trainval.py 10.7 KB
Newer Older
Ruilong Li's avatar
Ruilong Li committed
1
import argparse
Ruilong Li's avatar
Ruilong Li committed
2
3
4
5
6
7
8
import math
import time

import numpy as np
import torch
import torch.nn.functional as F
import tqdm
Ruilong Li's avatar
Ruilong Li committed
9
from datasets.nerf_synthetic import SubjectLoader, namedtuple_map
Ruilong Li's avatar
Ruilong Li committed
10
from radiance_fields.mlp import VanillaNeRFRadianceField
Ruilong Li's avatar
Ruilong Li committed
11
12
13
14
from radiance_fields.ngp import NGPradianceField

from nerfacc import OccupancyField, volumetric_rendering

Ruilong Li's avatar
Ruilong Li committed
15
TARGET_SAMPLE_BATCH_SIZE = 1 << 16
Ruilong Li's avatar
Ruilong Li committed
16

Ruilong Li's avatar
Ruilong Li committed
17
18

def render_image(radiance_field, rays, render_bkgd, render_step_size):
Ruilong Li's avatar
Ruilong Li committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
    """Render the pixels of an image.

    Args:
      radiance_field: the radiance field of nerf.
      rays: a `Rays` namedtuple, the rays to be rendered.

    Returns:
      rgb: torch.tensor, rendered color image.
      depth: torch.tensor, rendered depth image.
      acc: torch.tensor, rendered accumulated weights per pixel.
    """
    rays_shape = rays.origins.shape
    if len(rays_shape) == 3:
        height, width, _ = rays_shape
        num_rays = height * width
        rays = namedtuple_map(lambda r: r.reshape([num_rays] + list(r.shape[2:])), rays)
    else:
        num_rays, _ = rays_shape
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
37
38
39
40
41
42
43
44
45
46
47
48
49

    def sigma_fn(frustum_origins, frustum_dirs, frustum_starts, frustum_ends):
        positions = (
            frustum_origins + frustum_dirs * (frustum_starts + frustum_ends) / 2.0
        )
        return radiance_field.query_density(positions)

    def sigma_rgb_fn(frustum_origins, frustum_dirs, frustum_starts, frustum_ends):
        positions = (
            frustum_origins + frustum_dirs * (frustum_starts + frustum_ends) / 2.0
        )
        return radiance_field(positions, frustum_dirs)

Ruilong Li's avatar
Ruilong Li committed
50
    results = []
51
    chunk = torch.iinfo(torch.int32).max if radiance_field.training else 81920
Ruilong Li's avatar
Ruilong Li committed
52
53
    for i in range(0, num_rays, chunk):
        chunk_rays = namedtuple_map(lambda r: r[i : i + chunk], rays)
Ruilong Li's avatar
Ruilong Li committed
54
        chunk_results = volumetric_rendering(
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
55
56
            sigma_fn=sigma_fn,
            sigma_rgb_fn=sigma_rgb_fn,
Ruilong Li's avatar
Ruilong Li committed
57
58
59
60
61
62
            rays_o=chunk_rays.origins,
            rays_d=chunk_rays.viewdirs,
            scene_aabb=occ_field.aabb,
            scene_occ_binary=occ_field.occ_grid_binary,
            scene_resolution=occ_field.resolution,
            render_bkgd=render_bkgd,
Ruilong Li's avatar
Ruilong Li committed
63
            render_step_size=render_step_size,
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
64
            near_plane=0.0,
65
            stratified=radiance_field.training,
Ruilong Li's avatar
Ruilong Li committed
66
        )
Ruilong Li's avatar
Ruilong Li committed
67
        results.append(chunk_results)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
68
    colors, opacities, n_marching_samples, n_rendering_samples = [
Ruilong Li's avatar
Ruilong Li committed
69
70
        torch.cat(r, dim=0) if isinstance(r[0], torch.Tensor) else r
        for r in zip(*results)
Ruilong Li's avatar
Ruilong Li committed
71
    ]
Ruilong Li's avatar
Ruilong Li committed
72
    return (
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
73
74
75
76
        colors.view((*rays_shape[:-1], -1)),
        opacities.view((*rays_shape[:-1], -1)),
        sum(n_marching_samples),
        sum(n_rendering_samples),
Ruilong Li's avatar
Ruilong Li committed
77
78
79
80
    )


if __name__ == "__main__":
81
    torch.manual_seed(42)
Ruilong Li's avatar
Ruilong Li committed
82

Ruilong Li's avatar
Ruilong Li committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "method",
        type=str,
        default="ngp",
        choices=["ngp", "vanilla"],
        help="which nerf to use",
    )
    parser.add_argument(
        "--train_split",
        type=str,
        default="trainval",
        choices=["train", "trainval"],
        help="which train split to use",
    )
    args = parser.parse_args()

Ruilong Li's avatar
Ruilong Li committed
100
    device = "cuda:0"
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
101
    scene = "lego"
Ruilong Li's avatar
Ruilong Li committed
102

Ruilong Li's avatar
Ruilong Li committed
103
104
105
106
107
108
109
110
    # setup the scene bounding box.
    scene_aabb = torch.tensor([-1.5, -1.5, -1.5, 1.5, 1.5, 1.5])
    # setup some rendering settings
    render_n_samples = 1024
    render_step_size = (
        (scene_aabb[3:] - scene_aabb[:3]).max() * math.sqrt(3) / render_n_samples
    ).item()

Ruilong Li's avatar
Ruilong Li committed
111
112
    # setup dataset
    train_dataset = SubjectLoader(
Ruilong Li's avatar
Ruilong Li committed
113
        subject_id=scene,
Ruilong Li's avatar
Ruilong Li committed
114
        root_fp="/home/ruilongli/data/nerf_synthetic/",
Ruilong Li's avatar
Ruilong Li committed
115
116
        split=args.train_split,
        num_rays=TARGET_SAMPLE_BATCH_SIZE // render_n_samples,
Ruilong Li's avatar
Ruilong Li committed
117
        # color_bkgd_aug="random",
Ruilong Li's avatar
Ruilong Li committed
118
    )
Ruilong Li's avatar
Ruilong Li committed
119
120
121
122

    train_dataset.images = train_dataset.images.to(device)
    train_dataset.camtoworlds = train_dataset.camtoworlds.to(device)
    train_dataset.K = train_dataset.K.to(device)
Ruilong Li's avatar
Ruilong Li committed
123
124
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
Ruilong Li's avatar
Ruilong Li committed
125
        num_workers=0,
Ruilong Li's avatar
Ruilong Li committed
126
        batch_size=None,
Ruilong Li's avatar
Ruilong Li committed
127
        # persistent_workers=True,
Ruilong Li's avatar
Ruilong Li committed
128
        shuffle=True,
Ruilong Li's avatar
Ruilong Li committed
129
    )
Ruilong Li's avatar
Ruilong Li committed
130

Ruilong Li's avatar
Ruilong Li committed
131
    test_dataset = SubjectLoader(
Ruilong Li's avatar
Ruilong Li committed
132
        subject_id=scene,
Ruilong Li's avatar
Ruilong Li committed
133
        root_fp="/home/ruilongli/data/nerf_synthetic/",
Ruilong Li's avatar
Ruilong Li committed
134
        split="test",
Ruilong Li's avatar
Ruilong Li committed
135
136
        num_rays=None,
    )
Ruilong Li's avatar
Ruilong Li committed
137
138
139
    test_dataset.images = test_dataset.images.to(device)
    test_dataset.camtoworlds = test_dataset.camtoworlds.to(device)
    test_dataset.K = test_dataset.K.to(device)
Ruilong Li's avatar
Ruilong Li committed
140
141
    test_dataloader = torch.utils.data.DataLoader(
        test_dataset,
Ruilong Li's avatar
Ruilong Li committed
142
        num_workers=0,
Ruilong Li's avatar
Ruilong Li committed
143
        batch_size=None,
Ruilong Li's avatar
Ruilong Li committed
144
145
146
147
148
149
    )

    # setup the scene radiance field. Assume you have a NeRF model and
    # it has following functions:
    # - query_density(): {x} -> {density}
    # - forward(): {x, dirs} -> {rgb, density}
Ruilong Li's avatar
Ruilong Li committed
150
151
152
153
154
155
156
157
158
159
160
161
162
    if args.method == "ngp":
        radiance_field = NGPradianceField(aabb=scene_aabb).to(device)
        optimizer = torch.optim.Adam(radiance_field.parameters(), lr=1e-2, eps=1e-15)
        max_steps = 20000
        occ_field_warmup_steps = 2000
        grad_scaler = torch.cuda.amp.GradScaler(1)

    elif args.method == "vanilla":
        radiance_field = VanillaNeRFRadianceField().to(device)
        optimizer = torch.optim.Adam(radiance_field.parameters(), lr=5e-4)
        max_steps = 40000
        occ_field_warmup_steps = 256
        grad_scaler = torch.cuda.amp.GradScaler(2**10)
Ruilong Li's avatar
Ruilong Li committed
163

Ruilong Li's avatar
Ruilong Li committed
164
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
Ruilong Li's avatar
Ruilong Li committed
165
166
167
        optimizer,
        milestones=[max_steps // 2, max_steps * 3 // 4, max_steps * 9 // 10],
        gamma=0.33,
Ruilong Li's avatar
Ruilong Li committed
168
    )
Ruilong Li's avatar
Ruilong Li committed
169
170
171
172
173
174
175
176
177
178
179

    # setup occupancy field with eval function
    def occ_eval_fn(x: torch.Tensor) -> torch.Tensor:
        """Evaluate occupancy given positions.

        Args:
            x: positions with shape (N, 3).
        Returns:
            occupancy values with shape (N, 1).
        """
        density_after_activation = radiance_field.query_density(x)
Ruilong Li's avatar
Ruilong Li committed
180
        # those two are similar when density is small.
181
        # occupancy = 1.0 - torch.exp(-density_after_activation * render_step_size)
Ruilong Li's avatar
Ruilong Li committed
182
183
184
185
186
187
188
189
190
191
        occupancy = density_after_activation * render_step_size
        return occupancy

    occ_field = OccupancyField(
        occ_eval_fn=occ_eval_fn, aabb=scene_aabb, resolution=128
    ).to(device)

    # training
    step = 0
    tic = time.time()
Ruilong Li's avatar
Ruilong Li committed
192
193
    data_time = 0
    tic_data = time.time()
Ruilong Li's avatar
wtf  
Ruilong Li committed
194

Ruilong Li's avatar
Ruilong Li committed
195
    for epoch in range(10000000):
Ruilong Li's avatar
Ruilong Li committed
196
        for i in range(len(train_dataset)):
Ruilong Li's avatar
Ruilong Li committed
197
            radiance_field.train()
Ruilong Li's avatar
Ruilong Li committed
198
            data = train_dataset[i]
Ruilong Li's avatar
Ruilong Li committed
199
            data_time += time.time() - tic_data
Ruilong Li's avatar
Ruilong Li committed
200
201

            # generate rays from data and the gt pixel color
Ruilong Li's avatar
Ruilong Li committed
202
203
204
205
206
            # rays = namedtuple_map(lambda x: x.to(device), data["rays"])
            # pixels = data["pixels"].to(device)
            render_bkgd = data["color_bkgd"]
            rays = data["rays"]
            pixels = data["pixels"]
Ruilong Li's avatar
Ruilong Li committed
207

Ruilong Li's avatar
Ruilong Li committed
208
            # update occupancy grid
Ruilong Li's avatar
Ruilong Li committed
209
            occ_field.every_n_step(step, warmup_steps=occ_field_warmup_steps)
Ruilong Li's avatar
wtf  
Ruilong Li committed
210

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
211
            rgb, acc, counter, compact_counter = render_image(
Ruilong Li's avatar
Ruilong Li committed
212
                radiance_field, rays, render_bkgd, render_step_size
Ruilong Li's avatar
readme  
Ruilong Li committed
213
            )
Ruilong Li's avatar
Ruilong Li committed
214
215
            num_rays = len(pixels)
            num_rays = int(
Ruilong Li's avatar
Ruilong Li committed
216
                num_rays * (TARGET_SAMPLE_BATCH_SIZE / float(compact_counter))
Ruilong Li's avatar
Ruilong Li committed
217
218
            )
            train_dataset.update_num_rays(num_rays)
Ruilong Li's avatar
Ruilong Li committed
219
            alive_ray_mask = acc.squeeze(-1) > 0
Ruilong Li's avatar
Ruilong Li committed
220

Ruilong Li's avatar
Ruilong Li committed
221
            # compute loss
Ruilong Li's avatar
Ruilong Li committed
222
            loss = F.smooth_l1_loss(rgb[alive_ray_mask], pixels[alive_ray_mask])
Ruilong Li's avatar
Ruilong Li committed
223

Ruilong Li's avatar
Ruilong Li committed
224
            optimizer.zero_grad()
Ruilong Li's avatar
Ruilong Li committed
225
226
            # do not unscale it because we are using Adam.
            grad_scaler.scale(loss).backward()
Ruilong Li's avatar
Ruilong Li committed
227
228
            optimizer.step()
            scheduler.step()
Ruilong Li's avatar
Ruilong Li committed
229

Ruilong Li's avatar
Ruilong Li committed
230
            if step % 100 == 0:
Ruilong Li's avatar
Ruilong Li committed
231
                elapsed_time = time.time() - tic
Ruilong Li's avatar
Ruilong Li committed
232
                loss = F.mse_loss(rgb[alive_ray_mask], pixels[alive_ray_mask])
Ruilong Li's avatar
Ruilong Li committed
233
                print(
Ruilong Li's avatar
Ruilong Li committed
234
                    f"elapsed_time={elapsed_time:.2f}s (data={data_time:.2f}s) | {step=} | "
Ruilong Li's avatar
Ruilong Li committed
235
236
                    f"loss={loss:.5f} | "
                    f"alive_ray_mask={alive_ray_mask.long().sum():d} | "
Ruilong Li's avatar
Ruilong Li committed
237
                    f"counter={counter:d} | compact_counter={compact_counter:d} | num_rays={len(pixels):d} |"
Ruilong Li's avatar
Ruilong Li committed
238
239
                )

Ruilong Li's avatar
Ruilong Li committed
240
            # if time.time() - tic > 300:
Ruilong Li's avatar
Ruilong Li committed
241
            if step >= max_steps and step % max_steps == 0 and step > 0:
Ruilong Li's avatar
Ruilong Li committed
242
243
                # evaluation
                radiance_field.eval()
Ruilong Li's avatar
Ruilong Li committed
244

Ruilong Li's avatar
Ruilong Li committed
245
246
247
248
249
250
251
252
                psnrs = []
                with torch.no_grad():
                    for data in tqdm.tqdm(test_dataloader):
                        # generate rays from data and the gt pixel color
                        rays = namedtuple_map(lambda x: x.to(device), data["rays"])
                        pixels = data["pixels"].to(device)
                        render_bkgd = data["color_bkgd"].to(device)
                        # rendering
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
253
                        rgb, acc, _, _ = render_image(
Ruilong Li's avatar
Ruilong Li committed
254
255
256
257
258
259
260
                            radiance_field, rays, render_bkgd, render_step_size
                        )
                        mse = F.mse_loss(rgb, pixels)
                        psnr = -10.0 * torch.log(mse) / np.log(10.0)
                        psnrs.append(psnr.item())
                psnr_avg = sum(psnrs) / len(psnrs)
                print(f"evaluation: {psnr_avg=}")
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
261
262
263
264
                # imageio.imwrite(
                #     "acc_binary_test.png",
                #     ((acc > 0).float().cpu().numpy() * 255).astype(np.uint8),
                # )
Ruilong Li's avatar
Ruilong Li committed
265

Ruilong Li's avatar
Ruilong Li committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
                # psnrs = []
                # train_dataset.training = False
                # with torch.no_grad():
                #     for data in tqdm.tqdm(train_dataloader):
                #         # generate rays from data and the gt pixel color
                #         rays = namedtuple_map(lambda x: x.to(device), data["rays"])
                #         pixels = data["pixels"].to(device)
                #         render_bkgd = data["color_bkgd"].to(device)
                #         # rendering
                #         rgb, acc, _, _ = render_image(
                #             radiance_field, rays, render_bkgd, render_step_size
                #         )
                #         mse = F.mse_loss(rgb, pixels)
                #         psnr = -10.0 * torch.log(mse) / np.log(10.0)
                #         psnrs.append(psnr.item())
                # psnr_avg = sum(psnrs) / len(psnrs)
                # print(f"evaluation on train: {psnr_avg=}")
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
283
284
285
286
287
288
289
290
                # imageio.imwrite(
                #     "acc_binary_train.png",
                #     ((acc > 0).float().cpu().numpy() * 255).astype(np.uint8),
                # )
                # imageio.imwrite(
                #     "rgb_train.png",
                #     (rgb.cpu().numpy() * 255).astype(np.uint8),
                # )
Ruilong Li's avatar
Ruilong Li committed
291
292
                train_dataset.training = True

Ruilong Li's avatar
Ruilong Li committed
293
            if step == max_steps:
Ruilong Li's avatar
Ruilong Li committed
294
                print("training stops")
Ruilong Li's avatar
Ruilong Li committed
295
                exit()
Ruilong Li's avatar
Ruilong Li committed
296
            tic_data = time.time()
Ruilong Li's avatar
Ruilong Li committed
297

Ruilong Li's avatar
Ruilong Li committed
298
            step += 1