trainval.py 9.77 KB
Newer Older
Ruilong Li's avatar
Ruilong Li committed
1
2
3
4
5
6
7
import math
import time

import numpy as np
import torch
import torch.nn.functional as F
import tqdm
Ruilong Li's avatar
Ruilong Li committed
8
from datasets.nerf_synthetic import SubjectLoader, namedtuple_map
Ruilong Li's avatar
Ruilong Li committed
9
10
11
12
from radiance_fields.ngp import NGPradianceField

from nerfacc import OccupancyField, volumetric_rendering

Ruilong Li's avatar
Ruilong Li committed
13
TARGET_SAMPLE_BATCH_SIZE = 1 << 18
Ruilong Li's avatar
Ruilong Li committed
14

Ruilong Li's avatar
Ruilong Li committed
15
16

def render_image(radiance_field, rays, render_bkgd, render_step_size):
Ruilong Li's avatar
Ruilong Li committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
    """Render the pixels of an image.

    Args:
      radiance_field: the radiance field of nerf.
      rays: a `Rays` namedtuple, the rays to be rendered.

    Returns:
      rgb: torch.tensor, rendered color image.
      depth: torch.tensor, rendered depth image.
      acc: torch.tensor, rendered accumulated weights per pixel.
    """
    rays_shape = rays.origins.shape
    if len(rays_shape) == 3:
        height, width, _ = rays_shape
        num_rays = height * width
        rays = namedtuple_map(lambda r: r.reshape([num_rays] + list(r.shape[2:])), rays)
    else:
        num_rays, _ = rays_shape
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
35
36
37
38
39
40
41
42
43
44
45
46
47

    def sigma_fn(frustum_origins, frustum_dirs, frustum_starts, frustum_ends):
        positions = (
            frustum_origins + frustum_dirs * (frustum_starts + frustum_ends) / 2.0
        )
        return radiance_field.query_density(positions)

    def sigma_rgb_fn(frustum_origins, frustum_dirs, frustum_starts, frustum_ends):
        positions = (
            frustum_origins + frustum_dirs * (frustum_starts + frustum_ends) / 2.0
        )
        return radiance_field(positions, frustum_dirs)

Ruilong Li's avatar
Ruilong Li committed
48
    results = []
49
    chunk = torch.iinfo(torch.int32).max if radiance_field.training else 81920
Ruilong Li's avatar
Ruilong Li committed
50
51
    for i in range(0, num_rays, chunk):
        chunk_rays = namedtuple_map(lambda r: r[i : i + chunk], rays)
Ruilong Li's avatar
Ruilong Li committed
52
        chunk_results = volumetric_rendering(
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
53
54
            sigma_fn=sigma_fn,
            sigma_rgb_fn=sigma_rgb_fn,
Ruilong Li's avatar
Ruilong Li committed
55
56
57
58
59
60
            rays_o=chunk_rays.origins,
            rays_d=chunk_rays.viewdirs,
            scene_aabb=occ_field.aabb,
            scene_occ_binary=occ_field.occ_grid_binary,
            scene_resolution=occ_field.resolution,
            render_bkgd=render_bkgd,
Ruilong Li's avatar
Ruilong Li committed
61
            render_step_size=render_step_size,
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
62
            near_plane=0.0,
63
            stratified=radiance_field.training,
Ruilong Li's avatar
Ruilong Li committed
64
        )
Ruilong Li's avatar
Ruilong Li committed
65
        results.append(chunk_results)
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
66
    colors, opacities, n_marching_samples, n_rendering_samples = [
Ruilong Li's avatar
Ruilong Li committed
67
68
        torch.cat(r, dim=0) if isinstance(r[0], torch.Tensor) else r
        for r in zip(*results)
Ruilong Li's avatar
Ruilong Li committed
69
    ]
Ruilong Li's avatar
Ruilong Li committed
70
    return (
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
71
72
73
74
        colors.view((*rays_shape[:-1], -1)),
        opacities.view((*rays_shape[:-1], -1)),
        sum(n_marching_samples),
        sum(n_rendering_samples),
Ruilong Li's avatar
Ruilong Li committed
75
76
77
78
    )


if __name__ == "__main__":
79
    torch.manual_seed(42)
Ruilong Li's avatar
Ruilong Li committed
80
81

    device = "cuda:0"
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
82
    scene = "lego"
Ruilong Li's avatar
Ruilong Li committed
83
84
85

    # setup dataset
    train_dataset = SubjectLoader(
Ruilong Li's avatar
Ruilong Li committed
86
        subject_id=scene,
Ruilong Li's avatar
Ruilong Li committed
87
        root_fp="/home/ruilongli/data/nerf_synthetic/",
Ruilong Li's avatar
Ruilong Li committed
88
        split="trainval",
Ruilong Li's avatar
Ruilong Li committed
89
        num_rays=1024,
Ruilong Li's avatar
Ruilong Li committed
90
        # color_bkgd_aug="random",
Ruilong Li's avatar
Ruilong Li committed
91
    )
Ruilong Li's avatar
Ruilong Li committed
92
93
94
95

    train_dataset.images = train_dataset.images.to(device)
    train_dataset.camtoworlds = train_dataset.camtoworlds.to(device)
    train_dataset.K = train_dataset.K.to(device)
Ruilong Li's avatar
Ruilong Li committed
96
97
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
Ruilong Li's avatar
Ruilong Li committed
98
        num_workers=0,
Ruilong Li's avatar
Ruilong Li committed
99
        batch_size=None,
Ruilong Li's avatar
Ruilong Li committed
100
        # persistent_workers=True,
Ruilong Li's avatar
Ruilong Li committed
101
        shuffle=True,
Ruilong Li's avatar
Ruilong Li committed
102
    )
Ruilong Li's avatar
Ruilong Li committed
103

Ruilong Li's avatar
Ruilong Li committed
104
    test_dataset = SubjectLoader(
Ruilong Li's avatar
Ruilong Li committed
105
        subject_id=scene,
Ruilong Li's avatar
Ruilong Li committed
106
        root_fp="/home/ruilongli/data/nerf_synthetic/",
Ruilong Li's avatar
Ruilong Li committed
107
        split="test",
Ruilong Li's avatar
Ruilong Li committed
108
109
        num_rays=None,
    )
Ruilong Li's avatar
Ruilong Li committed
110
111
112
    test_dataset.images = test_dataset.images.to(device)
    test_dataset.camtoworlds = test_dataset.camtoworlds.to(device)
    test_dataset.K = test_dataset.K.to(device)
Ruilong Li's avatar
Ruilong Li committed
113
114
    test_dataloader = torch.utils.data.DataLoader(
        test_dataset,
Ruilong Li's avatar
Ruilong Li committed
115
        num_workers=0,
Ruilong Li's avatar
Ruilong Li committed
116
        batch_size=None,
Ruilong Li's avatar
Ruilong Li committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    )

    # setup the scene bounding box.
    scene_aabb = torch.tensor([-1.5, -1.5, -1.5, 1.5, 1.5, 1.5])

    # setup the scene radiance field. Assume you have a NeRF model and
    # it has following functions:
    # - query_density(): {x} -> {density}
    # - forward(): {x, dirs} -> {rgb, density}
    radiance_field = NGPradianceField(aabb=scene_aabb).to(device)

    # setup some rendering settings
    render_n_samples = 1024
    render_step_size = (
        (scene_aabb[3:] - scene_aabb[:3]).max() * math.sqrt(3) / render_n_samples
Ruilong Li's avatar
Ruilong Li committed
132
    ).item()
Ruilong Li's avatar
Ruilong Li committed
133

Ruilong Li's avatar
Ruilong Li committed
134
135
136
    optimizer = torch.optim.Adam(
        radiance_field.parameters(),
        lr=1e-2,
Ruilong Li's avatar
Ruilong Li committed
137
        # betas=(0.9, 0.99),
Ruilong Li's avatar
Ruilong Li committed
138
        eps=1e-15,
Ruilong Li's avatar
Ruilong Li committed
139
        # weight_decay=1e-6,
Ruilong Li's avatar
Ruilong Li committed
140
    )
Ruilong Li's avatar
Ruilong Li committed
141
    scheduler = torch.optim.lr_scheduler.MultiStepLR(
Ruilong Li's avatar
Ruilong Li committed
142
        optimizer, milestones=[10000, 15000, 18000], gamma=0.33
Ruilong Li's avatar
Ruilong Li committed
143
    )
Ruilong Li's avatar
Ruilong Li committed
144
145
146
147
148
149
150
151
152
153
154

    # setup occupancy field with eval function
    def occ_eval_fn(x: torch.Tensor) -> torch.Tensor:
        """Evaluate occupancy given positions.

        Args:
            x: positions with shape (N, 3).
        Returns:
            occupancy values with shape (N, 1).
        """
        density_after_activation = radiance_field.query_density(x)
Ruilong Li's avatar
Ruilong Li committed
155
        # those two are similar when density is small.
156
        # occupancy = 1.0 - torch.exp(-density_after_activation * render_step_size)
Ruilong Li's avatar
Ruilong Li committed
157
158
159
160
161
162
163
164
165
166
        occupancy = density_after_activation * render_step_size
        return occupancy

    occ_field = OccupancyField(
        occ_eval_fn=occ_eval_fn, aabb=scene_aabb, resolution=128
    ).to(device)

    # training
    step = 0
    tic = time.time()
Ruilong Li's avatar
Ruilong Li committed
167
168
    data_time = 0
    tic_data = time.time()
Ruilong Li's avatar
wtf  
Ruilong Li committed
169

Ruilong Li's avatar
Ruilong Li committed
170
171
    # Scaling up the gradients for Adam
    grad_scaler = torch.cuda.amp.GradScaler(2**10)
Ruilong Li's avatar
Ruilong Li committed
172
    for epoch in range(10000000):
Ruilong Li's avatar
Ruilong Li committed
173
        for i in range(len(train_dataset)):
Ruilong Li's avatar
Ruilong Li committed
174
            radiance_field.train()
Ruilong Li's avatar
Ruilong Li committed
175
            data = train_dataset[i]
Ruilong Li's avatar
Ruilong Li committed
176
            data_time += time.time() - tic_data
Ruilong Li's avatar
Ruilong Li committed
177
178

            # generate rays from data and the gt pixel color
Ruilong Li's avatar
Ruilong Li committed
179
180
181
182
183
            # rays = namedtuple_map(lambda x: x.to(device), data["rays"])
            # pixels = data["pixels"].to(device)
            render_bkgd = data["color_bkgd"]
            rays = data["rays"]
            pixels = data["pixels"]
Ruilong Li's avatar
Ruilong Li committed
184

Ruilong Li's avatar
Ruilong Li committed
185
186
            # update occupancy grid
            occ_field.every_n_step(step)
Ruilong Li's avatar
wtf  
Ruilong Li committed
187

Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
188
            rgb, acc, counter, compact_counter = render_image(
Ruilong Li's avatar
Ruilong Li committed
189
                radiance_field, rays, render_bkgd, render_step_size
Ruilong Li's avatar
readme  
Ruilong Li committed
190
            )
Ruilong Li's avatar
Ruilong Li committed
191
192
            num_rays = len(pixels)
            num_rays = int(
Ruilong Li's avatar
Ruilong Li committed
193
                num_rays * (TARGET_SAMPLE_BATCH_SIZE / float(compact_counter))
Ruilong Li's avatar
Ruilong Li committed
194
195
            )
            train_dataset.update_num_rays(num_rays)
Ruilong Li's avatar
Ruilong Li committed
196
            alive_ray_mask = acc.squeeze(-1) > 0
Ruilong Li's avatar
Ruilong Li committed
197

Ruilong Li's avatar
Ruilong Li committed
198
            # compute loss
Ruilong Li's avatar
Ruilong Li committed
199
            loss = F.smooth_l1_loss(rgb[alive_ray_mask], pixels[alive_ray_mask])
Ruilong Li's avatar
Ruilong Li committed
200

Ruilong Li's avatar
Ruilong Li committed
201
            optimizer.zero_grad()
Ruilong Li's avatar
Ruilong Li committed
202
203
            # do not unscale it because we are using Adam.
            grad_scaler.scale(loss).backward()
Ruilong Li's avatar
Ruilong Li committed
204
205
            optimizer.step()
            scheduler.step()
Ruilong Li's avatar
Ruilong Li committed
206

Ruilong Li's avatar
Ruilong Li committed
207
            if step % 100 == 0:
Ruilong Li's avatar
Ruilong Li committed
208
                elapsed_time = time.time() - tic
Ruilong Li's avatar
Ruilong Li committed
209
                loss = F.mse_loss(rgb[alive_ray_mask], pixels[alive_ray_mask])
Ruilong Li's avatar
Ruilong Li committed
210
                print(
Ruilong Li's avatar
Ruilong Li committed
211
                    f"elapsed_time={elapsed_time:.2f}s (data={data_time:.2f}s) | {step=} | "
Ruilong Li's avatar
Ruilong Li committed
212
213
                    f"loss={loss:.5f} | "
                    f"alive_ray_mask={alive_ray_mask.long().sum():d} | "
Ruilong Li's avatar
Ruilong Li committed
214
                    f"counter={counter:d} | compact_counter={compact_counter:d} | num_rays={len(pixels):d} |"
Ruilong Li's avatar
Ruilong Li committed
215
216
                )

Ruilong Li's avatar
Ruilong Li committed
217
            # if time.time() - tic > 300:
Ruilong Li's avatar
Ruilong Li committed
218
            if step >= 20_000 and step % 5000 == 0 and step > 0:
Ruilong Li's avatar
Ruilong Li committed
219
220
                # evaluation
                radiance_field.eval()
Ruilong Li's avatar
Ruilong Li committed
221

Ruilong Li's avatar
Ruilong Li committed
222
223
224
225
226
227
228
229
                psnrs = []
                with torch.no_grad():
                    for data in tqdm.tqdm(test_dataloader):
                        # generate rays from data and the gt pixel color
                        rays = namedtuple_map(lambda x: x.to(device), data["rays"])
                        pixels = data["pixels"].to(device)
                        render_bkgd = data["color_bkgd"].to(device)
                        # rendering
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
230
                        rgb, acc, _, _ = render_image(
Ruilong Li's avatar
Ruilong Li committed
231
232
233
234
235
236
237
                            radiance_field, rays, render_bkgd, render_step_size
                        )
                        mse = F.mse_loss(rgb, pixels)
                        psnr = -10.0 * torch.log(mse) / np.log(10.0)
                        psnrs.append(psnr.item())
                psnr_avg = sum(psnrs) / len(psnrs)
                print(f"evaluation: {psnr_avg=}")
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
238
239
240
241
                # imageio.imwrite(
                #     "acc_binary_test.png",
                #     ((acc > 0).float().cpu().numpy() * 255).astype(np.uint8),
                # )
Ruilong Li's avatar
Ruilong Li committed
242
243
244
245
246
247
248
249
250
251

                psnrs = []
                train_dataset.training = False
                with torch.no_grad():
                    for data in tqdm.tqdm(train_dataloader):
                        # generate rays from data and the gt pixel color
                        rays = namedtuple_map(lambda x: x.to(device), data["rays"])
                        pixels = data["pixels"].to(device)
                        render_bkgd = data["color_bkgd"].to(device)
                        # rendering
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
252
                        rgb, acc, _, _ = render_image(
Ruilong Li's avatar
Ruilong Li committed
253
254
255
256
257
258
259
                            radiance_field, rays, render_bkgd, render_step_size
                        )
                        mse = F.mse_loss(rgb, pixels)
                        psnr = -10.0 * torch.log(mse) / np.log(10.0)
                        psnrs.append(psnr.item())
                psnr_avg = sum(psnrs) / len(psnrs)
                print(f"evaluation on train: {psnr_avg=}")
Ruilong Li(李瑞龙)'s avatar
Ruilong Li(李瑞龙) committed
260
261
262
263
264
265
266
267
                # imageio.imwrite(
                #     "acc_binary_train.png",
                #     ((acc > 0).float().cpu().numpy() * 255).astype(np.uint8),
                # )
                # imageio.imwrite(
                #     "rgb_train.png",
                #     (rgb.cpu().numpy() * 255).astype(np.uint8),
                # )
Ruilong Li's avatar
Ruilong Li committed
268
269
270
271
                train_dataset.training = True

            if step == 20_000:
                print("training stops")
Ruilong Li's avatar
Ruilong Li committed
272
                exit()
Ruilong Li's avatar
Ruilong Li committed
273
            tic_data = time.time()
Ruilong Li's avatar
Ruilong Li committed
274

Ruilong Li's avatar
Ruilong Li committed
275
            step += 1