trainval.py 7.63 KB
Newer Older
Ruilong Li's avatar
Ruilong Li committed
1
2
3
4
5
6
7
import math
import time

import numpy as np
import torch
import torch.nn.functional as F
import tqdm
Ruilong Li's avatar
Ruilong Li committed
8
from datasets.nerf_synthetic import SubjectLoader, namedtuple_map
Ruilong Li's avatar
Ruilong Li committed
9
10
11
12
from radiance_fields.ngp import NGPradianceField

from nerfacc import OccupancyField, volumetric_rendering

Ruilong Li's avatar
Ruilong Li committed
13
TARGET_SAMPLE_BATCH_SIZE = 1 << 16
Ruilong Li's avatar
Ruilong Li committed
14

Ruilong Li's avatar
Ruilong Li committed
15
16

def render_image(radiance_field, rays, render_bkgd, render_step_size):
Ruilong Li's avatar
Ruilong Li committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
    """Render the pixels of an image.

    Args:
      radiance_field: the radiance field of nerf.
      rays: a `Rays` namedtuple, the rays to be rendered.

    Returns:
      rgb: torch.tensor, rendered color image.
      depth: torch.tensor, rendered depth image.
      acc: torch.tensor, rendered accumulated weights per pixel.
    """
    rays_shape = rays.origins.shape
    if len(rays_shape) == 3:
        height, width, _ = rays_shape
        num_rays = height * width
        rays = namedtuple_map(lambda r: r.reshape([num_rays] + list(r.shape[2:])), rays)
    else:
        num_rays, _ = rays_shape
    results = []
36
    chunk = torch.iinfo(torch.int32).max if radiance_field.training else 81920
Ruilong Li's avatar
Ruilong Li committed
37
38
39
    render_est_n_samples = (
        TARGET_SAMPLE_BATCH_SIZE * 16 if radiance_field.training else None
    )
Ruilong Li's avatar
Ruilong Li committed
40
41
    for i in range(0, num_rays, chunk):
        chunk_rays = namedtuple_map(lambda r: r[i : i + chunk], rays)
Ruilong Li's avatar
Ruilong Li committed
42
        chunk_results = volumetric_rendering(
Ruilong Li's avatar
Ruilong Li committed
43
44
45
46
47
48
49
50
            query_fn=radiance_field.forward,  # {x, dir} -> {rgb, density}
            rays_o=chunk_rays.origins,
            rays_d=chunk_rays.viewdirs,
            scene_aabb=occ_field.aabb,
            scene_occ_binary=occ_field.occ_grid_binary,
            scene_resolution=occ_field.resolution,
            render_bkgd=render_bkgd,
            render_n_samples=render_n_samples,
Ruilong Li's avatar
Ruilong Li committed
51
            render_est_n_samples=render_est_n_samples,  # memory control: wrost case
Ruilong Li's avatar
Ruilong Li committed
52
            render_step_size=render_step_size,
Ruilong Li's avatar
Ruilong Li committed
53
        )
Ruilong Li's avatar
Ruilong Li committed
54
55
56
57
        results.append(chunk_results)
    rgb, depth, acc, alive_ray_mask, counter, compact_counter = [
        torch.cat(r, dim=0) for r in zip(*results)
    ]
Ruilong Li's avatar
Ruilong Li committed
58
59
60
61
    return (
        rgb.view((*rays_shape[:-1], -1)),
        depth.view((*rays_shape[:-1], -1)),
        acc.view((*rays_shape[:-1], -1)),
Ruilong Li's avatar
readme  
Ruilong Li committed
62
        alive_ray_mask.view(*rays_shape[:-1]),
Ruilong Li's avatar
Ruilong Li committed
63
64
        counter.sum(),
        compact_counter.sum(),
Ruilong Li's avatar
Ruilong Li committed
65
66
67
68
    )


if __name__ == "__main__":
69
    torch.manual_seed(42)
Ruilong Li's avatar
Ruilong Li committed
70
71

    device = "cuda:0"
Ruilong Li's avatar
Ruilong Li committed
72
    scene = "lego"
Ruilong Li's avatar
Ruilong Li committed
73
74
75

    # setup dataset
    train_dataset = SubjectLoader(
Ruilong Li's avatar
Ruilong Li committed
76
        subject_id=scene,
Ruilong Li's avatar
Ruilong Li committed
77
        root_fp="/home/ruilongli/data/nerf_synthetic/",
Ruilong Li's avatar
wtf  
Ruilong Li committed
78
        split="trainval",
Ruilong Li's avatar
Ruilong Li committed
79
        num_rays=4096,
Ruilong Li's avatar
Ruilong Li committed
80
    )
Ruilong Li's avatar
Ruilong Li committed
81
82
83
84

    train_dataset.images = train_dataset.images.to(device)
    train_dataset.camtoworlds = train_dataset.camtoworlds.to(device)
    train_dataset.K = train_dataset.K.to(device)
Ruilong Li's avatar
Ruilong Li committed
85
86
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
Ruilong Li's avatar
Ruilong Li committed
87
        num_workers=0,
Ruilong Li's avatar
Ruilong Li committed
88
        batch_size=None,
Ruilong Li's avatar
Ruilong Li committed
89
        # persistent_workers=True,
Ruilong Li's avatar
Ruilong Li committed
90
        shuffle=True,
Ruilong Li's avatar
Ruilong Li committed
91
    )
Ruilong Li's avatar
Ruilong Li committed
92

Ruilong Li's avatar
Ruilong Li committed
93
    test_dataset = SubjectLoader(
Ruilong Li's avatar
Ruilong Li committed
94
        subject_id=scene,
Ruilong Li's avatar
Ruilong Li committed
95
        root_fp="/home/ruilongli/data/nerf_synthetic/",
Ruilong Li's avatar
Ruilong Li committed
96
        split="test",
Ruilong Li's avatar
Ruilong Li committed
97
98
        num_rays=None,
    )
Ruilong Li's avatar
Ruilong Li committed
99
100
101
    test_dataset.images = test_dataset.images.to(device)
    test_dataset.camtoworlds = test_dataset.camtoworlds.to(device)
    test_dataset.K = test_dataset.K.to(device)
Ruilong Li's avatar
Ruilong Li committed
102
103
    test_dataloader = torch.utils.data.DataLoader(
        test_dataset,
Ruilong Li's avatar
Ruilong Li committed
104
        num_workers=0,
Ruilong Li's avatar
Ruilong Li committed
105
        batch_size=None,
Ruilong Li's avatar
Ruilong Li committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    )

    # setup the scene bounding box.
    scene_aabb = torch.tensor([-1.5, -1.5, -1.5, 1.5, 1.5, 1.5])

    # setup the scene radiance field. Assume you have a NeRF model and
    # it has following functions:
    # - query_density(): {x} -> {density}
    # - forward(): {x, dirs} -> {rgb, density}
    radiance_field = NGPradianceField(aabb=scene_aabb).to(device)

    # setup some rendering settings
    render_n_samples = 1024
    render_step_size = (
        (scene_aabb[3:] - scene_aabb[:3]).max() * math.sqrt(3) / render_n_samples
Ruilong Li's avatar
Ruilong Li committed
121
    ).item()
Ruilong Li's avatar
Ruilong Li committed
122

Ruilong Li's avatar
Ruilong Li committed
123
124
125
126
127
128
129
    optimizer = torch.optim.Adam(
        radiance_field.parameters(),
        lr=1e-2,
        # betas=(0.9, 0.99),
        eps=1e-15,
        # weight_decay=1e-6,
    )
Ruilong Li's avatar
Ruilong Li committed
130
131
132
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer, milestones=[20000, 30000], gamma=0.1
    )
Ruilong Li's avatar
Ruilong Li committed
133
134
135
136
137
138
139
140
141
142
143

    # setup occupancy field with eval function
    def occ_eval_fn(x: torch.Tensor) -> torch.Tensor:
        """Evaluate occupancy given positions.

        Args:
            x: positions with shape (N, 3).
        Returns:
            occupancy values with shape (N, 1).
        """
        density_after_activation = radiance_field.query_density(x)
Ruilong Li's avatar
Ruilong Li committed
144
        # those two are similar when density is small.
145
        # occupancy = 1.0 - torch.exp(-density_after_activation * render_step_size)
Ruilong Li's avatar
Ruilong Li committed
146
147
148
149
150
151
152
153
154
155
        occupancy = density_after_activation * render_step_size
        return occupancy

    occ_field = OccupancyField(
        occ_eval_fn=occ_eval_fn, aabb=scene_aabb, resolution=128
    ).to(device)

    # training
    step = 0
    tic = time.time()
Ruilong Li's avatar
Ruilong Li committed
156
157
    data_time = 0
    tic_data = time.time()
Ruilong Li's avatar
wtf  
Ruilong Li committed
158

Ruilong Li's avatar
Ruilong Li committed
159
    for epoch in range(10000000):
Ruilong Li's avatar
Ruilong Li committed
160
161
        for i in range(len(train_dataset)):
            data = train_dataset[i]
Ruilong Li's avatar
Ruilong Li committed
162
            data_time += time.time() - tic_data
Ruilong Li's avatar
Ruilong Li committed
163
164

            # generate rays from data and the gt pixel color
Ruilong Li's avatar
Ruilong Li committed
165
166
167
168
169
            # rays = namedtuple_map(lambda x: x.to(device), data["rays"])
            # pixels = data["pixels"].to(device)
            render_bkgd = data["color_bkgd"]
            rays = data["rays"]
            pixels = data["pixels"]
Ruilong Li's avatar
Ruilong Li committed
170

Ruilong Li's avatar
Ruilong Li committed
171
172
            # update occupancy grid
            occ_field.every_n_step(step)
Ruilong Li's avatar
wtf  
Ruilong Li committed
173

Ruilong Li's avatar
Ruilong Li committed
174
175
            rgb, depth, acc, alive_ray_mask, counter, compact_counter = render_image(
                radiance_field, rays, render_bkgd, render_step_size
Ruilong Li's avatar
readme  
Ruilong Li committed
176
            )
Ruilong Li's avatar
Ruilong Li committed
177
178
179
180
181
            num_rays = len(pixels)
            num_rays = int(
                num_rays * (TARGET_SAMPLE_BATCH_SIZE / float(compact_counter.item()))
            )
            train_dataset.update_num_rays(num_rays)
Ruilong Li's avatar
Ruilong Li committed
182

Ruilong Li's avatar
Ruilong Li committed
183
184
            # compute loss
            loss = F.mse_loss(rgb[alive_ray_mask], pixels[alive_ray_mask])
Ruilong Li's avatar
Ruilong Li committed
185

Ruilong Li's avatar
Ruilong Li committed
186
187
188
189
            optimizer.zero_grad()
            (loss * 128).backward()
            optimizer.step()
            scheduler.step()
Ruilong Li's avatar
Ruilong Li committed
190

Ruilong Li's avatar
Ruilong Li committed
191
            if step % 100 == 0:
Ruilong Li's avatar
Ruilong Li committed
192
193
                elapsed_time = time.time() - tic
                print(
Ruilong Li's avatar
Ruilong Li committed
194
                    f"elapsed_time={elapsed_time:.2f}s (data={data_time:.2f}s) | {step=} | "
Ruilong Li's avatar
Ruilong Li committed
195
196
197
                    f"loss={loss:.5f} | "
                    f"alive_ray_mask={alive_ray_mask.long().sum():d} | "
                    f"counter={counter.item():d} | compact_counter={compact_counter.item():d} | num_rays={len(pixels):d} "
Ruilong Li's avatar
Ruilong Li committed
198
199
                )

Ruilong Li's avatar
Ruilong Li committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
            # if time.time() - tic > 300:
            if step == 35_000:
                print("training stops")
                # evaluation
                radiance_field.eval()
                psnrs = []
                with torch.no_grad():
                    for data in tqdm.tqdm(test_dataloader):
                        # generate rays from data and the gt pixel color
                        rays = namedtuple_map(lambda x: x.to(device), data["rays"])
                        pixels = data["pixels"].to(device)
                        render_bkgd = data["color_bkgd"].to(device)
                        # rendering
                        rgb, depth, acc, alive_ray_mask, _, _ = render_image(
                            radiance_field, rays, render_bkgd, render_step_size
                        )
                        mse = F.mse_loss(rgb, pixels)
                        psnr = -10.0 * torch.log(mse) / np.log(10.0)
                        psnrs.append(psnr.item())
                psnr_avg = sum(psnrs) / len(psnrs)
                print(f"evaluation: {psnr_avg=}")
                exit()
Ruilong Li's avatar
Ruilong Li committed
222
            tic_data = time.time()
Ruilong Li's avatar
Ruilong Li committed
223

Ruilong Li's avatar
Ruilong Li committed
224
            step += 1