transforms_3d.py 66 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import random
3
import warnings
4
5
6

import cv2
import numpy as np
7
from mmcv import is_tuple_of
8
9
from mmcv.transforms import BaseTransform
from mmengine.registry import build_from_cfg
zhangwenwei's avatar
zhangwenwei committed
10

11
from mmdet3d.core import VoxelGenerator
12
13
from mmdet3d.core.bbox import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                               LiDARInstance3DBoxes, box_np_ops)
14
from mmdet3d.core.points import BasePoints
15
from mmdet3d.registry import TRANSFORMS
zhangwenwei's avatar
zhangwenwei committed
16
from mmdet.datasets.pipelines import RandomFlip
zhangwenwei's avatar
zhangwenwei committed
17
18
19
from .data_augment_utils import noise_per_object_v3_


20
@TRANSFORMS.register_module()
21
22
23
24
25
26
27
28
class RandomDropPointsColor(object):
    r"""Randomly set the color of points to all zeros.

    Once this transform is executed, all the points' color will be dropped.
    Refer to `PAConv <https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/
    util/transform.py#L223>`_ for more details.

    Args:
29
        drop_ratio (float, optional): The probability of dropping point colors.
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
            Defaults to 0.2.
    """

    def __init__(self, drop_ratio=0.2):
        assert isinstance(drop_ratio, (int, float)) and 0 <= drop_ratio <= 1, \
            f'invalid drop_ratio value {drop_ratio}'
        self.drop_ratio = drop_ratio

    def __call__(self, input_dict):
        """Call function to drop point colors.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
45
            dict: Results after color dropping,
46
47
48
49
50
51
52
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        assert points.attribute_dims is not None and \
            'color' in points.attribute_dims, \
            'Expect points have color attribute'

53
54
55
56
57
58
59
        # this if-expression is a bit strange
        # `RandomDropPointsColor` is used in training 3D segmentor PAConv
        # we discovered in our experiments that, using
        # `if np.random.rand() > 1.0 - self.drop_ratio` consistently leads to
        # better results than using `if np.random.rand() < self.drop_ratio`
        # so we keep this hack in our codebase
        if np.random.rand() > 1.0 - self.drop_ratio:
60
61
62
63
64
65
66
67
68
69
            points.color = points.color * 0.0
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(drop_ratio={self.drop_ratio})'
        return repr_str


70
@TRANSFORMS.register_module()
zhangwenwei's avatar
zhangwenwei committed
71
72
73
74
75
76
77
78
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

    Args:
zhangwenwei's avatar
zhangwenwei committed
79
80
81
        sync_2d (bool, optional): Whether to apply flip according to the 2D
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
liyinhao's avatar
liyinhao committed
82
            to that of 2D images. Defaults to True.
wuyuefeng's avatar
wuyuefeng committed
83
        flip_ratio_bev_horizontal (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
84
            in horizontal direction. Defaults to 0.0.
wuyuefeng's avatar
wuyuefeng committed
85
        flip_ratio_bev_vertical (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
86
            in vertical direction. Defaults to 0.0.
zhangwenwei's avatar
zhangwenwei committed
87
88
    """

wuyuefeng's avatar
wuyuefeng committed
89
90
91
92
93
94
95
    def __init__(self,
                 sync_2d=True,
                 flip_ratio_bev_horizontal=0.0,
                 flip_ratio_bev_vertical=0.0,
                 **kwargs):
        super(RandomFlip3D, self).__init__(
            flip_ratio=flip_ratio_bev_horizontal, **kwargs)
zhangwenwei's avatar
zhangwenwei committed
96
        self.sync_2d = sync_2d
wuyuefeng's avatar
wuyuefeng committed
97
98
99
100
101
102
103
104
105
106
107
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

    def random_flip_data_3d(self, input_dict, direction='horizontal'):
108
109
110
111
        """Flip 3D data randomly.

        Args:
            input_dict (dict): Result dict from loading pipeline.
112
113
            direction (str, optional): Flip direction.
                Default: 'horizontal'.
114
115

        Returns:
116
            dict: Flipped results, 'points', 'bbox3d_fields' keys are
117
118
                updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
119
        assert direction in ['horizontal', 'vertical']
120
121
122
123
        # for semantic segmentation task, only points will be flipped.
        if 'bbox3d_fields' not in input_dict:
            input_dict['points'].flip(direction)
            return
124
125
126
127
128
        if len(input_dict['bbox3d_fields']) == 0:  # test mode
            input_dict['bbox3d_fields'].append('empty_box3d')
            input_dict['empty_box3d'] = input_dict['box_type_3d'](
                np.array([], dtype=np.float32))
        assert len(input_dict['bbox3d_fields']) == 1
zhangwenwei's avatar
zhangwenwei committed
129
        for key in input_dict['bbox3d_fields']:
130
131
132
133
134
135
136
137
            if 'points' in input_dict:
                input_dict['points'] = input_dict[key].flip(
                    direction, points=input_dict['points'])
            else:
                input_dict[key].flip(direction)
        if 'centers2d' in input_dict:
            assert self.sync_2d is True and direction == 'horizontal', \
                'Only support sync_2d=True and horizontal flip with images'
138
            w = input_dict['ori_shape'][1]
139
140
            input_dict['centers2d'][..., 0] = \
                w - input_dict['centers2d'][..., 0]
141
142
            # need to modify the horizontal position of camera center
            # along u-axis in the image (flip like centers2d)
143
            # ['cam2img'][0][2] = c_u
144
145
            # see more details and examples at
            # https://github.com/open-mmlab/mmdetection3d/pull/744
146
            input_dict['cam2img'][0][2] = w - input_dict['cam2img'][0][2]
zhangwenwei's avatar
zhangwenwei committed
147
148

    def __call__(self, input_dict):
149
        """Call function to flip points, values in the ``bbox3d_fields`` and
150
151
152
153
154
155
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
156
157
            dict: Flipped results, 'flip', 'flip_direction',
                'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added
158
159
                into result dict.
        """
160
        # flip 2D image and its annotations
zhangwenwei's avatar
zhangwenwei committed
161
        super(RandomFlip3D, self).__call__(input_dict)
zhangwenwei's avatar
zhangwenwei committed
162

zhangwenwei's avatar
zhangwenwei committed
163
        if self.sync_2d:
wuyuefeng's avatar
wuyuefeng committed
164
165
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
166
        else:
wuyuefeng's avatar
wuyuefeng committed
167
168
169
170
171
172
173
174
175
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
                ) < self.flip_ratio else False
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

176
177
178
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

wuyuefeng's avatar
wuyuefeng committed
179
180
        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
181
            input_dict['transformation_3d_flow'].extend(['HF'])
wuyuefeng's avatar
wuyuefeng committed
182
183
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
184
            input_dict['transformation_3d_flow'].extend(['VF'])
zhangwenwei's avatar
zhangwenwei committed
185
186
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
187
    def __repr__(self):
188
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
189
        repr_str = self.__class__.__name__
190
        repr_str += f'(sync_2d={self.sync_2d},'
191
        repr_str += f' flip_ratio_bev_vertical={self.flip_ratio_bev_vertical})'
wuyuefeng's avatar
wuyuefeng committed
192
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
193

zhangwenwei's avatar
zhangwenwei committed
194

195
@TRANSFORMS.register_module()
196
197
198
class RandomJitterPoints(object):
    """Randomly jitter point coordinates.

199
    Different from the global translation in ``GlobalRotScaleTrans``, here we
200
201
202
203
        apply different noises to each point in a scene.

    Args:
        jitter_std (list[float]): The standard deviation of jittering noise.
204
205
            This applies random noise to all points in a 3D scene, which is
            sampled from a gaussian distribution whose standard deviation is
206
            set by ``jitter_std``. Defaults to [0.01, 0.01, 0.01]
207
        clip_range (list[float]): Clip the randomly generated jitter
208
209
210
211
            noise into this range. If None is given, don't perform clipping.
            Defaults to [-0.05, 0.05]

    Note:
212
        This transform should only be used in point cloud segmentation tasks
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
            because we don't transform ground-truth bboxes accordingly.
        For similar transform in detection task, please refer to `ObjectNoise`.
    """

    def __init__(self,
                 jitter_std=[0.01, 0.01, 0.01],
                 clip_range=[-0.05, 0.05]):
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(jitter_std, seq_types):
            assert isinstance(jitter_std, (int, float)), \
                f'unsupported jitter_std type {type(jitter_std)}'
            jitter_std = [jitter_std, jitter_std, jitter_std]
        self.jitter_std = jitter_std

        if clip_range is not None:
            if not isinstance(clip_range, seq_types):
                assert isinstance(clip_range, (int, float)), \
                    f'unsupported clip_range type {type(clip_range)}'
                clip_range = [-clip_range, clip_range]
        self.clip_range = clip_range

    def __call__(self, input_dict):
        """Call function to jitter all the points in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
241
            dict: Results after adding noise to each point,
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        jitter_std = np.array(self.jitter_std, dtype=np.float32)
        jitter_noise = \
            np.random.randn(points.shape[0], 3) * jitter_std[None, :]
        if self.clip_range is not None:
            jitter_noise = np.clip(jitter_noise, self.clip_range[0],
                                   self.clip_range[1])

        points.translate(jitter_noise)
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(jitter_std={self.jitter_std},'
        repr_str += f' clip_range={self.clip_range})'
        return repr_str


263
264
@TRANSFORMS.register_module()
class ObjectSample(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
265
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
266

267
268
269
270
271
272
273
274
275
276
    Required Keys:

    - points
    - ann_info
    - gt_bboxes_3d
    - gt_labels_3d
    - img (optional)
    - gt_bboxes (optional)

    Modified Keys:
277

278
279
280
281
282
283
284
285
286
287
    - points
    - gt_bboxes_3d
    - gt_labels_3d
    - img (optional)
    - gt_bboxes (optional)

    Added Keys:

    - plane (optional)

zhangwenwei's avatar
zhangwenwei committed
288
289
290
291
    Args:
        db_sampler (dict): Config dict of the database sampler.
        sample_2d (bool): Whether to also paste 2D image patch to the images
            This should be true when applying multi-modality cut-and-paste.
liyinhao's avatar
liyinhao committed
292
            Defaults to False.
293
        use_ground_plane (bool): Whether to use ground plane to adjust the
294
            3D labels.
zhangwenwei's avatar
zhangwenwei committed
295
    """
zhangwenwei's avatar
zhangwenwei committed
296

297
298
299
300
    def __init__(self,
                 db_sampler: dict,
                 sample_2d: bool = False,
                 use_ground_plane: bool = False):
zhangwenwei's avatar
zhangwenwei committed
301
302
303
304
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
305
        self.db_sampler = build_from_cfg(db_sampler, TRANSFORMS)
306
        self.use_ground_plane = use_ground_plane
zhangwenwei's avatar
zhangwenwei committed
307
308

    @staticmethod
309
310
    def remove_points_in_boxes(points: BasePoints,
                               boxes: np.ndarray) -> np.ndarray:
311
312
313
        """Remove the points in the sampled bounding boxes.

        Args:
314
            points (:obj:`BasePoints`): Input point cloud array.
315
316
317
318
319
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
320
        masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes)
zhangwenwei's avatar
zhangwenwei committed
321
322
323
        points = points[np.logical_not(masks.any(-1))]
        return points

324
325
    def transform(self, input_dict: dict) -> dict:
        """Transform function to sample ground truth objects to the data.
326
327
328
329
330

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
331
332
            dict: Results after object sampling augmentation,
                'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated
333
334
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
335
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
336
337
        gt_labels_3d = input_dict['gt_labels_3d']

338
339
340
341
342
        if self.use_ground_plane and 'plane' in input_dict['ann_info']:
            ground_plane = input_dict['ann_info']['plane']
            input_dict['plane'] = ground_plane
        else:
            ground_plane = None
zhangwenwei's avatar
zhangwenwei committed
343
344
345
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
346
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
347
348
349
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
350
351
352
353
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
354
355
        else:
            sampled_dict = self.db_sampler.sample_all(
356
357
358
359
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                img=None,
                ground_plane=ground_plane)
zhangwenwei's avatar
zhangwenwei committed
360
361
362
363

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
364
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
365

zhangwenwei's avatar
zhangwenwei committed
366
367
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
368
369
370
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
371

zhangwenwei's avatar
zhangwenwei committed
372
373
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
374
            points = points.cat([sampled_points, points])
zhangwenwei's avatar
zhangwenwei committed
375
376
377
378
379

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
380

zhangwenwei's avatar
zhangwenwei committed
381
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
382
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
383
384

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
WRH's avatar
WRH committed
385
        input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.int64)
zhangwenwei's avatar
zhangwenwei committed
386
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
387

zhangwenwei's avatar
zhangwenwei committed
388
389
390
        return input_dict

    def __repr__(self):
391
        """str: Return a string that describes the module."""
392
393
394
395
396
397
398
399
400
        repr_str = self.__class__.__name__
        repr_str += f' sample_2d={self.sample_2d},'
        repr_str += f' data_root={self.sampler_cfg.data_root},'
        repr_str += f' info_path={self.sampler_cfg.info_path},'
        repr_str += f' rate={self.sampler_cfg.rate},'
        repr_str += f' prepare={self.sampler_cfg.prepare},'
        repr_str += f' classes={self.sampler_cfg.classes},'
        repr_str += f' sample_groups={self.sampler_cfg.sample_groups}'
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
401
402


403
404
@TRANSFORMS.register_module()
class ObjectNoise(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
405
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
406

407
408
409
410
411
412
413
414
415
416
    Required Keys:

    - points
    - gt_bboxes_3d

    Modified Keys:

    - points
    - gt_bboxes_3d

zhangwenwei's avatar
zhangwenwei committed
417
    Args:
418
        translation_std (list[float], optional): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
419
420
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
421
        global_rot_range (list[float], optional): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
422
            Defaults to [0.0, 0.0].
423
        rot_range (list[float], optional): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
424
425
426
427
            Defaults to [-0.15707963267, 0.15707963267].
        num_try (int, optional): Number of times to try if the noise applied is
            invalid. Defaults to 100.
    """
zhangwenwei's avatar
zhangwenwei committed
428
429

    def __init__(self,
430
431
432
433
                 translation_std: list = [0.25, 0.25, 0.25],
                 global_rot_range: list = [0.0, 0.0],
                 rot_range: list = [-0.15707963267, 0.15707963267],
                 num_try: int = 100):
zhangwenwei's avatar
zhangwenwei committed
434
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
435
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
436
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
437
438
        self.num_try = num_try

439
440
    def transform(self, input_dict: dict) -> dict:
        """Transform function to apply noise to each ground truth in the scene.
441
442
443
444
445

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
446
            dict: Results after adding noise to each object,
447
448
                'points', 'gt_bboxes_3d' keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
449
450
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
451

452
        # TODO: this is inplace operation
453
        numpy_box = gt_bboxes_3d.tensor.numpy()
454
455
        numpy_points = points.tensor.numpy()

zhangwenwei's avatar
zhangwenwei committed
456
        noise_per_object_v3_(
457
            numpy_box,
458
            numpy_points,
zhangwenwei's avatar
zhangwenwei committed
459
460
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
461
462
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
463
464

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
465
        input_dict['points'] = points.new_point(numpy_points)
zhangwenwei's avatar
zhangwenwei committed
466
467
468
        return input_dict

    def __repr__(self):
469
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
470
        repr_str = self.__class__.__name__
471
472
473
474
        repr_str += f'(num_try={self.num_try},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' global_rot_range={self.global_rot_range},'
        repr_str += f' rot_range={self.rot_range})'
zhangwenwei's avatar
zhangwenwei committed
475
476
477
        return repr_str


478
@TRANSFORMS.register_module()
479
480
481
482
483
484
485
class GlobalAlignment(object):
    """Apply global alignment to 3D scene points by rotation and translation.

    Args:
        rotation_axis (int): Rotation axis for points and bboxes rotation.

    Note:
486
487
        We do not record the applied rotation and translation as in
            GlobalRotScaleTrans. Because usually, we do not need to reverse
488
            the alignment step.
489
        For example, ScanNet 3D detection task uses aligned ground-truth
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
            bounding boxes for evaluation.
    """

    def __init__(self, rotation_axis):
        self.rotation_axis = rotation_axis

    def _trans_points(self, input_dict, trans_factor):
        """Private function to translate points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            trans_factor (np.ndarray): Translation vector to be applied.

        Returns:
            dict: Results after translation, 'points' is updated in the dict.
        """
        input_dict['points'].translate(trans_factor)

    def _rot_points(self, input_dict, rot_mat):
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            rot_mat (np.ndarray): Rotation matrix to be applied.

        Returns:
            dict: Results after rotation, 'points' is updated in the dict.
        """
        # input should be rot_mat_T so I transpose it here
        input_dict['points'].rotate(rot_mat.T)

    def _check_rot_mat(self, rot_mat):
        """Check if rotation matrix is valid for self.rotation_axis.

        Args:
            rot_mat (np.ndarray): Rotation matrix to be applied.
        """
        is_valid = np.allclose(np.linalg.det(rot_mat), 1.0)
        valid_array = np.zeros(3)
        valid_array[self.rotation_axis] = 1.0
        is_valid &= (rot_mat[self.rotation_axis, :] == valid_array).all()
        is_valid &= (rot_mat[:, self.rotation_axis] == valid_array).all()
        assert is_valid, f'invalid rotation matrix {rot_mat}'

    def __call__(self, input_dict):
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
541
            dict: Results after global alignment, 'points' and keys in
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
        assert 'axis_align_matrix' in input_dict['ann_info'].keys(), \
            'axis_align_matrix is not provided in GlobalAlignment'

        axis_align_matrix = input_dict['ann_info']['axis_align_matrix']
        assert axis_align_matrix.shape == (4, 4), \
            f'invalid shape {axis_align_matrix.shape} for axis_align_matrix'
        rot_mat = axis_align_matrix[:3, :3]
        trans_vec = axis_align_matrix[:3, -1]

        self._check_rot_mat(rot_mat)
        self._rot_points(input_dict, rot_mat)
        self._trans_points(input_dict, trans_vec)

        return input_dict

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(rotation_axis={self.rotation_axis})'
        return repr_str


565
@TRANSFORMS.register_module()
zhangwenwei's avatar
zhangwenwei committed
566
class GlobalRotScaleTrans(object):
zhangwenwei's avatar
zhangwenwei committed
567
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
568
569

    Args:
570
        rot_range (list[float], optional): Range of rotation angle.
liyinhao's avatar
liyinhao committed
571
            Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
572
        scale_ratio_range (list[float], optional): Range of scale ratio.
liyinhao's avatar
liyinhao committed
573
            Defaults to [0.95, 1.05].
574
575
        translation_std (list[float], optional): The standard deviation of
            translation noise applied to a scene, which
zhangwenwei's avatar
zhangwenwei committed
576
            is sampled from a gaussian distribution whose standard deviation
liyinhao's avatar
liyinhao committed
577
            is set by ``translation_std``. Defaults to [0, 0, 0]
578
        shift_height (bool, optional): Whether to shift height.
wuyuefeng's avatar
wuyuefeng committed
579
            (the fourth dimension of indoor points) when scaling.
liyinhao's avatar
liyinhao committed
580
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
581
    """
zhangwenwei's avatar
zhangwenwei committed
582
583

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
584
585
                 rot_range=[-0.78539816, 0.78539816],
                 scale_ratio_range=[0.95, 1.05],
wuyuefeng's avatar
wuyuefeng committed
586
587
                 translation_std=[0, 0, 0],
                 shift_height=False):
588
589
590
591
592
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(rot_range, seq_types):
            assert isinstance(rot_range, (int, float)), \
                f'unsupported rot_range type {type(rot_range)}'
            rot_range = [-rot_range, rot_range]
zhangwenwei's avatar
zhangwenwei committed
593
        self.rot_range = rot_range
594
595
596

        assert isinstance(scale_ratio_range, seq_types), \
            f'unsupported scale_ratio_range type {type(scale_ratio_range)}'
zhangwenwei's avatar
zhangwenwei committed
597
        self.scale_ratio_range = scale_ratio_range
598
599
600
601
602
603
604

        if not isinstance(translation_std, seq_types):
            assert isinstance(translation_std, (int, float)), \
                f'unsupported translation_std type {type(translation_std)}'
            translation_std = [
                translation_std, translation_std, translation_std
            ]
605
606
        assert all([std >= 0 for std in translation_std]), \
            'translation_std should be positive'
zhangwenwei's avatar
zhangwenwei committed
607
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
608
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
609
610

    def _trans_bbox_points(self, input_dict):
611
612
613
614
615
616
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
617
618
            dict: Results after translation, 'points', 'pcd_trans'
                and keys in input_dict['bbox3d_fields'] are updated
619
620
                in the result dict.
        """
621
        translation_std = np.array(self.translation_std, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
622
623
        trans_factor = np.random.normal(scale=translation_std, size=3).T

624
        input_dict['points'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
625
626
627
628
629
        input_dict['pcd_trans'] = trans_factor
        for key in input_dict['bbox3d_fields']:
            input_dict[key].translate(trans_factor)

    def _rot_bbox_points(self, input_dict):
630
631
632
633
634
635
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
636
637
            dict: Results after rotation, 'points', 'pcd_rotation'
                and keys in input_dict['bbox3d_fields'] are updated
638
639
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
640
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
641
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
642

643
644
645
646
        # if no bbox in input_dict, only rotate points
        if len(input_dict['bbox3d_fields']) == 0:
            rot_mat_T = input_dict['points'].rotate(noise_rotation)
            input_dict['pcd_rotation'] = rot_mat_T
647
            input_dict['pcd_rotation_angle'] = noise_rotation
648
649
650
            return

        # rotate points with bboxes
zhangwenwei's avatar
zhangwenwei committed
651
        for key in input_dict['bbox3d_fields']:
wuyuefeng's avatar
wuyuefeng committed
652
653
654
655
656
            if len(input_dict[key].tensor) != 0:
                points, rot_mat_T = input_dict[key].rotate(
                    noise_rotation, input_dict['points'])
                input_dict['points'] = points
                input_dict['pcd_rotation'] = rot_mat_T
657
                input_dict['pcd_rotation_angle'] = noise_rotation
658

zhangwenwei's avatar
zhangwenwei committed
659
    def _scale_bbox_points(self, input_dict):
660
661
662
663
664
665
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
666
            dict: Results after scaling, 'points'and keys in
667
668
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
669
        scale = input_dict['pcd_scale_factor']
670
671
        points = input_dict['points']
        points.scale(scale)
wuyuefeng's avatar
wuyuefeng committed
672
        if self.shift_height:
673
674
            assert 'height' in points.attribute_dims.keys(), \
                'setting shift_height=True but points have no height attribute'
675
676
            points.tensor[:, points.attribute_dims['height']] *= scale
        input_dict['points'] = points
wuyuefeng's avatar
wuyuefeng committed
677

zhangwenwei's avatar
zhangwenwei committed
678
679
        for key in input_dict['bbox3d_fields']:
            input_dict[key].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
680

zhangwenwei's avatar
zhangwenwei committed
681
    def _random_scale(self, input_dict):
682
683
684
685
686
687
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
688
            dict: Results after scaling, 'pcd_scale_factor' are updated
689
690
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
691
692
693
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
694
695

    def __call__(self, input_dict):
696
        """Private function to rotate, scale and translate bounding boxes and
697
698
699
700
701
702
703
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
704
                'pcd_scale_factor', 'pcd_trans' and keys in
705
706
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
707
708
709
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

zhangwenwei's avatar
zhangwenwei committed
710
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
711

zhangwenwei's avatar
zhangwenwei committed
712
713
714
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
715

zhangwenwei's avatar
zhangwenwei committed
716
        self._trans_bbox_points(input_dict)
717
718

        input_dict['transformation_3d_flow'].extend(['R', 'S', 'T'])
zhangwenwei's avatar
zhangwenwei committed
719
720
721
        return input_dict

    def __repr__(self):
722
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
723
        repr_str = self.__class__.__name__
724
725
726
727
        repr_str += f'(rot_range={self.rot_range},'
        repr_str += f' scale_ratio_range={self.scale_ratio_range},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' shift_height={self.shift_height})'
zhangwenwei's avatar
zhangwenwei committed
728
729
730
        return repr_str


731
@TRANSFORMS.register_module()
zhangwenwei's avatar
zhangwenwei committed
732
class PointShuffle(object):
733
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
734
735

    def __call__(self, input_dict):
736
737
738
739
740
741
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
742
            dict: Results after filtering, 'points', 'pts_instance_mask'
743
                and 'pts_semantic_mask' keys are updated in the result dict.
744
        """
745
746
747
748
749
750
751
752
753
754
755
756
        idx = input_dict['points'].shuffle()
        idx = idx.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[idx]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[idx]

zhangwenwei's avatar
zhangwenwei committed
757
758
759
760
761
762
        return input_dict

    def __repr__(self):
        return self.__class__.__name__


763
@TRANSFORMS.register_module()
764
class ObjectRangeFilter(BaseTransform):
765
766
    """Filter objects by the range.

767
768
769
770
771
772
773
774
    Required Keys:

    - gt_bboxes_3d

    Modified Keys:

    - gt_bboxes_3d

775
776
777
    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
778

779
    def __init__(self, point_cloud_range: list):
zhangwenwei's avatar
zhangwenwei committed
780
781
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)

782
783
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter objects by the range.
784
785
786
787
788

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
789
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
790
791
                keys are updated in the result dict.
        """
792
793
794
795
796
797
798
        # Check points instance type and initialise bev_range
        if isinstance(input_dict['gt_bboxes_3d'],
                      (LiDARInstance3DBoxes, DepthInstance3DBoxes)):
            bev_range = self.pcd_range[[0, 1, 3, 4]]
        elif isinstance(input_dict['gt_bboxes_3d'], CameraInstance3DBoxes):
            bev_range = self.pcd_range[[0, 2, 3, 5]]

zhangwenwei's avatar
zhangwenwei committed
799
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
800
        gt_labels_3d = input_dict['gt_labels_3d']
801
        mask = gt_bboxes_3d.in_range_bev(bev_range)
zhangwenwei's avatar
zhangwenwei committed
802
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
803
804
805
806
807
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
zhangwenwei's avatar
zhangwenwei committed
808
809

        # limit rad to [-pi, pi]
810
811
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
812
813
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
814
815
816
        return input_dict

    def __repr__(self):
817
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
818
        repr_str = self.__class__.__name__
819
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
820
821
822
        return repr_str


823
@TRANSFORMS.register_module()
824
class PointsRangeFilter(BaseTransform):
825
826
    """Filter points by the range.

827
828
829
830
831
832
833
834
835
836
    Required Keys:

    - points
    - pts_instance_mask (optional)

    Modified Keys:

    - points
    - pts_instance_mask (optional)

837
838
839
    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
840

841
    def __init__(self, point_cloud_range: list):
842
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
843

844
845
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter points by the range.
846
847
848
849
850

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
851
            dict: Results after filtering, 'points', 'pts_instance_mask'
852
                and 'pts_semantic_mask' keys are updated in the result dict.
853
        """
zhangwenwei's avatar
zhangwenwei committed
854
        points = input_dict['points']
855
856
        points_mask = points.in_range_3d(self.pcd_range)
        clean_points = points[points_mask]
zhangwenwei's avatar
zhangwenwei committed
857
        input_dict['points'] = clean_points
858
859
860
861
862
863
864
865
866
867
868
        points_mask = points_mask.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[points_mask]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[points_mask]

zhangwenwei's avatar
zhangwenwei committed
869
870
871
        return input_dict

    def __repr__(self):
872
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
873
        repr_str = self.__class__.__name__
874
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
875
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
876
877


878
@TRANSFORMS.register_module()
879
class ObjectNameFilter(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
880
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
881

882
883
884
885
886
887
888
889
    Required Keys:

    - gt_labels_3d

    Modified Keys:

    - gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
890
    Args:
liyinhao's avatar
liyinhao committed
891
        classes (list[str]): List of class names to be kept for training.
zhangwenwei's avatar
zhangwenwei committed
892
893
    """

894
    def __init__(self, classes: list):
zhangwenwei's avatar
zhangwenwei committed
895
896
897
        self.classes = classes
        self.labels = list(range(len(self.classes)))

898
899
    def transform(self, input_dict: dict) -> dict:
        """Transform function to filter objects by their names.
900
901
902
903
904

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
905
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
906
907
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
908
909
910
911
912
913
914
915
916
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
                                  dtype=np.bool_)
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

    def __repr__(self):
917
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
918
919
920
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
921
922


923
924
@TRANSFORMS.register_module()
class PointSample(BaseTransform):
925
    """Point sample.
wuyuefeng's avatar
wuyuefeng committed
926
927
928

    Sampling data to a certain number.

929
    Required Keys:
930

931
932
933
934
935
    - points
    - pts_instance_mask (optional)
    - pts_semantic_mask (optional)

    Modified Keys:
936

937
938
939
940
    - points
    - pts_instance_mask (optional)
    - pts_semantic_mask (optional)

wuyuefeng's avatar
wuyuefeng committed
941
942
    Args:
        num_points (int): Number of points to be sampled.
943
        sample_range (float, optional): The range where to sample points.
944
945
946
947
            If not None, the points with depth larger than `sample_range` are
            prior to be sampled. Defaults to None.
        replace (bool, optional): Whether the sampling is with or without
            replacement. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
948
949
    """

950
951
952
953
    def __init__(self,
                 num_points: int,
                 sample_range: float = None,
                 replace: bool = False):
wuyuefeng's avatar
wuyuefeng committed
954
        self.num_points = num_points
955
956
957
958
959
960
961
962
963
        self.sample_range = sample_range
        self.replace = replace

    def _points_random_sampling(self,
                                points,
                                num_samples,
                                sample_range=None,
                                replace=False,
                                return_choices=False):
wuyuefeng's avatar
wuyuefeng committed
964
965
966
967
968
        """Points random sampling.

        Sample points to a certain number.

        Args:
969
            points (np.ndarray | :obj:`BasePoints`): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
970
            num_samples (int): Number of samples to be sampled.
971
            sample_range (float, optional): Indicating the range where the
972
                points will be sampled. Defaults to None.
973
974
975
976
            replace (bool, optional): Sampling with or without replacement.
                Defaults to None.
            return_choices (bool, optional): Whether return choice.
                Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
977
        Returns:
978
            tuple[np.ndarray] | np.ndarray:
979
                - points (np.ndarray | :obj:`BasePoints`): 3D Points.
980
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
981
        """
982
        if not replace:
wuyuefeng's avatar
wuyuefeng committed
983
            replace = (points.shape[0] < num_samples)
984
985
986
        point_range = range(len(points))
        if sample_range is not None and not replace:
            # Only sampling the near points when len(points) >= num_samples
987
988
989
            dist = np.linalg.norm(points.tensor, axis=1)
            far_inds = np.where(dist >= sample_range)[0]
            near_inds = np.where(dist < sample_range)[0]
990
991
992
993
            # in case there are too many far points
            if len(far_inds) > num_samples:
                far_inds = np.random.choice(
                    far_inds, num_samples, replace=False)
994
995
996
997
998
999
1000
            point_range = near_inds
            num_samples -= len(far_inds)
        choices = np.random.choice(point_range, num_samples, replace=replace)
        if sample_range is not None and not replace:
            choices = np.concatenate((far_inds, choices))
            # Shuffle points after sampling
            np.random.shuffle(choices)
wuyuefeng's avatar
wuyuefeng committed
1001
1002
1003
1004
1005
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

1006
    def transform(self, input_dict: dict) -> dict:
1007
        """Transform function to sample points to in indoor scenes.
1008
1009
1010
1011

        Args:
            input_dict (dict): Result dict from loading pipeline.
        Returns:
1012
            dict: Results after sampling, 'points', 'pts_instance_mask'
1013
1014
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
1015
        points = input_dict['points']
1016
1017
1018
1019
1020
1021
        points, choices = self._points_random_sampling(
            points,
            self.num_points,
            self.sample_range,
            self.replace,
            return_choices=True)
1022
        input_dict['points'] = points
1023

1024
1025
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
wuyuefeng's avatar
wuyuefeng committed
1026

1027
        if pts_instance_mask is not None:
wuyuefeng's avatar
wuyuefeng committed
1028
            pts_instance_mask = pts_instance_mask[choices]
1029
            input_dict['pts_instance_mask'] = pts_instance_mask
1030
1031
1032

        if pts_semantic_mask is not None:
            pts_semantic_mask = pts_semantic_mask[choices]
1033
            input_dict['pts_semantic_mask'] = pts_semantic_mask
wuyuefeng's avatar
wuyuefeng committed
1034

1035
        return input_dict
wuyuefeng's avatar
wuyuefeng committed
1036
1037

    def __repr__(self):
1038
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
1039
        repr_str = self.__class__.__name__
1040
        repr_str += f'(num_points={self.num_points},'
1041
1042
        repr_str += f' sample_range={self.sample_range},'
        repr_str += f' replace={self.replace})'
1043

1044
1045
1046
        return repr_str


1047
@TRANSFORMS.register_module()
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
class IndoorPointSample(PointSample):
    """Indoor point sample.

    Sampling data to a certain number.
    NOTE: IndoorPointSample is deprecated in favor of PointSample

    Args:
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, *args, **kwargs):
        warnings.warn(
            'IndoorPointSample is deprecated in favor of PointSample')
        super(IndoorPointSample, self).__init__(*args, **kwargs)


1064
@TRANSFORMS.register_module()
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
class IndoorPatchPointSample(object):
    r"""Indoor point sample within a patch. Modified from `PointNet++ <https://
    github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py>`_.

    Sampling data to a certain number for semantic segmentation.

    Args:
        num_points (int): Number of points to be sampled.
        block_size (float, optional): Size of a block to sample points from.
            Defaults to 1.5.
        sample_rate (float, optional): Stride used in sliding patch generation.
1076
1077
1078
            This parameter is unused in `IndoorPatchPointSample` and thus has
            been deprecated. We plan to remove it in the future.
            Defaults to None.
1079
1080
        ignore_index (int, optional): Label index that won't be used for the
            segmentation task. This is set in PointSegClassMapping as neg_cls.
1081
            If not None, will be used as a patch selection criterion.
1082
1083
1084
1085
1086
            Defaults to None.
        use_normalized_coord (bool, optional): Whether to use normalized xyz as
            additional features. Defaults to False.
        num_try (int, optional): Number of times to try if the patch selected
            is invalid. Defaults to 10.
1087
        enlarge_size (float, optional): Enlarge the sampled patch to
1088
            [-block_size / 2 - enlarge_size, block_size / 2 + enlarge_size] as
1089
            an augmentation. If None, set it as 0. Defaults to 0.2.
1090
        min_unique_num (int, optional): Minimum number of unique points
1091
1092
            the sampled patch should contain. If None, use PointNet++'s method
            to judge uniqueness. Defaults to None.
1093
1094
        eps (float, optional): A value added to patch boundary to guarantee
            points coverage. Defaults to 1e-2.
1095
1096
1097
1098
1099
1100

    Note:
        This transform should only be used in the training process of point
            cloud segmentation tasks. For the sliding patch generation and
            inference process in testing, please refer to the `slide_inference`
            function of `EncoderDecoder3D` class.
1101
1102
1103
1104
1105
    """

    def __init__(self,
                 num_points,
                 block_size=1.5,
1106
                 sample_rate=None,
1107
1108
                 ignore_index=None,
                 use_normalized_coord=False,
1109
1110
                 num_try=10,
                 enlarge_size=0.2,
1111
1112
                 min_unique_num=None,
                 eps=1e-2):
1113
1114
1115
1116
1117
        self.num_points = num_points
        self.block_size = block_size
        self.ignore_index = ignore_index
        self.use_normalized_coord = use_normalized_coord
        self.num_try = num_try
1118
        self.enlarge_size = enlarge_size if enlarge_size is not None else 0.0
1119
        self.min_unique_num = min_unique_num
1120
        self.eps = eps
1121
1122
1123
1124
1125

        if sample_rate is not None:
            warnings.warn(
                "'sample_rate' has been deprecated and will be removed in "
                'the future. Please remove them from your code.')
1126
1127
1128
1129
1130

    def _input_generation(self, coords, patch_center, coord_max, attributes,
                          attribute_dims, point_type):
        """Generating model input.

1131
        Generate input by subtracting patch center and adding additional
1132
1133
1134
1135
1136
1137
1138
1139
1140
            features. Currently support colors and normalized xyz as features.

        Args:
            coords (np.ndarray): Sampled 3D Points.
            patch_center (np.ndarray): Center coordinate of the selected patch.
            coord_max (np.ndarray): Max coordinate of all 3D Points.
            attributes (np.ndarray): features of input points.
            attribute_dims (dict): Dictionary to indicate the meaning of extra
                dimension.
1141
            point_type (type): class of input points inherited from BasePoints.
1142
1143

        Returns:
1144
            :obj:`BasePoints`: The generated input data.
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
        """
        # subtract patch center, the z dimension is not centered
        centered_coords = coords.copy()
        centered_coords[:, 0] -= patch_center[0]
        centered_coords[:, 1] -= patch_center[1]

        if self.use_normalized_coord:
            normalized_coord = coords / coord_max
            attributes = np.concatenate([attributes, normalized_coord], axis=1)
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(normalized_coord=[
                    attributes.shape[1], attributes.shape[1] +
                    1, attributes.shape[1] + 2
                ]))

        points = np.concatenate([centered_coords, attributes], axis=1)
        points = point_type(
            points, points_dim=points.shape[1], attribute_dims=attribute_dims)

        return points

1168
    def _patch_points_sampling(self, points, sem_mask):
1169
1170
1171
1172
1173
1174
        """Patch points sampling.

        First sample a valid patch.
        Then sample points within that patch to a certain number.

        Args:
1175
            points (:obj:`BasePoints`): 3D Points.
1176
1177
1178
            sem_mask (np.ndarray): semantic segmentation mask for input points.

        Returns:
1179
            tuple[:obj:`BasePoints`, np.ndarray] | :obj:`BasePoints`:
1180

1181
                - points (:obj:`BasePoints`): 3D Points.
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
                - choices (np.ndarray): The generated random samples.
        """
        coords = points.coord.numpy()
        attributes = points.tensor[:, 3:].numpy()
        attribute_dims = points.attribute_dims
        point_type = type(points)

        coord_max = np.amax(coords, axis=0)
        coord_min = np.amin(coords, axis=0)

1192
        for _ in range(self.num_try):
1193
1194
1195
            # random sample a point as patch center
            cur_center = coords[np.random.choice(coords.shape[0])]

1196
1197
            # boundary of a patch, which would be enlarged by
            # `self.enlarge_size` as an augmentation
1198
1199
1200
1201
1202
1203
1204
            cur_max = cur_center + np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_min = cur_center - np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_max[2] = coord_max[2]
            cur_min[2] = coord_min[2]
            cur_choice = np.sum(
1205
1206
                (coords >= (cur_min - self.enlarge_size)) *
                (coords <= (cur_max + self.enlarge_size)),
1207
1208
1209
1210
1211
1212
1213
                axis=1) == 3

            if not cur_choice.any():  # no points in this patch
                continue

            cur_coords = coords[cur_choice, :]
            cur_sem_mask = sem_mask[cur_choice]
1214
            point_idxs = np.where(cur_choice)[0]
1215
            mask = np.sum(
1216
1217
                (cur_coords >= (cur_min - self.eps)) * (cur_coords <=
                                                        (cur_max + self.eps)),
1218
                axis=1) == 3
1219

1220
1221
            # two criteria for patch sampling, adopted from PointNet++
            # 1. selected patch should contain enough unique points
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
            if self.min_unique_num is None:
                # use PointNet++'s method as default
                # [31, 31, 62] are just some big values used to transform
                # coords from 3d array to 1d and then check their uniqueness
                # this is used in all the ScanNet code following PointNet++
                vidx = np.ceil(
                    (cur_coords[mask, :] - cur_min) / (cur_max - cur_min) *
                    np.array([31.0, 31.0, 62.0]))
                vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 + vidx[:, 1] * 62.0 +
                                 vidx[:, 2])
                flag1 = len(vidx) / 31.0 / 31.0 / 62.0 >= 0.02
            else:
1234
                # if `min_unique_num` is provided, directly compare with it
1235
                flag1 = mask.sum() >= self.min_unique_num
1236

1237
            # 2. selected patch should contain enough annotated points
1238
1239
1240
1241
1242
1243
1244
1245
1246
            if self.ignore_index is None:
                flag2 = True
            else:
                flag2 = np.sum(cur_sem_mask != self.ignore_index) / \
                               len(cur_sem_mask) >= 0.7

            if flag1 and flag2:
                break

1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
        # sample idx to `self.num_points`
        if point_idxs.size >= self.num_points:
            # no duplicate in sub-sampling
            choices = np.random.choice(
                point_idxs, self.num_points, replace=False)
        else:
            # do not use random choice here to avoid some points not counted
            dup = np.random.choice(point_idxs.size,
                                   self.num_points - point_idxs.size)
            idx_dup = np.concatenate(
                [np.arange(point_idxs.size),
                 np.array(dup)], 0)
            choices = point_idxs[idx_dup]
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

        # construct model input
        points = self._input_generation(coords[choices], cur_center, coord_max,
                                        attributes[choices], attribute_dims,
                                        point_type)

        return points, choices

    def __call__(self, results):
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1275
            dict: Results after sampling, 'points', 'pts_instance_mask'
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']

        assert 'pts_semantic_mask' in results.keys(), \
            'semantic mask should be provided in training and evaluation'
        pts_semantic_mask = results['pts_semantic_mask']

        points, choices = self._patch_points_sampling(points,
                                                      pts_semantic_mask)

        results['points'] = points
        results['pts_semantic_mask'] = pts_semantic_mask[choices]
        pts_instance_mask = results.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            results['pts_instance_mask'] = pts_instance_mask[choices]

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(num_points={self.num_points},'
        repr_str += f' block_size={self.block_size},'
        repr_str += f' ignore_index={self.ignore_index},'
        repr_str += f' use_normalized_coord={self.use_normalized_coord},'
1302
1303
        repr_str += f' num_try={self.num_try},'
        repr_str += f' enlarge_size={self.enlarge_size},'
1304
1305
        repr_str += f' min_unique_num={self.min_unique_num},'
        repr_str += f' eps={self.eps})'
wuyuefeng's avatar
wuyuefeng committed
1306
        return repr_str
1307
1308


1309
@TRANSFORMS.register_module()
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
class BackgroundPointsFilter(object):
    """Filter background points near the bounding box.

    Args:
        bbox_enlarge_range (tuple[float], float): Bbox enlarge range.
    """

    def __init__(self, bbox_enlarge_range):
        assert (is_tuple_of(bbox_enlarge_range, float)
                and len(bbox_enlarge_range) == 3) \
            or isinstance(bbox_enlarge_range, float), \
            f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}'

        if isinstance(bbox_enlarge_range, float):
            bbox_enlarge_range = [bbox_enlarge_range] * 3
        self.bbox_enlarge_range = np.array(
            bbox_enlarge_range, dtype=np.float32)[np.newaxis, :]

    def __call__(self, input_dict):
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1335
            dict: Results after filtering, 'points', 'pts_instance_mask'
1336
                and 'pts_semantic_mask' keys are updated in the result dict.
1337
1338
1339
1340
        """
        points = input_dict['points']
        gt_bboxes_3d = input_dict['gt_bboxes_3d']

xiliu8006's avatar
xiliu8006 committed
1341
1342
1343
1344
        # avoid groundtruth being modified
        gt_bboxes_3d_np = gt_bboxes_3d.tensor.clone().numpy()
        gt_bboxes_3d_np[:, :3] = gt_bboxes_3d.gravity_center.clone().numpy()

1345
1346
        enlarged_gt_bboxes_3d = gt_bboxes_3d_np.copy()
        enlarged_gt_bboxes_3d[:, 3:6] += self.bbox_enlarge_range
xiliu8006's avatar
xiliu8006 committed
1347
        points_numpy = points.tensor.clone().numpy()
1348
1349
        foreground_masks = box_np_ops.points_in_rbbox(
            points_numpy, gt_bboxes_3d_np, origin=(0.5, 0.5, 0.5))
1350
        enlarge_foreground_masks = box_np_ops.points_in_rbbox(
1351
            points_numpy, enlarged_gt_bboxes_3d, origin=(0.5, 0.5, 0.5))
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
        foreground_masks = foreground_masks.max(1)
        enlarge_foreground_masks = enlarge_foreground_masks.max(1)
        valid_masks = ~np.logical_and(~foreground_masks,
                                      enlarge_foreground_masks)

        input_dict['points'] = points[valid_masks]
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[valid_masks]

        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[valid_masks]
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
1370
        repr_str += f'(bbox_enlarge_range={self.bbox_enlarge_range.tolist()})'
1371
        return repr_str
1372
1373


1374
@TRANSFORMS.register_module()
1375
1376
1377
1378
1379
1380
1381
1382
class VoxelBasedPointSampler(object):
    """Voxel based point sampler.

    Apply voxel sampling to multiple sweep points.

    Args:
        cur_sweep_cfg (dict): Config for sampling current points.
        prev_sweep_cfg (dict): Config for sampling previous points.
1383
        time_dim (int): Index that indicate the time dimension
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
            for input points.
    """

    def __init__(self, cur_sweep_cfg, prev_sweep_cfg=None, time_dim=3):
        self.cur_voxel_generator = VoxelGenerator(**cur_sweep_cfg)
        self.cur_voxel_num = self.cur_voxel_generator._max_voxels
        self.time_dim = time_dim
        if prev_sweep_cfg is not None:
            assert prev_sweep_cfg['max_num_points'] == \
                cur_sweep_cfg['max_num_points']
            self.prev_voxel_generator = VoxelGenerator(**prev_sweep_cfg)
            self.prev_voxel_num = self.prev_voxel_generator._max_voxels
        else:
            self.prev_voxel_generator = None
            self.prev_voxel_num = 0

    def _sample_points(self, points, sampler, point_dim):
        """Sample points for each points subset.

        Args:
            points (np.ndarray): Points subset to be sampled.
            sampler (VoxelGenerator): Voxel based sampler for
                each points subset.
1407
            point_dim (int): The dimension of each points
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432

        Returns:
            np.ndarray: Sampled points.
        """
        voxels, coors, num_points_per_voxel = sampler.generate(points)
        if voxels.shape[0] < sampler._max_voxels:
            padding_points = np.zeros([
                sampler._max_voxels - voxels.shape[0], sampler._max_num_points,
                point_dim
            ],
                                      dtype=points.dtype)
            padding_points[:] = voxels[0]
            sample_points = np.concatenate([voxels, padding_points], axis=0)
        else:
            sample_points = voxels

        return sample_points

    def __call__(self, results):
        """Call function to sample points from multiple sweeps.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1433
            dict: Results after sampling, 'points', 'pts_instance_mask'
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']
        original_dim = points.shape[1]

        # TODO: process instance and semantic mask while _max_num_points
        # is larger than 1
        # Extend points with seg and mask fields
        map_fields2dim = []
        start_dim = original_dim
1444
1445
        points_numpy = points.tensor.numpy()
        extra_channel = [points_numpy]
1446
1447
1448
1449
1450
1451
1452
1453
1454
        for idx, key in enumerate(results['pts_mask_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

        start_dim += len(results['pts_mask_fields'])
        for idx, key in enumerate(results['pts_seg_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

1455
        points_numpy = np.concatenate(extra_channel, axis=-1)
1456
1457
1458
1459
1460

        # Split points into two part, current sweep points and
        # previous sweeps points.
        # TODO: support different sampling methods for next sweeps points
        # and previous sweeps points.
1461
1462
1463
        cur_points_flag = (points_numpy[:, self.time_dim] == 0)
        cur_sweep_points = points_numpy[cur_points_flag]
        prev_sweeps_points = points_numpy[~cur_points_flag]
1464
1465
1466
1467
1468
1469
1470
1471
1472
        if prev_sweeps_points.shape[0] == 0:
            prev_sweeps_points = cur_sweep_points

        # Shuffle points before sampling
        np.random.shuffle(cur_sweep_points)
        np.random.shuffle(prev_sweeps_points)

        cur_sweep_points = self._sample_points(cur_sweep_points,
                                               self.cur_voxel_generator,
1473
                                               points_numpy.shape[1])
1474
1475
1476
        if self.prev_voxel_generator is not None:
            prev_sweeps_points = self._sample_points(prev_sweeps_points,
                                                     self.prev_voxel_generator,
1477
                                                     points_numpy.shape[1])
1478

1479
1480
            points_numpy = np.concatenate(
                [cur_sweep_points, prev_sweeps_points], 0)
1481
        else:
1482
            points_numpy = cur_sweep_points
1483
1484

        if self.cur_voxel_generator._max_num_points == 1:
1485
1486
            points_numpy = points_numpy.squeeze(1)
        results['points'] = points.new_point(points_numpy[..., :original_dim])
1487

1488
        # Restore the corresponding seg and mask fields
1489
        for key, dim_index in map_fields2dim:
1490
            results[key] = points_numpy[..., dim_index]
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""

        def _auto_indent(repr_str, indent):
            repr_str = repr_str.split('\n')
            repr_str = [' ' * indent + t + '\n' for t in repr_str]
            repr_str = ''.join(repr_str)[:-1]
            return repr_str

        repr_str = self.__class__.__name__
        indent = 4
        repr_str += '(\n'
        repr_str += ' ' * indent + f'num_cur_sweep={self.cur_voxel_num},\n'
        repr_str += ' ' * indent + f'num_prev_sweep={self.prev_voxel_num},\n'
        repr_str += ' ' * indent + f'time_dim={self.time_dim},\n'
        repr_str += ' ' * indent + 'cur_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.cur_voxel_generator), 8)},\n'
        repr_str += ' ' * indent + 'prev_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.prev_voxel_generator), 8)})'
        return repr_str
1514
1515


1516
@TRANSFORMS.register_module()
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
class AffineResize(object):
    """Get the affine transform matrices to the target size.

    Different from :class:`RandomAffine` in MMDetection, this class can
    calculate the affine transform matrices while resizing the input image
    to a fixed size. The affine transform matrices include: 1) matrix
    transforming original image to the network input image size. 2) matrix
    transforming original image to the network output feature map size.

    Args:
        img_scale (tuple): Images scales for resizing.
        down_ratio (int): The down ratio of feature map.
            Actually the arg should be >= 1.
        bbox_clip_border (bool, optional): Whether clip the objects
            outside the border of the image. Defaults to True.
    """

    def __init__(self, img_scale, down_ratio, bbox_clip_border=True):

        self.img_scale = img_scale
        self.down_ratio = down_ratio
        self.bbox_clip_border = bbox_clip_border

    def __call__(self, results):
        """Call function to do affine transform to input image and labels.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after affine resize, 'affine_aug', 'trans_mat'
                keys are added in the result dict.
        """
        # The results have gone through RandomShiftScale before AffineResize
        if 'center' not in results:
            img = results['img']
            height, width = img.shape[:2]
            center = np.array([width / 2, height / 2], dtype=np.float32)
            size = np.array([width, height], dtype=np.float32)
            results['affine_aug'] = False
        else:
            # The results did not go through RandomShiftScale before
            # AffineResize
            img = results['img']
            center = results['center']
            size = results['size']

        trans_affine = self._get_transform_matrix(center, size, self.img_scale)

        img = cv2.warpAffine(img, trans_affine[:2, :], self.img_scale)

        if isinstance(self.down_ratio, tuple):
            trans_mat = [
                self._get_transform_matrix(
                    center, size,
                    (self.img_scale[0] // ratio, self.img_scale[1] // ratio))
                for ratio in self.down_ratio
            ]  # (3, 3)
        else:
            trans_mat = self._get_transform_matrix(
                center, size, (self.img_scale[0] // self.down_ratio,
                               self.img_scale[1] // self.down_ratio))

        results['img'] = img
        results['img_shape'] = img.shape
        results['pad_shape'] = img.shape
        results['trans_mat'] = trans_mat

        self._affine_bboxes(results, trans_affine)

        if 'centers2d' in results:
            centers2d = self._affine_transform(results['centers2d'],
                                               trans_affine)
            valid_index = (centers2d[:, 0] >
                           0) & (centers2d[:, 0] <
                                 self.img_scale[0]) & (centers2d[:, 1] > 0) & (
                                     centers2d[:, 1] < self.img_scale[1])
            results['centers2d'] = centers2d[valid_index]

            for key in results.get('bbox_fields', []):
                if key in ['gt_bboxes']:
                    results[key] = results[key][valid_index]
                    if 'gt_labels' in results:
                        results['gt_labels'] = results['gt_labels'][
                            valid_index]
                    if 'gt_masks' in results:
                        raise NotImplementedError(
                            'AffineResize only supports bbox.')

            for key in results.get('bbox3d_fields', []):
                if key in ['gt_bboxes_3d']:
                    results[key].tensor = results[key].tensor[valid_index]
                    if 'gt_labels_3d' in results:
                        results['gt_labels_3d'] = results['gt_labels_3d'][
                            valid_index]

            results['depths'] = results['depths'][valid_index]

        return results

    def _affine_bboxes(self, results, matrix):
        """Affine transform bboxes to input image.

        Args:
            results (dict): Result dict from loading pipeline.
            matrix (np.ndarray): Matrix transforming original
                image to the network input image size.
                shape: (3, 3)
        """

        for key in results.get('bbox_fields', []):
            bboxes = results[key]
            bboxes[:, :2] = self._affine_transform(bboxes[:, :2], matrix)
            bboxes[:, 2:] = self._affine_transform(bboxes[:, 2:], matrix)
            if self.bbox_clip_border:
                bboxes[:,
                       [0, 2]] = bboxes[:,
                                        [0, 2]].clip(0, self.img_scale[0] - 1)
                bboxes[:,
                       [1, 3]] = bboxes[:,
                                        [1, 3]].clip(0, self.img_scale[1] - 1)
            results[key] = bboxes

    def _affine_transform(self, points, matrix):
1641
        """Affine transform bbox points to input image.
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694

        Args:
            points (np.ndarray): Points to be transformed.
                shape: (N, 2)
            matrix (np.ndarray): Affine transform matrix.
                shape: (3, 3)

        Returns:
            np.ndarray: Transformed points.
        """
        num_points = points.shape[0]
        hom_points_2d = np.concatenate((points, np.ones((num_points, 1))),
                                       axis=1)
        hom_points_2d = hom_points_2d.T
        affined_points = np.matmul(matrix, hom_points_2d).T
        return affined_points[:, :2]

    def _get_transform_matrix(self, center, scale, output_scale):
        """Get affine transform matrix.

        Args:
            center (tuple): Center of current image.
            scale (tuple): Scale of current image.
            output_scale (tuple[float]): The transform target image scales.

        Returns:
            np.ndarray: Affine transform matrix.
        """
        # TODO: further add rot and shift here.
        src_w = scale[0]
        dst_w = output_scale[0]
        dst_h = output_scale[1]

        src_dir = np.array([0, src_w * -0.5])
        dst_dir = np.array([0, dst_w * -0.5])

        src = np.zeros((3, 2), dtype=np.float32)
        dst = np.zeros((3, 2), dtype=np.float32)
        src[0, :] = center
        src[1, :] = center + src_dir
        dst[0, :] = np.array([dst_w * 0.5, dst_h * 0.5])
        dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir

        src[2, :] = self._get_ref_point(src[0, :], src[1, :])
        dst[2, :] = self._get_ref_point(dst[0, :], dst[1, :])

        get_matrix = cv2.getAffineTransform(src, dst)

        matrix = np.concatenate((get_matrix, [[0., 0., 1.]]))

        return matrix.astype(np.float32)

    def _get_ref_point(self, ref_point1, ref_point2):
1695
        """Get reference point to calculate affine transform matrix.
1696
1697

        While using opencv to calculate the affine matrix, we need at least
1698
        three corresponding points separately on original image and target
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
        image. Here we use two points to get the the third reference point.
        """
        d = ref_point1 - ref_point2
        ref_point3 = ref_point2 + np.array([-d[1], d[0]])
        return ref_point3

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(img_scale={self.img_scale}, '
        repr_str += f'down_ratio={self.down_ratio}) '
        return repr_str


1712
@TRANSFORMS.register_module()
1713
1714
1715
1716
1717
class RandomShiftScale(object):
    """Random shift scale.

    Different from the normal shift and scale function, it doesn't
    directly shift or scale image. It can record the shift and scale
1718
    infos into loading TRANSFORMS. It's designed to be used with
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
    AffineResize together.

    Args:
        shift_scale (tuple[float]): Shift and scale range.
        aug_prob (float): The shifting and scaling probability.
    """

    def __init__(self, shift_scale, aug_prob):

        self.shift_scale = shift_scale
        self.aug_prob = aug_prob

    def __call__(self, results):
        """Call function to record random shift and scale infos.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after random shift and scale, 'center', 'size'
                and 'affine_aug' keys are added in the result dict.
        """
        img = results['img']

        height, width = img.shape[:2]

        center = np.array([width / 2, height / 2], dtype=np.float32)
        size = np.array([width, height], dtype=np.float32)

        if random.random() < self.aug_prob:
            shift, scale = self.shift_scale[0], self.shift_scale[1]
            shift_ranges = np.arange(-shift, shift + 0.1, 0.1)
            center[0] += size[0] * random.choice(shift_ranges)
            center[1] += size[1] * random.choice(shift_ranges)
            scale_ranges = np.arange(1 - scale, 1 + scale + 0.1, 0.1)
            size *= random.choice(scale_ranges)
            results['affine_aug'] = True
        else:
            results['affine_aug'] = False

        results['center'] = center
        results['size'] = size

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(shift_scale={self.shift_scale}, '
        repr_str += f'aug_prob={self.aug_prob}) '
        return repr_str