"vscode:/vscode.git/clone" did not exist on "90d4ea9d71e82a54723ce969126e68acf5303d8e"
trainval.py 7.93 KB
Newer Older
Ruilong Li's avatar
Ruilong Li committed
1
2
3
4
5
6
7
import math
import time

import numpy as np
import torch
import torch.nn.functional as F
import tqdm
Ruilong Li's avatar
Ruilong Li committed
8
from datasets.nerf_synthetic import SubjectLoader, namedtuple_map
Ruilong Li's avatar
Ruilong Li committed
9
10
11
12
from radiance_fields.ngp import NGPradianceField

from nerfacc import OccupancyField, volumetric_rendering

Ruilong Li's avatar
Ruilong Li committed
13
TARGET_SAMPLE_BATCH_SIZE = 1 << 16
Ruilong Li's avatar
Ruilong Li committed
14

Ruilong Li's avatar
Ruilong Li committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# import tqdm

# device = "cuda:0"
# radiance_field = NGPradianceField(aabb=[0, 0, 0, 1, 1, 1]).to(device)
# positions = torch.rand((TARGET_SAMPLE_BATCH_SIZE, 3), device=device)
# directions = torch.rand(positions.shape, device=device)
# optimizer = torch.optim.Adam(
#     radiance_field.parameters(),
#     lr=1e-10,
#     # betas=(0.9, 0.99),
#     eps=1e-15,
#     # weight_decay=1e-6,
# )
# for _ in tqdm.tqdm(range(1000)):
#     rgbs, sigmas = radiance_field(positions, directions)
#     loss = rgbs.mean()
#     optimizer.zero_grad()
#     loss.backward()
#     optimizer.step()
# exit()

Ruilong Li's avatar
Ruilong Li committed
36
37

def render_image(radiance_field, rays, render_bkgd, render_step_size):
Ruilong Li's avatar
Ruilong Li committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    """Render the pixels of an image.

    Args:
      radiance_field: the radiance field of nerf.
      rays: a `Rays` namedtuple, the rays to be rendered.

    Returns:
      rgb: torch.tensor, rendered color image.
      depth: torch.tensor, rendered depth image.
      acc: torch.tensor, rendered accumulated weights per pixel.
    """
    rays_shape = rays.origins.shape
    if len(rays_shape) == 3:
        height, width, _ = rays_shape
        num_rays = height * width
        rays = namedtuple_map(lambda r: r.reshape([num_rays] + list(r.shape[2:])), rays)
    else:
        num_rays, _ = rays_shape
    results = []
57
    chunk = torch.iinfo(torch.int32).max if radiance_field.training else 81920
Ruilong Li's avatar
Ruilong Li committed
58
59
    for i in range(0, num_rays, chunk):
        chunk_rays = namedtuple_map(lambda r: r[i : i + chunk], rays)
Ruilong Li's avatar
Ruilong Li committed
60
        chunk_results = volumetric_rendering(
Ruilong Li's avatar
Ruilong Li committed
61
62
63
64
65
66
67
            query_fn=radiance_field.forward,  # {x, dir} -> {rgb, density}
            rays_o=chunk_rays.origins,
            rays_d=chunk_rays.viewdirs,
            scene_aabb=occ_field.aabb,
            scene_occ_binary=occ_field.occ_grid_binary,
            scene_resolution=occ_field.resolution,
            render_bkgd=render_bkgd,
Ruilong Li's avatar
Ruilong Li committed
68
            render_step_size=render_step_size,
Ruilong Li's avatar
Ruilong Li committed
69
        )
Ruilong Li's avatar
Ruilong Li committed
70
        results.append(chunk_results)
Ruilong Li's avatar
Ruilong Li committed
71
    rgb, depth, acc, counter, compact_counter = [
Ruilong Li's avatar
Ruilong Li committed
72
73
        torch.cat(r, dim=0) for r in zip(*results)
    ]
Ruilong Li's avatar
Ruilong Li committed
74
75
76
77
    return (
        rgb.view((*rays_shape[:-1], -1)),
        depth.view((*rays_shape[:-1], -1)),
        acc.view((*rays_shape[:-1], -1)),
Ruilong Li's avatar
Ruilong Li committed
78
79
        counter.sum(),
        compact_counter.sum(),
Ruilong Li's avatar
Ruilong Li committed
80
81
82
83
    )


if __name__ == "__main__":
84
    torch.manual_seed(42)
Ruilong Li's avatar
Ruilong Li committed
85
86

    device = "cuda:0"
Ruilong Li's avatar
Ruilong Li committed
87
    scene = "lego"
Ruilong Li's avatar
Ruilong Li committed
88
89
90

    # setup dataset
    train_dataset = SubjectLoader(
Ruilong Li's avatar
Ruilong Li committed
91
        subject_id=scene,
Ruilong Li's avatar
Ruilong Li committed
92
        root_fp="/home/ruilongli/data/nerf_synthetic/",
Ruilong Li's avatar
wtf  
Ruilong Li committed
93
        split="trainval",
Ruilong Li's avatar
Ruilong Li committed
94
        num_rays=1024,
Ruilong Li's avatar
Ruilong Li committed
95
    )
Ruilong Li's avatar
Ruilong Li committed
96
97
98
99

    train_dataset.images = train_dataset.images.to(device)
    train_dataset.camtoworlds = train_dataset.camtoworlds.to(device)
    train_dataset.K = train_dataset.K.to(device)
Ruilong Li's avatar
Ruilong Li committed
100
101
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
Ruilong Li's avatar
Ruilong Li committed
102
        num_workers=0,
Ruilong Li's avatar
Ruilong Li committed
103
        batch_size=None,
Ruilong Li's avatar
Ruilong Li committed
104
        # persistent_workers=True,
Ruilong Li's avatar
Ruilong Li committed
105
        shuffle=True,
Ruilong Li's avatar
Ruilong Li committed
106
    )
Ruilong Li's avatar
Ruilong Li committed
107

Ruilong Li's avatar
Ruilong Li committed
108
    test_dataset = SubjectLoader(
Ruilong Li's avatar
Ruilong Li committed
109
        subject_id=scene,
Ruilong Li's avatar
Ruilong Li committed
110
        root_fp="/home/ruilongli/data/nerf_synthetic/",
Ruilong Li's avatar
Ruilong Li committed
111
        split="test",
Ruilong Li's avatar
Ruilong Li committed
112
113
        num_rays=None,
    )
Ruilong Li's avatar
Ruilong Li committed
114
115
116
    test_dataset.images = test_dataset.images.to(device)
    test_dataset.camtoworlds = test_dataset.camtoworlds.to(device)
    test_dataset.K = test_dataset.K.to(device)
Ruilong Li's avatar
Ruilong Li committed
117
118
    test_dataloader = torch.utils.data.DataLoader(
        test_dataset,
Ruilong Li's avatar
Ruilong Li committed
119
        num_workers=0,
Ruilong Li's avatar
Ruilong Li committed
120
        batch_size=None,
Ruilong Li's avatar
Ruilong Li committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    )

    # setup the scene bounding box.
    scene_aabb = torch.tensor([-1.5, -1.5, -1.5, 1.5, 1.5, 1.5])

    # setup the scene radiance field. Assume you have a NeRF model and
    # it has following functions:
    # - query_density(): {x} -> {density}
    # - forward(): {x, dirs} -> {rgb, density}
    radiance_field = NGPradianceField(aabb=scene_aabb).to(device)

    # setup some rendering settings
    render_n_samples = 1024
    render_step_size = (
        (scene_aabb[3:] - scene_aabb[:3]).max() * math.sqrt(3) / render_n_samples
Ruilong Li's avatar
Ruilong Li committed
136
    ).item()
Ruilong Li's avatar
Ruilong Li committed
137

Ruilong Li's avatar
Ruilong Li committed
138
139
140
141
142
143
144
    optimizer = torch.optim.Adam(
        radiance_field.parameters(),
        lr=1e-2,
        # betas=(0.9, 0.99),
        eps=1e-15,
        # weight_decay=1e-6,
    )
Ruilong Li's avatar
Ruilong Li committed
145
146
147
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer, milestones=[20000, 30000], gamma=0.1
    )
Ruilong Li's avatar
Ruilong Li committed
148
149
150
151
152
153
154
155
156
157
158

    # setup occupancy field with eval function
    def occ_eval_fn(x: torch.Tensor) -> torch.Tensor:
        """Evaluate occupancy given positions.

        Args:
            x: positions with shape (N, 3).
        Returns:
            occupancy values with shape (N, 1).
        """
        density_after_activation = radiance_field.query_density(x)
Ruilong Li's avatar
Ruilong Li committed
159
        # those two are similar when density is small.
160
        # occupancy = 1.0 - torch.exp(-density_after_activation * render_step_size)
Ruilong Li's avatar
Ruilong Li committed
161
162
163
164
165
166
167
168
169
170
        occupancy = density_after_activation * render_step_size
        return occupancy

    occ_field = OccupancyField(
        occ_eval_fn=occ_eval_fn, aabb=scene_aabb, resolution=128
    ).to(device)

    # training
    step = 0
    tic = time.time()
Ruilong Li's avatar
Ruilong Li committed
171
172
    data_time = 0
    tic_data = time.time()
Ruilong Li's avatar
wtf  
Ruilong Li committed
173

Ruilong Li's avatar
Ruilong Li committed
174
    for epoch in range(10000000):
Ruilong Li's avatar
Ruilong Li committed
175
176
        for i in range(len(train_dataset)):
            data = train_dataset[i]
Ruilong Li's avatar
Ruilong Li committed
177
            data_time += time.time() - tic_data
Ruilong Li's avatar
Ruilong Li committed
178
179

            # generate rays from data and the gt pixel color
Ruilong Li's avatar
Ruilong Li committed
180
181
182
183
184
            # rays = namedtuple_map(lambda x: x.to(device), data["rays"])
            # pixels = data["pixels"].to(device)
            render_bkgd = data["color_bkgd"]
            rays = data["rays"]
            pixels = data["pixels"]
Ruilong Li's avatar
Ruilong Li committed
185

Ruilong Li's avatar
Ruilong Li committed
186
187
            # update occupancy grid
            occ_field.every_n_step(step)
Ruilong Li's avatar
wtf  
Ruilong Li committed
188

Ruilong Li's avatar
Ruilong Li committed
189
            rgb, depth, acc, counter, compact_counter = render_image(
Ruilong Li's avatar
Ruilong Li committed
190
                radiance_field, rays, render_bkgd, render_step_size
Ruilong Li's avatar
readme  
Ruilong Li committed
191
            )
Ruilong Li's avatar
Ruilong Li committed
192
193
194
195
196
            num_rays = len(pixels)
            num_rays = int(
                num_rays * (TARGET_SAMPLE_BATCH_SIZE / float(compact_counter.item()))
            )
            train_dataset.update_num_rays(num_rays)
Ruilong Li's avatar
Ruilong Li committed
197
            alive_ray_mask = acc.squeeze(-1) > 0
Ruilong Li's avatar
Ruilong Li committed
198

Ruilong Li's avatar
Ruilong Li committed
199
200
            # compute loss
            loss = F.mse_loss(rgb[alive_ray_mask], pixels[alive_ray_mask])
Ruilong Li's avatar
Ruilong Li committed
201

Ruilong Li's avatar
Ruilong Li committed
202
203
204
205
            optimizer.zero_grad()
            (loss * 128).backward()
            optimizer.step()
            scheduler.step()
Ruilong Li's avatar
Ruilong Li committed
206

Ruilong Li's avatar
Ruilong Li committed
207
            if step % 100 == 0:
Ruilong Li's avatar
Ruilong Li committed
208
209
                elapsed_time = time.time() - tic
                print(
Ruilong Li's avatar
Ruilong Li committed
210
                    f"elapsed_time={elapsed_time:.2f}s (data={data_time:.2f}s) | {step=} | "
Ruilong Li's avatar
Ruilong Li committed
211
212
213
                    f"loss={loss:.5f} | "
                    f"alive_ray_mask={alive_ray_mask.long().sum():d} | "
                    f"counter={counter.item():d} | compact_counter={compact_counter.item():d} | num_rays={len(pixels):d} "
Ruilong Li's avatar
Ruilong Li committed
214
215
                )

Ruilong Li's avatar
Ruilong Li committed
216
217
218
219
220
221
222
223
224
225
226
227
228
            # if time.time() - tic > 300:
            if step == 35_000:
                print("training stops")
                # evaluation
                radiance_field.eval()
                psnrs = []
                with torch.no_grad():
                    for data in tqdm.tqdm(test_dataloader):
                        # generate rays from data and the gt pixel color
                        rays = namedtuple_map(lambda x: x.to(device), data["rays"])
                        pixels = data["pixels"].to(device)
                        render_bkgd = data["color_bkgd"].to(device)
                        # rendering
Ruilong Li's avatar
Ruilong Li committed
229
                        rgb, depth, acc, _, _ = render_image(
Ruilong Li's avatar
Ruilong Li committed
230
231
232
233
234
235
236
237
                            radiance_field, rays, render_bkgd, render_step_size
                        )
                        mse = F.mse_loss(rgb, pixels)
                        psnr = -10.0 * torch.log(mse) / np.log(10.0)
                        psnrs.append(psnr.item())
                psnr_avg = sum(psnrs) / len(psnrs)
                print(f"evaluation: {psnr_avg=}")
                exit()
Ruilong Li's avatar
Ruilong Li committed
238
            tic_data = time.time()
Ruilong Li's avatar
Ruilong Li committed
239

Ruilong Li's avatar
Ruilong Li committed
240
            step += 1