create_data.py 13.3 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
import argparse
zhangwenwei's avatar
zhangwenwei committed
3
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
4

5
6
7
8
9
from tools.dataset_converters import indoor_converter as indoor
from tools.dataset_converters import kitti_converter as kitti
from tools.dataset_converters import lyft_converter as lyft_converter
from tools.dataset_converters import nuscenes_converter as nuscenes_converter
from tools.dataset_converters.create_gt_database import (
Wenbo Yu's avatar
Wenbo Yu committed
10
    GTDatabaseCreater, create_groundtruth_database)
VVsssssk's avatar
VVsssssk committed
11
from tools.dataset_converters.update_infos_to_v2 import update_pkl_infos
zhangwenwei's avatar
zhangwenwei committed
12
13


14
15
16
17
18
def kitti_data_prep(root_path,
                    info_prefix,
                    version,
                    out_dir,
                    with_plane=False):
wangtai's avatar
wangtai committed
19
20
21
22
23
24
25
26
27
28
    """Prepare data related to Kitti dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        out_dir (str): Output directory of the groundtruth database info.
29
30
        with_plane (bool, optional): Whether to use plane information.
            Default: False.
wangtai's avatar
wangtai committed
31
    """
32
    kitti.create_kitti_info_file(root_path, info_prefix, with_plane)
zhangwenwei's avatar
zhangwenwei committed
33
    kitti.create_reduced_point_cloud(root_path, info_prefix)
34

VVsssssk's avatar
VVsssssk committed
35
36
37
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
    info_trainval_path = osp.join(out_dir, f'{info_prefix}_infos_trainval.pkl')
38
39
40
    kitti.export_2d_annotation(root_path, info_train_path)
    kitti.export_2d_annotation(root_path, info_val_path)
    kitti.export_2d_annotation(root_path, info_trainval_path)
VVsssssk's avatar
VVsssssk committed
41
42
43
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_val_path)
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_trainval_path)
zhangwenwei's avatar
zhangwenwei committed
44
45
46
47
    create_groundtruth_database(
        'KittiDataset',
        root_path,
        info_prefix,
VVsssssk's avatar
VVsssssk committed
48
        f'{info_prefix}_infos_train.pkl',
zhangwenwei's avatar
zhangwenwei committed
49
50
51
52
53
54
55
56
57
58
59
        relative_path=False,
        mask_anno_path='instances_train.json',
        with_mask=(version == 'mask'))


def nuscenes_data_prep(root_path,
                       info_prefix,
                       version,
                       dataset_name,
                       out_dir,
                       max_sweeps=10):
wangtai's avatar
wangtai committed
60
61
62
63
64
65
66
67
68
69
70
    """Prepare data related to nuScenes dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        dataset_name (str): The dataset class name.
        out_dir (str): Output directory of the groundtruth database info.
71
72
        max_sweeps (int, optional): Number of input consecutive frames.
            Default: 10
wangtai's avatar
wangtai committed
73
    """
zhangwenwei's avatar
zhangwenwei committed
74
75
76
77
    nuscenes_converter.create_nuscenes_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)

    if version == 'v1.0-test':
VVsssssk's avatar
VVsssssk committed
78
        info_test_path = osp.join(out_dir, f'{info_prefix}_infos_test.pkl')
79
80
        nuscenes_converter.export_2d_annotation(
            root_path, info_test_path, version=version)
VVsssssk's avatar
VVsssssk committed
81
        update_pkl_infos('nuscenes', out_dir=out_dir, pkl_path=info_test_path)
zhangwenwei's avatar
zhangwenwei committed
82
83
        return

VVsssssk's avatar
VVsssssk committed
84
85
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
zhangwenwei's avatar
zhangwenwei committed
86
87
88
89
    nuscenes_converter.export_2d_annotation(
        root_path, info_train_path, version=version)
    nuscenes_converter.export_2d_annotation(
        root_path, info_val_path, version=version)
VVsssssk's avatar
VVsssssk committed
90
91
    update_pkl_infos('nuscenes', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('nuscenes', out_dir=out_dir, pkl_path=info_val_path)
wangtai's avatar
wangtai committed
92
    create_groundtruth_database(dataset_name, root_path, info_prefix,
VVsssssk's avatar
VVsssssk committed
93
                                f'{info_prefix}_infos_train.pkl')
wangtai's avatar
wangtai committed
94
95


96
def lyft_data_prep(root_path, info_prefix, version, max_sweeps=10):
wangtai's avatar
wangtai committed
97
98
    """Prepare data related to Lyft dataset.

99
100
101
    Related data consists of '.pkl' files recording basic infos.
    Although the ground truth database and 2D annotations are not used in
    Lyft, it can also be generated like nuScenes.
wangtai's avatar
wangtai committed
102
103
104
105
106

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
107
108
        max_sweeps (int, optional): Number of input consecutive frames.
            Defaults to 10.
wangtai's avatar
wangtai committed
109
110
111
    """
    lyft_converter.create_lyft_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)
VVsssssk's avatar
VVsssssk committed
112
113
114
115
116
117
118
119
    if version == 'v1.01-test':
        info_test_path = osp.join(root_path, f'{info_prefix}_infos_test.pkl')
        update_pkl_infos('lyft', out_dir=root_path, pkl_path=info_test_path)
    elif version == 'v1.01-train':
        info_train_path = osp.join(root_path, f'{info_prefix}_infos_train.pkl')
        info_val_path = osp.join(root_path, f'{info_prefix}_infos_val.pkl')
        update_pkl_infos('lyft', out_dir=root_path, pkl_path=info_train_path)
        update_pkl_infos('lyft', out_dir=root_path, pkl_path=info_val_path)
wangtai's avatar
wangtai committed
120

zhangwenwei's avatar
zhangwenwei committed
121

liyinhao's avatar
liyinhao committed
122
def scannet_data_prep(root_path, info_prefix, out_dir, workers):
wangtai's avatar
wangtai committed
123
124
125
126
127
128
129
130
    """Prepare the info file for scannet dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
liyinhao's avatar
liyinhao committed
131
132
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
VVsssssk's avatar
VVsssssk committed
133
134
135
136
137
138
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_test_path = osp.join(out_dir, f'{info_prefix}_infos_test.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_test_path)
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_val_path)
139
140


141
142
143
144
145
146
147
148
149
150
151
def s3dis_data_prep(root_path, info_prefix, out_dir, workers):
    """Prepare the info file for s3dis dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
VVsssssk's avatar
VVsssssk committed
152
153
154
155
    splits = [f'Area_{i}' for i in [1, 2, 3, 4, 5, 6]]
    for split in splits:
        filename = osp.join(out_dir, f'{info_prefix}_infos_{split}.pkl')
        update_pkl_infos('s3dis', out_dir=out_dir, pkl_path=filename)
156
157


liyinhao's avatar
liyinhao committed
158
def sunrgbd_data_prep(root_path, info_prefix, out_dir, workers):
wangtai's avatar
wangtai committed
159
160
161
162
163
164
165
166
    """Prepare the info file for sunrgbd dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
liyinhao's avatar
liyinhao committed
167
168
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
VVsssssk's avatar
VVsssssk committed
169
170
171
172
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_val_path)
173
174


Wenwei Zhang's avatar
Wenwei Zhang committed
175
176
177
178
179
180
181
182
183
184
185
186
187
def waymo_data_prep(root_path,
                    info_prefix,
                    version,
                    out_dir,
                    workers,
                    max_sweeps=5):
    """Prepare the info file for waymo dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
188
189
190
        max_sweeps (int, optional): Number of input consecutive frames.
            Default: 5. Here we store pose information of these frames
            for later use.
Wenwei Zhang's avatar
Wenwei Zhang committed
191
    """
192
    from tools.dataset_converters import waymo_converter as waymo
193

194
195
196
    splits = [
        'training', 'validation', 'testing', 'testing_3d_camera_only_detection'
    ]
Wenwei Zhang's avatar
Wenwei Zhang committed
197
198
199
200
201
202
203
204
205
206
207
    for i, split in enumerate(splits):
        load_dir = osp.join(root_path, 'waymo_format', split)
        if split == 'validation':
            save_dir = osp.join(out_dir, 'kitti_format', 'training')
        else:
            save_dir = osp.join(out_dir, 'kitti_format', split)
        converter = waymo.Waymo2KITTI(
            load_dir,
            save_dir,
            prefix=str(i),
            workers=workers,
208
209
            test_mode=(split
                       in ['testing', 'testing_3d_camera_only_detection']))
Wenwei Zhang's avatar
Wenwei Zhang committed
210
211
212
        converter.convert()
    # Generate waymo infos
    out_dir = osp.join(out_dir, 'kitti_format')
213
214
    kitti.create_waymo_info_file(
        out_dir, info_prefix, max_sweeps=max_sweeps, workers=workers)
VVsssssk's avatar
VVsssssk committed
215
216
217
218
219
220
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
    info_trainval_path = osp.join(out_dir, f'{info_prefix}_infos_trainval.pkl')
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_val_path)
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_trainval_path)
221
    GTDatabaseCreater(
Wenwei Zhang's avatar
Wenwei Zhang committed
222
223
224
225
226
        'WaymoDataset',
        out_dir,
        info_prefix,
        f'{out_dir}/{info_prefix}_infos_train.pkl',
        relative_path=False,
227
228
        with_mask=False,
        num_worker=workers).create()
Wenwei Zhang's avatar
Wenwei Zhang committed
229
230


zhangwenwei's avatar
zhangwenwei committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
parser = argparse.ArgumentParser(description='Data converter arg parser')
parser.add_argument('dataset', metavar='kitti', help='name of the dataset')
parser.add_argument(
    '--root-path',
    type=str,
    default='./data/kitti',
    help='specify the root path of dataset')
parser.add_argument(
    '--version',
    type=str,
    default='v1.0',
    required=False,
    help='specify the dataset version, no need for kitti')
parser.add_argument(
    '--max-sweeps',
    type=int,
    default=10,
    required=False,
    help='specify sweeps of lidar per example')
250
251
252
253
parser.add_argument(
    '--with-plane',
    action='store_true',
    help='Whether to use plane information for kitti.')
zhangwenwei's avatar
zhangwenwei committed
254
255
256
257
parser.add_argument(
    '--out-dir',
    type=str,
    default='./data/kitti',
258
    required=False,
zhangwenwei's avatar
zhangwenwei committed
259
260
    help='name of info pkl')
parser.add_argument('--extra-tag', type=str, default='kitti')
liyinhao's avatar
liyinhao committed
261
262
parser.add_argument(
    '--workers', type=int, default=4, help='number of threads to be used')
zhangwenwei's avatar
zhangwenwei committed
263
264
265
args = parser.parse_args()

if __name__ == '__main__':
VVsssssk's avatar
VVsssssk committed
266
267
    from mmdet3d.utils import register_all_modules
    register_all_modules()
zhangwenwei's avatar
zhangwenwei committed
268
269
270
271
272
    if args.dataset == 'kitti':
        kitti_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=args.version,
273
274
            out_dir=args.out_dir,
            with_plane=args.with_plane)
zhangwenwei's avatar
zhangwenwei committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    elif args.dataset == 'nuscenes' and args.version != 'v1.0-mini':
        train_version = f'{args.version}-trainval'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
    elif args.dataset == 'nuscenes' and args.version == 'v1.0-mini':
        train_version = f'{args.version}'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
wangtai's avatar
wangtai committed
301
302
303
304
305
306
307
308
309
310
311
312
313
    elif args.dataset == 'lyft':
        train_version = f'{args.version}-train'
        lyft_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        lyft_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            max_sweeps=args.max_sweeps)
Wenwei Zhang's avatar
Wenwei Zhang committed
314
315
316
317
318
319
320
321
    elif args.dataset == 'waymo':
        waymo_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=args.version,
            out_dir=args.out_dir,
            workers=args.workers,
            max_sweeps=args.max_sweeps)
322
323
324
325
    elif args.dataset == 'scannet':
        scannet_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
liyinhao's avatar
liyinhao committed
326
327
            out_dir=args.out_dir,
            workers=args.workers)
328
329
330
331
332
333
    elif args.dataset == 's3dis':
        s3dis_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            out_dir=args.out_dir,
            workers=args.workers)
334
335
336
337
    elif args.dataset == 'sunrgbd':
        sunrgbd_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
liyinhao's avatar
liyinhao committed
338
339
            out_dir=args.out_dir,
            workers=args.workers)
340
341
    else:
        raise NotImplementedError(f'Don\'t support {args.dataset} dataset.')