-14313: Merged upstream * feat: Sync llama.cpp and ggml * fix: Update rsync-filter for all moved/new/removed files * fix: Add files missing from sync * fix: Update ggml rsync-filter for new ggml-cpu/arch subdirs * fix: Add ggml files missing from sync * fix: Narrow llama.cpp rsync-filter to not include mtmd main tool cpp files * fix: Remove mtmd main cpp files * fix: Add missing include in sampling_ext.cpp * fix: Update llama.go to use mtmd instead of clip/llava * fix: Add patch for mtmd_input_text * chore: Ignore *.patched in the patch directory * fix: Fix support for arch-specific ggml-cpu source files with new arrangement In https://github.com/ggml-org/llama.cpp/pull/13892, all arch-specific implementations were split out into a nested tree structure under ggml-cpu/arch. This conflicts with standard CGO layout where all arch-specific source files are expected to live in the same directory as the parent go module and use suffixes based on GOOS and GOARCH. As such, there were really two options for getting this to work: 1. Add a patch on top of the GGML sync to rearrange the files to match the GO layout convention 2. Use CGO directives to conditionally include the nested source files in the compilation units This commit does (2) in order to minimize the set of changes needed on top of the upstream file layout. To get this to work, there are two key things needed: 1. In cpu.go, #cgo directives are added to explicitly set __${GOARCH}__ in the preprocessor directives 2. In arch-impls.c|cpp, use an #ifdef | #elif defined | #endif chain to explicitly include the .c|.cpp files for the given architecture from the nested directory * fix: Use mtmd_helper to correctly load the bitmap for the image * fix: Apply patch for mtmd_text_input * fix: Add missing stb to llama.cpp rsync-filter * fix: Add sync'ed stb vendored header * fix: Use c++17 and include vendor for go wrapper modules * fix: Update patch 0015 for upstream implementation of uuid * feat: Bump to the latest tip of the branch * fix: Update patches for bump * feat: Bump back to the cenral repo and point at the latest master This includes granite 4 and a number of other model architectures! * fix: Revert changes to ggml export GPU UUID patch * fix: Add patch for GGML_VERSION and GGML_COMMIT constants * feat: Sync all patched code * build: Include cmake/common.cmake in ggml sync * build: Add top-level include for GNUINstallDirs in CMakeLists.txt This is used to populate CMAKE_INSTALL_BINDIR * fix: Add a patch to avoid power throttling API on non-msvc windows builds * fix: Sync patch changes for ggml-cpu.c * feat: Bump llama.cpp to 4a4f42 This picks up support for Kimi K2 and PLaMO-2 * feat: Sync llama.cpp * fix: Handle multi-chunk image encodings from mtmd * fix: Re-number patches after merge with `main` * feat: Bump to 41e78c in the makefile * fix: Fix Solar and argsort/copy patches after bump * fix: Remove Gemma3n CUDA Graphs patch It was implemented upstream: https://github.com/ggml-org/llama.cpp/pull/14741 * feat: Sync llama.cpp / ggml after latest bump * build: Remove unnecessary CFLAGS definitions in cpu.go * fix: Remove unnecessary additions in the rsync-filter * fix: Remove unused vendored code for chat template parsing * Revert "fix: Remove Gemma3n CUDA Graphs patch" This reverts commit d724caced3ce21f08924d4b7801f94ce6638f6ea. * fix: Update 0020 CUDA Graphs for gemma3n to keep both llama.cpp and ollama fixes https://github.com/ollama/ollama/pull/11195#issuecomment-3137312394 * fix: Sync ggml-cuda.cu after keeping both style cuda graph fixes for gemma3n * unwind mxfp4 patch Prepare to bump ggml with their impl for mxfp4 * bump * fix windows build error * Convert tensors at load time Repack the mxfp4 tensors as ggmls kernels expect them to be. * convert mlp bf16 to f32 * buffer the conversion better * reshape earlier * openai swiglu * add ids * split qkv, gate_up * fix nested alt tags * fast attention * remove debug messages * fix lint * remove redundant test * remap values only if source/target are different * add back i32->i32 copy * refactor cpu quants * clean up vendor * update patch instructions * clean up patches * remove webgpu * update mem * also handle gpt-oss * revert convert changes --------- Signed-off-by:Gabe Goodhart <ghart@us.ibm.com> Co-authored-by:
Gabe Goodhart <ghart@us.ibm.com> Co-authored-by:
Daniel Hiltgen <daniel@ollama.com>
-
- 23 May, 2025 1 commit
-
-
Parth Sareen authored
-
- 20 May, 2025 1 commit
-
-
DarkCaster authored
-
- 16 May, 2025 1 commit
-
-
Michael Yang authored
* get eos_token_id from generation_config.json * refactor * include both ids and strings in trace * comments * remove special case for gemma3 special vocab (#10743)
-
- 14 May, 2025 1 commit
-
-
Michael Yang authored
-
- 12 May, 2025 1 commit
-
-
Jeffrey Morgan authored
-
- 10 May, 2025 1 commit
-
-
frob authored
-
- 08 May, 2025 1 commit
-
-
Jeffrey Morgan authored
-
- 06 May, 2025 1 commit
-
-
Daniel Hiltgen authored
* Move quantization logic to GGML via new backend This moves the model aware logic to Go code and calls GGMLs quantization code for model creation. * Remove "add model quantizations" This is no longer needed now that quantization is implemented in Go+GGML code directly.
-
- 05 May, 2025 2 commits
-
-
Jeffrey Morgan authored
Some options listed in api/types.go are not supported in newer models, or have been deprecated in the past. This is the first of a series of PRs to clean up the API options
-
Jeffrey Morgan authored
-
- 24 Apr, 2025 1 commit
-
-
Parth Sareen authored
-
- 16 Apr, 2025 1 commit
-
-
Jeffrey Morgan authored
-
- 31 Mar, 2025 1 commit
-
-
Bruce MacDonald authored
Clear KV cache when shift operation is not supported by model. Added KvCacheCanShift() check to handle models that can't perform cache shifts, falling back to full cache clear while preserving logical token history to maintain expected behavior when context window fills up.
-
- 10 Mar, 2025 1 commit
-
-
Jeffrey Morgan authored
-
- 04 Mar, 2025 1 commit
-
-
Michael Yang authored
- output backend system info when initializing the backend. this ensures this information is always present without needing to be called explicitly - convert to structured logging - enumerate devices rather than backends since devices are ordered - track device indices grouped by device name
-
- 28 Feb, 2025 1 commit
-
-
Michael Yang authored
-
- 27 Feb, 2025 2 commits
-
-
Michael Yang authored
-
Jeffrey Morgan authored
-
- 06 Feb, 2025 1 commit
-
-
Diego Pereira authored
Shield the code processing the embedding result from subsequent calls that may overwrite the same buffer to process a second input when retrieving model embeddings.
-
- 31 Jan, 2025 1 commit
-
-
Michael Yang authored
This reverts commit bea1f1fa.
-
- 30 Jan, 2025 1 commit
-
-
Michael Yang authored
-
- 29 Jan, 2025 1 commit
-
-
Michael Yang authored
* add build to .dockerignore * test: only build one arch * add build to .gitignore * fix ccache path * filter amdgpu targets * only filter if autodetecting * Don't clobber gpu list for default runner This ensures the GPU specific environment variables are set properly * explicitly set CXX compiler for HIP * Update build_windows.ps1 This isn't complete, but is close. Dependencies are missing, and it only builds the "default" preset. * build: add ollama subdir * add .git to .dockerignore * docs: update development.md * update build_darwin.sh * remove unused scripts * llm: add cwd and build/lib/ollama to library paths * default DYLD_LIBRARY_PATH to LD_LIBRARY_PATH in runner on macOS * add additional cmake output vars for msvc * interim edits to make server detection logic work with dll directories like lib/ollama/cuda_v12 * remove unncessary filepath.Dir, cleanup * add hardware-specific directory to path * use absolute server path * build: linux arm * cmake install targets * remove unused files * ml: visit each library path once * build: skip cpu variants on arm * build: install cpu targets * build: fix workflow * shorter names * fix rocblas install * docs: clean up development.md * consistent build dir removal in development.md * silence -Wimplicit-function-declaration build warnings in ggml-cpu * update readme * update development readme * llm: update library lookup logic now that there is one runner (#8587) * tweak development.md * update docs * add windows cuda/rocm tests --------- Co-authored-by:
jmorganca <jmorganca@gmail.com> Co-authored-by:
Daniel Hiltgen <daniel@ollama.com>
-
- 08 Jan, 2025 1 commit
-
-
Jeffrey Morgan authored
-
- 13 Dec, 2024 1 commit
-
-
Daniel Hiltgen authored
This puts the low-level runner logging back on stderr for consistency with prior releases
-
- 11 Dec, 2024 2 commits
-
-
Blake Mizerany authored
Previously we decoded and re-encoded JSON schemas during validation, which served no purpose since json.RawMessage already validates JSON syntax. Worse, the re-encoding lost field ordering from the original schema, which affects inference quality during step-by-step reasoning. While fixing this ordering issue by using json.RawMessage directly, testing revealed that schema_to_grammar (from llama.cpp) also fails to preserve field order during grammar generation. This appears to be the root cause of inference degradation. This change prevents us from mangling the user's original schema order, but we still need to address the ordering issue in schema_to_grammar. That will be a separate change. Updates #7978
-
Jeffrey Morgan authored
-
- 10 Dec, 2024 2 commits
-
-
Daniel Hiltgen authored
The final implementation of #7499 removed dynamic vector requirements in favor of a simpler filename based model, and this was left over logic that is no longer needed.
-
Daniel Hiltgen authored
* llama: wire up builtin runner This adds a new entrypoint into the ollama CLI to run the cgo built runner. On Mac arm64, this will have GPU support, but on all other platforms it will be the lowest common denominator CPU build. After we fully transition to the new Go runners more tech-debt can be removed and we can stop building the "default" runner via make and rely on the builtin always. * build: Make target improvements Add a few new targets and help for building locally. This also adjusts the runner lookup to favor local builds, then runners relative to the executable, and finally payloads. * Support customized CPU flags for runners This implements a simplified custom CPU flags pattern for the runners. When built without overrides, the runner name contains the vector flag we check for (AVX) to ensure we don't try to run on unsupported systems and crash. If the user builds a customized set, we omit the naming scheme and don't check for compatibility. This avoids checking requirements at runtime, so that logic has been removed as well. This can be used to build GPU runners with no vector flags, or CPU/GPU runners with additional flags (e.g. AVX512) enabled. * Use relative paths If the user checks out the repo in a path that contains spaces, make gets really confused so use relative paths for everything in-repo to avoid breakage. * Remove payloads from main binary * install: clean up prior libraries This removes support for v0.3.6 and older versions (before the tar bundle) and ensures we clean up prior libraries before extracting the bundle(s). Without this change, runners and dependent libraries could leak when we update and lead to subtle runtime errors.
-
- 05 Dec, 2024 1 commit
-
-
Parth Sareen authored
Adds structured outputs to chat endpoint --------- Co-authored-by:
Michael Yang <mxyng@pm.me> Co-authored-by:
Hieu Nguyen <hieunguyen1053@outlook.com>
-
- 03 Dec, 2024 1 commit
-
-
Sam authored
-
- 20 Nov, 2024 1 commit
-
-
Jesse Gross authored
Fragmentation of the KV cache can occur due to cache shifting or different sequences getting processed. Decode uses a heuristic to decide if it should defrag. However, this heuristic isn't 100% accurate, so decoding can sometimes fail by surprise. For these cases, if decode indicates that there is no KV cache space, we should defrag and then try again.
-
- 19 Nov, 2024 1 commit
-
-
Gabe Goodhart authored
https://github.com/ollama/ollama/issues/7656 Branch: Granite3StoppingBug-7656 Signed-off-by:
Gabe Goodhart <ghart@us.ibm.com>
-
- 14 Nov, 2024 1 commit
-
-
Michael Yang authored
-
- 12 Nov, 2024 1 commit
-
-
Daniel Hiltgen authored
This adds support for the Jetson JetPack variants into the Go runner
-
- 02 Nov, 2024 2 commits
-
-
Jesse Gross authored
Check for NULL return values from llama.cpp in more places and convert them into Go errors, which should make debugging easier in the future rather than having hidden surprises in our data structures.
-
Jesse Gross authored
Mllama has large embeddings (100 MB per image) and each embedding is represented as 1 token when passed to llama.cpp. Batches are pre- allocated for the size of the tokens times the batch size, so this results in allocations of over 50 GB at the default batch size. On some systems, these mallocs will fail. Since an image is represented as a single token and mllama doesn't support more than 1 image per request, we only need to allocate a batch size of 1, which is much more reasonable. In addition, for non-multimodal models, we don't need to allocate the embedding batches at all. Fixes #7464
-
- 30 Oct, 2024 2 commits
-
-
Jesse Gross authored
-Update mllama to take the cross attention state as embeddings in a batch, more similar to how Llava handles it. This improves integration with the input cache. -Pass locations in a prompt for embeddings using tags similar to Llava. -Abstract interface to vision models so the main runner accesses Clip and Mllama similarly Co-authored-by:Michael Yang <mxyng@pm.me>
-
Daniel Hiltgen authored
This will no longer error if built with regular gcc on windows. To help triage issues that may come in related to different compilers, the runner now reports the compier used by cgo.
-