trainval.py 8.18 KB
Newer Older
Ruilong Li's avatar
Ruilong Li committed
1
2
3
4
5
6
7
import math
import time

import numpy as np
import torch
import torch.nn.functional as F
import tqdm
Ruilong Li's avatar
Ruilong Li committed
8
from datasets.nerf_synthetic import SubjectLoader, namedtuple_map
Ruilong Li's avatar
Ruilong Li committed
9
10
11
12
13
from radiance_fields.ngp import NGPradianceField

from nerfacc import OccupancyField, volumetric_rendering


Ruilong Li's avatar
readme  
Ruilong Li committed
14
def render_image(radiance_field, rays, render_bkgd):
Ruilong Li's avatar
Ruilong Li committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
    """Render the pixels of an image.

    Args:
      radiance_field: the radiance field of nerf.
      rays: a `Rays` namedtuple, the rays to be rendered.

    Returns:
      rgb: torch.tensor, rendered color image.
      depth: torch.tensor, rendered depth image.
      acc: torch.tensor, rendered accumulated weights per pixel.
    """
    rays_shape = rays.origins.shape
    if len(rays_shape) == 3:
        height, width, _ = rays_shape
        num_rays = height * width
        rays = namedtuple_map(lambda r: r.reshape([num_rays] + list(r.shape[2:])), rays)
    else:
        num_rays, _ = rays_shape
    results = []
34
    chunk = torch.iinfo(torch.int32).max if radiance_field.training else 81920
Ruilong Li's avatar
Ruilong Li committed
35
    render_est_n_samples = 2**16 * 16 if radiance_field.training else None
Ruilong Li's avatar
Ruilong Li committed
36
37
    for i in range(0, num_rays, chunk):
        chunk_rays = namedtuple_map(lambda r: r[i : i + chunk], rays)
Ruilong Li's avatar
Ruilong Li committed
38
        chunk_results = volumetric_rendering(
Ruilong Li's avatar
Ruilong Li committed
39
40
41
42
43
44
45
46
            query_fn=radiance_field.forward,  # {x, dir} -> {rgb, density}
            rays_o=chunk_rays.origins,
            rays_d=chunk_rays.viewdirs,
            scene_aabb=occ_field.aabb,
            scene_occ_binary=occ_field.occ_grid_binary,
            scene_resolution=occ_field.resolution,
            render_bkgd=render_bkgd,
            render_n_samples=render_n_samples,
Ruilong Li's avatar
Ruilong Li committed
47
            render_est_n_samples=render_est_n_samples,  # memory control: wrost case
Ruilong Li's avatar
Ruilong Li committed
48
        )
Ruilong Li's avatar
Ruilong Li committed
49
50
51
52
        results.append(chunk_results)
    rgb, depth, acc, alive_ray_mask, counter, compact_counter = [
        torch.cat(r, dim=0) for r in zip(*results)
    ]
Ruilong Li's avatar
Ruilong Li committed
53
54
55
56
    return (
        rgb.view((*rays_shape[:-1], -1)),
        depth.view((*rays_shape[:-1], -1)),
        acc.view((*rays_shape[:-1], -1)),
Ruilong Li's avatar
readme  
Ruilong Li committed
57
        alive_ray_mask.view(*rays_shape[:-1]),
Ruilong Li's avatar
Ruilong Li committed
58
59
        counter.sum(),
        compact_counter.sum(),
Ruilong Li's avatar
Ruilong Li committed
60
61
62
63
    )


if __name__ == "__main__":
64
    torch.manual_seed(42)
Ruilong Li's avatar
Ruilong Li committed
65
66
67
68
69
70
71

    device = "cuda:0"

    # setup dataset
    train_dataset = SubjectLoader(
        subject_id="lego",
        root_fp="/home/ruilongli/data/nerf_synthetic/",
Ruilong Li's avatar
Ruilong Li committed
72
73
        split="train",
        num_rays=4096,
Ruilong Li's avatar
Ruilong Li committed
74
    )
Ruilong Li's avatar
Ruilong Li committed
75
76
77
78

    train_dataset.images = train_dataset.images.to(device)
    train_dataset.camtoworlds = train_dataset.camtoworlds.to(device)
    train_dataset.K = train_dataset.K.to(device)
Ruilong Li's avatar
Ruilong Li committed
79
80
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
Ruilong Li's avatar
Ruilong Li committed
81
        num_workers=0,
Ruilong Li's avatar
Ruilong Li committed
82
        batch_size=None,
Ruilong Li's avatar
Ruilong Li committed
83
        # persistent_workers=True,
Ruilong Li's avatar
Ruilong Li committed
84
        shuffle=True,
Ruilong Li's avatar
Ruilong Li committed
85
    )
Ruilong Li's avatar
Ruilong Li committed
86

Ruilong Li's avatar
Ruilong Li committed
87
    test_dataset = SubjectLoader(
Ruilong Li's avatar
Ruilong Li committed
88
89
        subject_id="lego",
        root_fp="/home/ruilongli/data/nerf_synthetic/",
Ruilong Li's avatar
Ruilong Li committed
90
        split="test",
Ruilong Li's avatar
Ruilong Li committed
91
92
        num_rays=None,
    )
Ruilong Li's avatar
Ruilong Li committed
93
94
95
    test_dataset.images = test_dataset.images.to(device)
    test_dataset.camtoworlds = test_dataset.camtoworlds.to(device)
    test_dataset.K = test_dataset.K.to(device)
Ruilong Li's avatar
Ruilong Li committed
96
97
    test_dataloader = torch.utils.data.DataLoader(
        test_dataset,
Ruilong Li's avatar
Ruilong Li committed
98
        num_workers=0,
Ruilong Li's avatar
Ruilong Li committed
99
        batch_size=None,
Ruilong Li's avatar
Ruilong Li committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    )

    # setup the scene bounding box.
    scene_aabb = torch.tensor([-1.5, -1.5, -1.5, 1.5, 1.5, 1.5])

    # setup the scene radiance field. Assume you have a NeRF model and
    # it has following functions:
    # - query_density(): {x} -> {density}
    # - forward(): {x, dirs} -> {rgb, density}
    radiance_field = NGPradianceField(aabb=scene_aabb).to(device)

    # setup some rendering settings
    render_n_samples = 1024
    render_step_size = (
        (scene_aabb[3:] - scene_aabb[:3]).max() * math.sqrt(3) / render_n_samples
    )

Ruilong Li's avatar
Ruilong Li committed
117
118
119
120
121
122
123
    optimizer = torch.optim.Adam(
        radiance_field.parameters(),
        lr=1e-2,
        # betas=(0.9, 0.99),
        eps=1e-15,
        # weight_decay=1e-6,
    )
Ruilong Li's avatar
Ruilong Li committed
124
125
126
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer, milestones=[20000, 30000], gamma=0.1
    )
Ruilong Li's avatar
Ruilong Li committed
127
128
129
130
131
132
133
134
135
136
137

    # setup occupancy field with eval function
    def occ_eval_fn(x: torch.Tensor) -> torch.Tensor:
        """Evaluate occupancy given positions.

        Args:
            x: positions with shape (N, 3).
        Returns:
            occupancy values with shape (N, 1).
        """
        density_after_activation = radiance_field.query_density(x)
Ruilong Li's avatar
Ruilong Li committed
138
        # those two are similar when density is small.
139
        # occupancy = 1.0 - torch.exp(-density_after_activation * render_step_size)
Ruilong Li's avatar
Ruilong Li committed
140
141
142
143
144
145
146
147
148
149
        occupancy = density_after_activation * render_step_size
        return occupancy

    occ_field = OccupancyField(
        occ_eval_fn=occ_eval_fn, aabb=scene_aabb, resolution=128
    ).to(device)

    # training
    step = 0
    tic = time.time()
Ruilong Li's avatar
Ruilong Li committed
150
151
    data_time = 0
    tic_data = time.time()
Ruilong Li's avatar
Ruilong Li committed
152
153
154
    for epoch in range(400):
        for i in range(len(train_dataset)):
            data = train_dataset[i]
Ruilong Li's avatar
Ruilong Li committed
155
            data_time += time.time() - tic_data
Ruilong Li's avatar
Ruilong Li committed
156
            if step > 35_000:
Ruilong Li's avatar
Ruilong Li committed
157
158
159
160
161
162
163
164
165
166
167
                print("training stops")
                exit()

            # generate rays from data and the gt pixel color
            rays = namedtuple_map(lambda x: x.to(device), data["rays"])
            pixels = data["pixels"].to(device)
            render_bkgd = data["color_bkgd"].to(device)

            # update occupancy grid
            occ_field.every_n_step(step)

Ruilong Li's avatar
Ruilong Li committed
168
            rgb, depth, acc, alive_ray_mask, counter, compact_counter = render_image(
Ruilong Li's avatar
readme  
Ruilong Li committed
169
170
                radiance_field, rays, render_bkgd
            )
Ruilong Li's avatar
Ruilong Li committed
171
172
173
174
            num_rays = len(pixels)
            num_rays = int(num_rays * (2**16 / float(compact_counter)))
            num_rays = int(math.ceil(num_rays / 128.0) * 128)
            train_dataset.update_num_rays(num_rays)
Ruilong Li's avatar
Ruilong Li committed
175
176

            # compute loss
Ruilong Li's avatar
Ruilong Li committed
177
            loss = F.mse_loss(rgb[alive_ray_mask], pixels[alive_ray_mask])
Ruilong Li's avatar
Ruilong Li committed
178
179

            optimizer.zero_grad()
Ruilong Li's avatar
Ruilong Li committed
180
            (loss * 128.0).backward()
Ruilong Li's avatar
Ruilong Li committed
181
            optimizer.step()
Ruilong Li's avatar
Ruilong Li committed
182
            scheduler.step()
Ruilong Li's avatar
Ruilong Li committed
183
184
185
186

            if step % 50 == 0:
                elapsed_time = time.time() - tic
                print(
Ruilong Li's avatar
Ruilong Li committed
187
188
189
190
                    f"elapsed_time={elapsed_time:.2f}s (data={data_time:.2f}s) | {step=} | "
                    f"loss={loss:.5f} | "
                    f"alive_ray_mask={alive_ray_mask.long().sum():d} | "
                    f"counter={counter:d} | compact_counter={compact_counter:d} | num_rays={len(pixels):d} "
Ruilong Li's avatar
Ruilong Li committed
191
192
                )

Ruilong Li's avatar
Ruilong Li committed
193
            if step % 35_000 == 0 and step > 0:
Ruilong Li's avatar
Ruilong Li committed
194
195
196
197
                # evaluation
                radiance_field.eval()
                psnrs = []
                with torch.no_grad():
Ruilong Li's avatar
Ruilong Li committed
198
                    for data in tqdm.tqdm(test_dataloader):
Ruilong Li's avatar
Ruilong Li committed
199
200
201
202
203
                        # generate rays from data and the gt pixel color
                        rays = namedtuple_map(lambda x: x.to(device), data["rays"])
                        pixels = data["pixels"].to(device)
                        render_bkgd = data["color_bkgd"].to(device)
                        # rendering
Ruilong Li's avatar
Ruilong Li committed
204
                        rgb, depth, acc, alive_ray_mask, _, _ = render_image(
Ruilong Li's avatar
Ruilong Li committed
205
206
207
208
209
210
211
                            radiance_field, rays, render_bkgd
                        )
                        mse = F.mse_loss(rgb, pixels)
                        psnr = -10.0 * torch.log(mse) / np.log(10.0)
                        psnrs.append(psnr.item())
                psnr_avg = sum(psnrs) / len(psnrs)
                print(f"evaluation: {psnr_avg=}")
Ruilong Li's avatar
Ruilong Li committed
212
            tic_data = time.time()
Ruilong Li's avatar
Ruilong Li committed
213

Ruilong Li's avatar
Ruilong Li committed
214
215
            step += 1

Ruilong Li's avatar
Ruilong Li committed
216
# "train"
Ruilong Li's avatar
Ruilong Li committed
217
218
# elapsed_time=298.27s (data=60.08s) | step=30000 | loss=0.00026
# evaluation: psnr_avg=33.305334663391115 (6.42 it/s)
Ruilong Li's avatar
Ruilong Li committed
219

Ruilong Li's avatar
Ruilong Li committed
220
221
222
223
224
225
226
227
# "train" batch_over_images=True
# elapsed_time=335.21s (data=68.99s) | step=30000 | loss=0.00028
# evaluation: psnr_avg=33.74970862388611 (6.23 it/s)

# "train" batch_over_images=True, schedule
# elapsed_time=296.30s (data=54.38s) | step=30000 | loss=0.00022
# evaluation: psnr_avg=34.3978275680542 (6.22 it/s)

Ruilong Li's avatar
Ruilong Li committed
228
# "trainval"
Ruilong Li's avatar
Ruilong Li committed
229
230
# elapsed_time=289.94s (data=51.99s) | step=30000 | loss=0.00021
# evaluation: psnr_avg=34.44980221748352 (6.61 it/s)
Ruilong Li's avatar
Ruilong Li committed
231
232
233
234

# "trainval" batch_over_images=True, schedule
# elapsed_time=291.42s (data=52.82s) | step=30000 | loss=0.00020
# evaluation: psnr_avg=35.41630497932434 (6.40 it/s)
Ruilong Li's avatar
Ruilong Li committed
235
236
237
238


# "trainval" batch_over_images=True, schedule 2**18
# evaluation: psnr_avg=36.24 (6.75 it/s)