trainval.py 7.31 KB
Newer Older
Ruilong Li's avatar
Ruilong Li committed
1
2
3
4
5
6
7
import math
import time

import numpy as np
import torch
import torch.nn.functional as F
import tqdm
Ruilong Li's avatar
Ruilong Li committed
8
from datasets.nerf_synthetic import SubjectLoader, namedtuple_map
Ruilong Li's avatar
Ruilong Li committed
9
10
11
12
13
from radiance_fields.ngp import NGPradianceField

from nerfacc import OccupancyField, volumetric_rendering


Ruilong Li's avatar
readme  
Ruilong Li committed
14
def render_image(radiance_field, rays, render_bkgd):
Ruilong Li's avatar
Ruilong Li committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
    """Render the pixels of an image.

    Args:
      radiance_field: the radiance field of nerf.
      rays: a `Rays` namedtuple, the rays to be rendered.

    Returns:
      rgb: torch.tensor, rendered color image.
      depth: torch.tensor, rendered depth image.
      acc: torch.tensor, rendered accumulated weights per pixel.
    """
    rays_shape = rays.origins.shape
    if len(rays_shape) == 3:
        height, width, _ = rays_shape
        num_rays = height * width
        rays = namedtuple_map(lambda r: r.reshape([num_rays] + list(r.shape[2:])), rays)
    else:
        num_rays, _ = rays_shape
    results = []
34
    chunk = torch.iinfo(torch.int32).max if radiance_field.training else 81920
Ruilong Li's avatar
Ruilong Li committed
35
36
    for i in range(0, num_rays, chunk):
        chunk_rays = namedtuple_map(lambda r: r[i : i + chunk], rays)
Ruilong Li's avatar
readme  
Ruilong Li committed
37
        chunk_color, chunk_depth, chunk_weight, alive_ray_mask, = volumetric_rendering(
Ruilong Li's avatar
Ruilong Li committed
38
39
40
41
42
43
44
45
46
            query_fn=radiance_field.forward,  # {x, dir} -> {rgb, density}
            rays_o=chunk_rays.origins,
            rays_d=chunk_rays.viewdirs,
            scene_aabb=occ_field.aabb,
            scene_occ_binary=occ_field.occ_grid_binary,
            scene_resolution=occ_field.resolution,
            render_bkgd=render_bkgd,
            render_n_samples=render_n_samples,
        )
Ruilong Li's avatar
readme  
Ruilong Li committed
47
48
        results.append([chunk_color, chunk_depth, chunk_weight, alive_ray_mask])
    rgb, depth, acc, alive_ray_mask = [torch.cat(r, dim=0) for r in zip(*results)]
Ruilong Li's avatar
Ruilong Li committed
49
50
51
52
    return (
        rgb.view((*rays_shape[:-1], -1)),
        depth.view((*rays_shape[:-1], -1)),
        acc.view((*rays_shape[:-1], -1)),
Ruilong Li's avatar
readme  
Ruilong Li committed
53
        alive_ray_mask.view(*rays_shape[:-1]),
Ruilong Li's avatar
Ruilong Li committed
54
55
56
57
    )


if __name__ == "__main__":
58
    torch.manual_seed(42)
Ruilong Li's avatar
Ruilong Li committed
59
60
61
62
63
64
65

    device = "cuda:0"

    # setup dataset
    train_dataset = SubjectLoader(
        subject_id="lego",
        root_fp="/home/ruilongli/data/nerf_synthetic/",
Ruilong Li's avatar
Ruilong Li committed
66
        split="trainval",
Ruilong Li's avatar
Ruilong Li committed
67
68
        num_rays=8192,
    )
Ruilong Li's avatar
Ruilong Li committed
69
70
71
    # train_dataset.images = train_dataset.images.to(device)
    # train_dataset.camtoworlds = train_dataset.camtoworlds.to(device)
    # train_dataset.K = train_dataset.K.to(device)
Ruilong Li's avatar
Ruilong Li committed
72
73
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
Ruilong Li's avatar
Ruilong Li committed
74
        num_workers=4,
Ruilong Li's avatar
Ruilong Li committed
75
76
77
        batch_size=None,
        persistent_workers=True,
        shuffle=True,
Ruilong Li's avatar
Ruilong Li committed
78
    )
Ruilong Li's avatar
Ruilong Li committed
79

Ruilong Li's avatar
Ruilong Li committed
80
    test_dataset = SubjectLoader(
Ruilong Li's avatar
Ruilong Li committed
81
82
        subject_id="lego",
        root_fp="/home/ruilongli/data/nerf_synthetic/",
Ruilong Li's avatar
Ruilong Li committed
83
        split="test",
Ruilong Li's avatar
Ruilong Li committed
84
85
        num_rays=None,
    )
Ruilong Li's avatar
Ruilong Li committed
86
87
88
    # test_dataset.images = test_dataset.images.to(device)
    # test_dataset.camtoworlds = test_dataset.camtoworlds.to(device)
    # test_dataset.K = test_dataset.K.to(device)
Ruilong Li's avatar
Ruilong Li committed
89
90
    test_dataloader = torch.utils.data.DataLoader(
        test_dataset,
Ruilong Li's avatar
Ruilong Li committed
91
92
        num_workers=4,
        batch_size=None,
Ruilong Li's avatar
Ruilong Li committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
    )

    # setup the scene bounding box.
    scene_aabb = torch.tensor([-1.5, -1.5, -1.5, 1.5, 1.5, 1.5])

    # setup the scene radiance field. Assume you have a NeRF model and
    # it has following functions:
    # - query_density(): {x} -> {density}
    # - forward(): {x, dirs} -> {rgb, density}
    radiance_field = NGPradianceField(aabb=scene_aabb).to(device)

    # setup some rendering settings
    render_n_samples = 1024
    render_step_size = (
        (scene_aabb[3:] - scene_aabb[:3]).max() * math.sqrt(3) / render_n_samples
    )

    optimizer = torch.optim.Adam(radiance_field.parameters(), lr=3e-3, eps=1e-15)
Ruilong Li's avatar
Ruilong Li committed
111
112
113
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer, milestones=[20000, 30000], gamma=0.1
    )
Ruilong Li's avatar
Ruilong Li committed
114
115
116
117
118
119
120
121
122
123
124

    # setup occupancy field with eval function
    def occ_eval_fn(x: torch.Tensor) -> torch.Tensor:
        """Evaluate occupancy given positions.

        Args:
            x: positions with shape (N, 3).
        Returns:
            occupancy values with shape (N, 1).
        """
        density_after_activation = radiance_field.query_density(x)
Ruilong Li's avatar
Ruilong Li committed
125
        # those two are similar when density is small.
126
        # occupancy = 1.0 - torch.exp(-density_after_activation * render_step_size)
Ruilong Li's avatar
Ruilong Li committed
127
128
129
130
131
132
133
134
135
136
        occupancy = density_after_activation * render_step_size
        return occupancy

    occ_field = OccupancyField(
        occ_eval_fn=occ_eval_fn, aabb=scene_aabb, resolution=128
    ).to(device)

    # training
    step = 0
    tic = time.time()
Ruilong Li's avatar
Ruilong Li committed
137
138
139
    data_time = 0
    tic_data = time.time()
    for epoch in range(300):
Ruilong Li's avatar
Ruilong Li committed
140
        for data in train_dataloader:
Ruilong Li's avatar
Ruilong Li committed
141
            data_time += time.time() - tic_data
Ruilong Li's avatar
Ruilong Li committed
142
143
144
145
146
147
148
149
150
151
152
153
154
            step += 1
            if step > 30_000:
                print("training stops")
                exit()

            # generate rays from data and the gt pixel color
            rays = namedtuple_map(lambda x: x.to(device), data["rays"])
            pixels = data["pixels"].to(device)
            render_bkgd = data["color_bkgd"].to(device)

            # update occupancy grid
            occ_field.every_n_step(step)

Ruilong Li's avatar
readme  
Ruilong Li committed
155
156
157
            rgb, depth, acc, alive_ray_mask = render_image(
                radiance_field, rays, render_bkgd
            )
Ruilong Li's avatar
Ruilong Li committed
158
159
160
161
162
163
164

            # compute loss
            loss = F.mse_loss(rgb, pixels)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
Ruilong Li's avatar
Ruilong Li committed
165
            scheduler.step()
Ruilong Li's avatar
Ruilong Li committed
166
167
168
169

            if step % 50 == 0:
                elapsed_time = time.time() - tic
                print(
Ruilong Li's avatar
Ruilong Li committed
170
                    f"elapsed_time={elapsed_time:.2f}s (data={data_time:.2f}s) | {step=} | loss={loss:.5f}"
Ruilong Li's avatar
Ruilong Li committed
171
172
173
174
175
176
177
                )

            if step % 30_000 == 0 and step > 0:
                # evaluation
                radiance_field.eval()
                psnrs = []
                with torch.no_grad():
Ruilong Li's avatar
Ruilong Li committed
178
                    for data in tqdm.tqdm(test_dataloader):
Ruilong Li's avatar
Ruilong Li committed
179
180
181
182
183
                        # generate rays from data and the gt pixel color
                        rays = namedtuple_map(lambda x: x.to(device), data["rays"])
                        pixels = data["pixels"].to(device)
                        render_bkgd = data["color_bkgd"].to(device)
                        # rendering
Ruilong Li's avatar
readme  
Ruilong Li committed
184
                        rgb, depth, acc, alive_ray_mask = render_image(
Ruilong Li's avatar
Ruilong Li committed
185
186
187
188
189
190
191
                            radiance_field, rays, render_bkgd
                        )
                        mse = F.mse_loss(rgb, pixels)
                        psnr = -10.0 * torch.log(mse) / np.log(10.0)
                        psnrs.append(psnr.item())
                psnr_avg = sum(psnrs) / len(psnrs)
                print(f"evaluation: {psnr_avg=}")
Ruilong Li's avatar
Ruilong Li committed
192
            tic_data = time.time()
Ruilong Li's avatar
Ruilong Li committed
193

Ruilong Li's avatar
Ruilong Li committed
194
# "train"
Ruilong Li's avatar
Ruilong Li committed
195
196
# elapsed_time=298.27s (data=60.08s) | step=30000 | loss=0.00026
# evaluation: psnr_avg=33.305334663391115 (6.42 it/s)
Ruilong Li's avatar
Ruilong Li committed
197

Ruilong Li's avatar
Ruilong Li committed
198
199
200
201
202
203
204
205
# "train" batch_over_images=True
# elapsed_time=335.21s (data=68.99s) | step=30000 | loss=0.00028
# evaluation: psnr_avg=33.74970862388611 (6.23 it/s)

# "train" batch_over_images=True, schedule
# elapsed_time=296.30s (data=54.38s) | step=30000 | loss=0.00022
# evaluation: psnr_avg=34.3978275680542 (6.22 it/s)

Ruilong Li's avatar
Ruilong Li committed
206
# "trainval"
Ruilong Li's avatar
Ruilong Li committed
207
208
# elapsed_time=289.94s (data=51.99s) | step=30000 | loss=0.00021
# evaluation: psnr_avg=34.44980221748352 (6.61 it/s)
Ruilong Li's avatar
Ruilong Li committed
209
210
211
212

# "trainval" batch_over_images=True, schedule
# elapsed_time=291.42s (data=52.82s) | step=30000 | loss=0.00020
# evaluation: psnr_avg=35.41630497932434 (6.40 it/s)