transforms_3d.py 64.6 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import random
3
import warnings
4
5
6

import cv2
import numpy as np
7
from mmcv import is_tuple_of
8
from mmcv.utils import build_from_cfg
zhangwenwei's avatar
zhangwenwei committed
9

10
from mmdet3d.core import VoxelGenerator
11
12
from mmdet3d.core.bbox import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                               LiDARInstance3DBoxes, box_np_ops)
zhangwenwei's avatar
zhangwenwei committed
13
from mmdet.datasets.pipelines import RandomFlip
14
from ..builder import OBJECTSAMPLERS, PIPELINES
zhangwenwei's avatar
zhangwenwei committed
15
16
17
from .data_augment_utils import noise_per_object_v3_


18
19
20
21
22
23
24
25
26
@PIPELINES.register_module()
class RandomDropPointsColor(object):
    r"""Randomly set the color of points to all zeros.

    Once this transform is executed, all the points' color will be dropped.
    Refer to `PAConv <https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/
    util/transform.py#L223>`_ for more details.

    Args:
27
        drop_ratio (float, optional): The probability of dropping point colors.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
            Defaults to 0.2.
    """

    def __init__(self, drop_ratio=0.2):
        assert isinstance(drop_ratio, (int, float)) and 0 <= drop_ratio <= 1, \
            f'invalid drop_ratio value {drop_ratio}'
        self.drop_ratio = drop_ratio

    def __call__(self, input_dict):
        """Call function to drop point colors.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
43
            dict: Results after color dropping,
44
45
46
47
48
49
50
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        assert points.attribute_dims is not None and \
            'color' in points.attribute_dims, \
            'Expect points have color attribute'

51
52
53
54
55
56
57
        # this if-expression is a bit strange
        # `RandomDropPointsColor` is used in training 3D segmentor PAConv
        # we discovered in our experiments that, using
        # `if np.random.rand() > 1.0 - self.drop_ratio` consistently leads to
        # better results than using `if np.random.rand() < self.drop_ratio`
        # so we keep this hack in our codebase
        if np.random.rand() > 1.0 - self.drop_ratio:
58
59
60
61
62
63
64
65
66
67
            points.color = points.color * 0.0
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(drop_ratio={self.drop_ratio})'
        return repr_str


68
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
69
70
71
72
73
74
75
76
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

    Args:
zhangwenwei's avatar
zhangwenwei committed
77
78
79
        sync_2d (bool, optional): Whether to apply flip according to the 2D
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
liyinhao's avatar
liyinhao committed
80
            to that of 2D images. Defaults to True.
wuyuefeng's avatar
wuyuefeng committed
81
        flip_ratio_bev_horizontal (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
82
            in horizontal direction. Defaults to 0.0.
wuyuefeng's avatar
wuyuefeng committed
83
        flip_ratio_bev_vertical (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
84
            in vertical direction. Defaults to 0.0.
zhangwenwei's avatar
zhangwenwei committed
85
86
    """

wuyuefeng's avatar
wuyuefeng committed
87
88
89
90
91
92
93
    def __init__(self,
                 sync_2d=True,
                 flip_ratio_bev_horizontal=0.0,
                 flip_ratio_bev_vertical=0.0,
                 **kwargs):
        super(RandomFlip3D, self).__init__(
            flip_ratio=flip_ratio_bev_horizontal, **kwargs)
zhangwenwei's avatar
zhangwenwei committed
94
        self.sync_2d = sync_2d
wuyuefeng's avatar
wuyuefeng committed
95
96
97
98
99
100
101
102
103
104
105
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

    def random_flip_data_3d(self, input_dict, direction='horizontal'):
106
107
108
109
        """Flip 3D data randomly.

        Args:
            input_dict (dict): Result dict from loading pipeline.
110
111
            direction (str, optional): Flip direction.
                Default: 'horizontal'.
112
113

        Returns:
114
            dict: Flipped results, 'points', 'bbox3d_fields' keys are
115
116
                updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
117
        assert direction in ['horizontal', 'vertical']
118
119
120
121
        # for semantic segmentation task, only points will be flipped.
        if 'bbox3d_fields' not in input_dict:
            input_dict['points'].flip(direction)
            return
122
123
124
125
126
        if len(input_dict['bbox3d_fields']) == 0:  # test mode
            input_dict['bbox3d_fields'].append('empty_box3d')
            input_dict['empty_box3d'] = input_dict['box_type_3d'](
                np.array([], dtype=np.float32))
        assert len(input_dict['bbox3d_fields']) == 1
zhangwenwei's avatar
zhangwenwei committed
127
        for key in input_dict['bbox3d_fields']:
128
129
130
131
132
133
134
135
            if 'points' in input_dict:
                input_dict['points'] = input_dict[key].flip(
                    direction, points=input_dict['points'])
            else:
                input_dict[key].flip(direction)
        if 'centers2d' in input_dict:
            assert self.sync_2d is True and direction == 'horizontal', \
                'Only support sync_2d=True and horizontal flip with images'
136
            w = input_dict['ori_shape'][1]
137
138
            input_dict['centers2d'][..., 0] = \
                w - input_dict['centers2d'][..., 0]
139
140
            # need to modify the horizontal position of camera center
            # along u-axis in the image (flip like centers2d)
141
            # ['cam2img'][0][2] = c_u
142
143
            # see more details and examples at
            # https://github.com/open-mmlab/mmdetection3d/pull/744
144
            input_dict['cam2img'][0][2] = w - input_dict['cam2img'][0][2]
zhangwenwei's avatar
zhangwenwei committed
145
146

    def __call__(self, input_dict):
147
        """Call function to flip points, values in the ``bbox3d_fields`` and
148
149
150
151
152
153
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
154
155
            dict: Flipped results, 'flip', 'flip_direction',
                'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added
156
157
                into result dict.
        """
158
        # flip 2D image and its annotations
zhangwenwei's avatar
zhangwenwei committed
159
        super(RandomFlip3D, self).__call__(input_dict)
zhangwenwei's avatar
zhangwenwei committed
160

zhangwenwei's avatar
zhangwenwei committed
161
        if self.sync_2d:
wuyuefeng's avatar
wuyuefeng committed
162
163
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
164
        else:
wuyuefeng's avatar
wuyuefeng committed
165
166
167
168
169
170
171
172
173
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
                ) < self.flip_ratio else False
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

174
175
176
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

wuyuefeng's avatar
wuyuefeng committed
177
178
        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
179
            input_dict['transformation_3d_flow'].extend(['HF'])
wuyuefeng's avatar
wuyuefeng committed
180
181
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
182
            input_dict['transformation_3d_flow'].extend(['VF'])
zhangwenwei's avatar
zhangwenwei committed
183
184
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
185
    def __repr__(self):
186
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
187
        repr_str = self.__class__.__name__
188
        repr_str += f'(sync_2d={self.sync_2d},'
189
        repr_str += f' flip_ratio_bev_vertical={self.flip_ratio_bev_vertical})'
wuyuefeng's avatar
wuyuefeng committed
190
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
191

zhangwenwei's avatar
zhangwenwei committed
192

193
194
195
196
@PIPELINES.register_module()
class RandomJitterPoints(object):
    """Randomly jitter point coordinates.

197
    Different from the global translation in ``GlobalRotScaleTrans``, here we
198
199
200
201
        apply different noises to each point in a scene.

    Args:
        jitter_std (list[float]): The standard deviation of jittering noise.
202
203
            This applies random noise to all points in a 3D scene, which is
            sampled from a gaussian distribution whose standard deviation is
204
            set by ``jitter_std``. Defaults to [0.01, 0.01, 0.01]
205
        clip_range (list[float]): Clip the randomly generated jitter
206
207
208
209
            noise into this range. If None is given, don't perform clipping.
            Defaults to [-0.05, 0.05]

    Note:
210
        This transform should only be used in point cloud segmentation tasks
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
            because we don't transform ground-truth bboxes accordingly.
        For similar transform in detection task, please refer to `ObjectNoise`.
    """

    def __init__(self,
                 jitter_std=[0.01, 0.01, 0.01],
                 clip_range=[-0.05, 0.05]):
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(jitter_std, seq_types):
            assert isinstance(jitter_std, (int, float)), \
                f'unsupported jitter_std type {type(jitter_std)}'
            jitter_std = [jitter_std, jitter_std, jitter_std]
        self.jitter_std = jitter_std

        if clip_range is not None:
            if not isinstance(clip_range, seq_types):
                assert isinstance(clip_range, (int, float)), \
                    f'unsupported clip_range type {type(clip_range)}'
                clip_range = [-clip_range, clip_range]
        self.clip_range = clip_range

    def __call__(self, input_dict):
        """Call function to jitter all the points in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
239
            dict: Results after adding noise to each point,
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        jitter_std = np.array(self.jitter_std, dtype=np.float32)
        jitter_noise = \
            np.random.randn(points.shape[0], 3) * jitter_std[None, :]
        if self.clip_range is not None:
            jitter_noise = np.clip(jitter_noise, self.clip_range[0],
                                   self.clip_range[1])

        points.translate(jitter_noise)
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(jitter_std={self.jitter_std},'
        repr_str += f' clip_range={self.clip_range})'
        return repr_str


261
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
262
class ObjectSample(object):
zhangwenwei's avatar
zhangwenwei committed
263
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
264
265
266
267
268

    Args:
        db_sampler (dict): Config dict of the database sampler.
        sample_2d (bool): Whether to also paste 2D image patch to the images
            This should be true when applying multi-modality cut-and-paste.
liyinhao's avatar
liyinhao committed
269
            Defaults to False.
270
271
        use_ground_plane (bool): Whether to use gound plane to adjust the
            3D labels.
zhangwenwei's avatar
zhangwenwei committed
272
    """
zhangwenwei's avatar
zhangwenwei committed
273

274
    def __init__(self, db_sampler, sample_2d=False, use_ground_plane=False):
zhangwenwei's avatar
zhangwenwei committed
275
276
277
278
279
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
        self.db_sampler = build_from_cfg(db_sampler, OBJECTSAMPLERS)
280
        self.use_ground_plane = use_ground_plane
zhangwenwei's avatar
zhangwenwei committed
281
282
283

    @staticmethod
    def remove_points_in_boxes(points, boxes):
284
285
286
        """Remove the points in the sampled bounding boxes.

        Args:
287
            points (:obj:`BasePoints`): Input point cloud array.
288
289
290
291
292
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
293
        masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes)
zhangwenwei's avatar
zhangwenwei committed
294
295
296
297
        points = points[np.logical_not(masks.any(-1))]
        return points

    def __call__(self, input_dict):
298
299
300
301
302
303
        """Call function to sample ground truth objects to the data.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
304
305
            dict: Results after object sampling augmentation,
                'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated
306
307
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
308
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
309
310
        gt_labels_3d = input_dict['gt_labels_3d']

311
312
313
314
315
        if self.use_ground_plane and 'plane' in input_dict['ann_info']:
            ground_plane = input_dict['ann_info']['plane']
            input_dict['plane'] = ground_plane
        else:
            ground_plane = None
zhangwenwei's avatar
zhangwenwei committed
316
317
318
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
319
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
320
321
322
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
323
324
325
326
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
327
328
        else:
            sampled_dict = self.db_sampler.sample_all(
329
330
331
332
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                img=None,
                ground_plane=ground_plane)
zhangwenwei's avatar
zhangwenwei committed
333
334
335
336

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
337
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
338

zhangwenwei's avatar
zhangwenwei committed
339
340
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
341
342
343
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
344

zhangwenwei's avatar
zhangwenwei committed
345
346
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
347
            points = points.cat([sampled_points, points])
zhangwenwei's avatar
zhangwenwei committed
348
349
350
351
352

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
353

zhangwenwei's avatar
zhangwenwei committed
354
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
355
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
356
357

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
WRH's avatar
WRH committed
358
        input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.int64)
zhangwenwei's avatar
zhangwenwei committed
359
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
360

zhangwenwei's avatar
zhangwenwei committed
361
362
363
        return input_dict

    def __repr__(self):
364
        """str: Return a string that describes the module."""
365
366
367
368
369
370
371
372
373
        repr_str = self.__class__.__name__
        repr_str += f' sample_2d={self.sample_2d},'
        repr_str += f' data_root={self.sampler_cfg.data_root},'
        repr_str += f' info_path={self.sampler_cfg.info_path},'
        repr_str += f' rate={self.sampler_cfg.rate},'
        repr_str += f' prepare={self.sampler_cfg.prepare},'
        repr_str += f' classes={self.sampler_cfg.classes},'
        repr_str += f' sample_groups={self.sampler_cfg.sample_groups}'
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
374
375


376
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
377
class ObjectNoise(object):
zhangwenwei's avatar
zhangwenwei committed
378
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
379
380

    Args:
381
        translation_std (list[float], optional): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
382
383
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
384
        global_rot_range (list[float], optional): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
385
            Defaults to [0.0, 0.0].
386
        rot_range (list[float], optional): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
387
388
389
390
            Defaults to [-0.15707963267, 0.15707963267].
        num_try (int, optional): Number of times to try if the noise applied is
            invalid. Defaults to 100.
    """
zhangwenwei's avatar
zhangwenwei committed
391
392

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
393
                 translation_std=[0.25, 0.25, 0.25],
zhangwenwei's avatar
zhangwenwei committed
394
                 global_rot_range=[0.0, 0.0],
zhangwenwei's avatar
zhangwenwei committed
395
                 rot_range=[-0.15707963267, 0.15707963267],
zhangwenwei's avatar
zhangwenwei committed
396
                 num_try=100):
zhangwenwei's avatar
zhangwenwei committed
397
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
398
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
399
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
400
401
402
        self.num_try = num_try

    def __call__(self, input_dict):
403
404
405
406
407
408
        """Call function to apply noise to each ground truth in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
409
            dict: Results after adding noise to each object,
410
411
                'points', 'gt_bboxes_3d' keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
412
413
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
414

415
        # TODO: this is inplace operation
416
        numpy_box = gt_bboxes_3d.tensor.numpy()
417
418
        numpy_points = points.tensor.numpy()

zhangwenwei's avatar
zhangwenwei committed
419
        noise_per_object_v3_(
420
            numpy_box,
421
            numpy_points,
zhangwenwei's avatar
zhangwenwei committed
422
423
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
424
425
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
426
427

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
428
        input_dict['points'] = points.new_point(numpy_points)
zhangwenwei's avatar
zhangwenwei committed
429
430
431
        return input_dict

    def __repr__(self):
432
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
433
        repr_str = self.__class__.__name__
434
435
436
437
        repr_str += f'(num_try={self.num_try},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' global_rot_range={self.global_rot_range},'
        repr_str += f' rot_range={self.rot_range})'
zhangwenwei's avatar
zhangwenwei committed
438
439
440
        return repr_str


441
442
443
444
445
446
447
448
@PIPELINES.register_module()
class GlobalAlignment(object):
    """Apply global alignment to 3D scene points by rotation and translation.

    Args:
        rotation_axis (int): Rotation axis for points and bboxes rotation.

    Note:
449
450
        We do not record the applied rotation and translation as in
            GlobalRotScaleTrans. Because usually, we do not need to reverse
451
            the alignment step.
452
        For example, ScanNet 3D detection task uses aligned ground-truth
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
            bounding boxes for evaluation.
    """

    def __init__(self, rotation_axis):
        self.rotation_axis = rotation_axis

    def _trans_points(self, input_dict, trans_factor):
        """Private function to translate points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            trans_factor (np.ndarray): Translation vector to be applied.

        Returns:
            dict: Results after translation, 'points' is updated in the dict.
        """
        input_dict['points'].translate(trans_factor)

    def _rot_points(self, input_dict, rot_mat):
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            rot_mat (np.ndarray): Rotation matrix to be applied.

        Returns:
            dict: Results after rotation, 'points' is updated in the dict.
        """
        # input should be rot_mat_T so I transpose it here
        input_dict['points'].rotate(rot_mat.T)

    def _check_rot_mat(self, rot_mat):
        """Check if rotation matrix is valid for self.rotation_axis.

        Args:
            rot_mat (np.ndarray): Rotation matrix to be applied.
        """
        is_valid = np.allclose(np.linalg.det(rot_mat), 1.0)
        valid_array = np.zeros(3)
        valid_array[self.rotation_axis] = 1.0
        is_valid &= (rot_mat[self.rotation_axis, :] == valid_array).all()
        is_valid &= (rot_mat[:, self.rotation_axis] == valid_array).all()
        assert is_valid, f'invalid rotation matrix {rot_mat}'

    def __call__(self, input_dict):
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
504
            dict: Results after global alignment, 'points' and keys in
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
        assert 'axis_align_matrix' in input_dict['ann_info'].keys(), \
            'axis_align_matrix is not provided in GlobalAlignment'

        axis_align_matrix = input_dict['ann_info']['axis_align_matrix']
        assert axis_align_matrix.shape == (4, 4), \
            f'invalid shape {axis_align_matrix.shape} for axis_align_matrix'
        rot_mat = axis_align_matrix[:3, :3]
        trans_vec = axis_align_matrix[:3, -1]

        self._check_rot_mat(rot_mat)
        self._rot_points(input_dict, rot_mat)
        self._trans_points(input_dict, trans_vec)

        return input_dict

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(rotation_axis={self.rotation_axis})'
        return repr_str


528
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
529
class GlobalRotScaleTrans(object):
zhangwenwei's avatar
zhangwenwei committed
530
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
531
532

    Args:
533
        rot_range (list[float], optional): Range of rotation angle.
liyinhao's avatar
liyinhao committed
534
            Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
535
        scale_ratio_range (list[float], optional): Range of scale ratio.
liyinhao's avatar
liyinhao committed
536
            Defaults to [0.95, 1.05].
537
538
        translation_std (list[float], optional): The standard deviation of
            translation noise applied to a scene, which
zhangwenwei's avatar
zhangwenwei committed
539
            is sampled from a gaussian distribution whose standard deviation
liyinhao's avatar
liyinhao committed
540
            is set by ``translation_std``. Defaults to [0, 0, 0]
541
        shift_height (bool, optional): Whether to shift height.
wuyuefeng's avatar
wuyuefeng committed
542
            (the fourth dimension of indoor points) when scaling.
liyinhao's avatar
liyinhao committed
543
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
544
    """
zhangwenwei's avatar
zhangwenwei committed
545
546

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
547
548
                 rot_range=[-0.78539816, 0.78539816],
                 scale_ratio_range=[0.95, 1.05],
wuyuefeng's avatar
wuyuefeng committed
549
550
                 translation_std=[0, 0, 0],
                 shift_height=False):
551
552
553
554
555
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(rot_range, seq_types):
            assert isinstance(rot_range, (int, float)), \
                f'unsupported rot_range type {type(rot_range)}'
            rot_range = [-rot_range, rot_range]
zhangwenwei's avatar
zhangwenwei committed
556
        self.rot_range = rot_range
557
558
559

        assert isinstance(scale_ratio_range, seq_types), \
            f'unsupported scale_ratio_range type {type(scale_ratio_range)}'
zhangwenwei's avatar
zhangwenwei committed
560
        self.scale_ratio_range = scale_ratio_range
561
562
563
564
565
566
567

        if not isinstance(translation_std, seq_types):
            assert isinstance(translation_std, (int, float)), \
                f'unsupported translation_std type {type(translation_std)}'
            translation_std = [
                translation_std, translation_std, translation_std
            ]
568
569
        assert all([std >= 0 for std in translation_std]), \
            'translation_std should be positive'
zhangwenwei's avatar
zhangwenwei committed
570
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
571
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
572
573

    def _trans_bbox_points(self, input_dict):
574
575
576
577
578
579
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
580
581
            dict: Results after translation, 'points', 'pcd_trans'
                and keys in input_dict['bbox3d_fields'] are updated
582
583
                in the result dict.
        """
584
        translation_std = np.array(self.translation_std, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
585
586
        trans_factor = np.random.normal(scale=translation_std, size=3).T

587
        input_dict['points'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
588
589
590
591
592
        input_dict['pcd_trans'] = trans_factor
        for key in input_dict['bbox3d_fields']:
            input_dict[key].translate(trans_factor)

    def _rot_bbox_points(self, input_dict):
593
594
595
596
597
598
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
599
600
            dict: Results after rotation, 'points', 'pcd_rotation'
                and keys in input_dict['bbox3d_fields'] are updated
601
602
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
603
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
604
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
605

606
607
608
609
        # if no bbox in input_dict, only rotate points
        if len(input_dict['bbox3d_fields']) == 0:
            rot_mat_T = input_dict['points'].rotate(noise_rotation)
            input_dict['pcd_rotation'] = rot_mat_T
610
            input_dict['pcd_rotation_angle'] = noise_rotation
611
612
613
            return

        # rotate points with bboxes
zhangwenwei's avatar
zhangwenwei committed
614
        for key in input_dict['bbox3d_fields']:
wuyuefeng's avatar
wuyuefeng committed
615
616
617
618
619
            if len(input_dict[key].tensor) != 0:
                points, rot_mat_T = input_dict[key].rotate(
                    noise_rotation, input_dict['points'])
                input_dict['points'] = points
                input_dict['pcd_rotation'] = rot_mat_T
620
                input_dict['pcd_rotation_angle'] = noise_rotation
621

zhangwenwei's avatar
zhangwenwei committed
622
    def _scale_bbox_points(self, input_dict):
623
624
625
626
627
628
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
629
            dict: Results after scaling, 'points'and keys in
630
631
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
632
        scale = input_dict['pcd_scale_factor']
633
634
        points = input_dict['points']
        points.scale(scale)
wuyuefeng's avatar
wuyuefeng committed
635
        if self.shift_height:
636
637
            assert 'height' in points.attribute_dims.keys(), \
                'setting shift_height=True but points have no height attribute'
638
639
            points.tensor[:, points.attribute_dims['height']] *= scale
        input_dict['points'] = points
wuyuefeng's avatar
wuyuefeng committed
640

zhangwenwei's avatar
zhangwenwei committed
641
642
        for key in input_dict['bbox3d_fields']:
            input_dict[key].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
643

zhangwenwei's avatar
zhangwenwei committed
644
    def _random_scale(self, input_dict):
645
646
647
648
649
650
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
651
            dict: Results after scaling, 'pcd_scale_factor' are updated
652
653
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
654
655
656
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
657
658

    def __call__(self, input_dict):
659
        """Private function to rotate, scale and translate bounding boxes and
660
661
662
663
664
665
666
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
667
                'pcd_scale_factor', 'pcd_trans' and keys in
668
669
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
670
671
672
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

zhangwenwei's avatar
zhangwenwei committed
673
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
674

zhangwenwei's avatar
zhangwenwei committed
675
676
677
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
678

zhangwenwei's avatar
zhangwenwei committed
679
        self._trans_bbox_points(input_dict)
680
681

        input_dict['transformation_3d_flow'].extend(['R', 'S', 'T'])
zhangwenwei's avatar
zhangwenwei committed
682
683
684
        return input_dict

    def __repr__(self):
685
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
686
        repr_str = self.__class__.__name__
687
688
689
690
        repr_str += f'(rot_range={self.rot_range},'
        repr_str += f' scale_ratio_range={self.scale_ratio_range},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' shift_height={self.shift_height})'
zhangwenwei's avatar
zhangwenwei committed
691
692
693
        return repr_str


694
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
695
class PointShuffle(object):
696
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
697
698

    def __call__(self, input_dict):
699
700
701
702
703
704
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
705
            dict: Results after filtering, 'points', 'pts_instance_mask'
706
                and 'pts_semantic_mask' keys are updated in the result dict.
707
        """
708
709
710
711
712
713
714
715
716
717
718
719
        idx = input_dict['points'].shuffle()
        idx = idx.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[idx]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[idx]

zhangwenwei's avatar
zhangwenwei committed
720
721
722
723
724
725
        return input_dict

    def __repr__(self):
        return self.__class__.__name__


726
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
727
class ObjectRangeFilter(object):
728
729
730
731
732
    """Filter objects by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
733
734
735
736
737

    def __init__(self, point_cloud_range):
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)

    def __call__(self, input_dict):
738
739
740
741
742
743
        """Call function to filter objects by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
744
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
745
746
                keys are updated in the result dict.
        """
747
748
749
750
751
752
753
        # Check points instance type and initialise bev_range
        if isinstance(input_dict['gt_bboxes_3d'],
                      (LiDARInstance3DBoxes, DepthInstance3DBoxes)):
            bev_range = self.pcd_range[[0, 1, 3, 4]]
        elif isinstance(input_dict['gt_bboxes_3d'], CameraInstance3DBoxes):
            bev_range = self.pcd_range[[0, 2, 3, 5]]

zhangwenwei's avatar
zhangwenwei committed
754
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
755
        gt_labels_3d = input_dict['gt_labels_3d']
756
        mask = gt_bboxes_3d.in_range_bev(bev_range)
zhangwenwei's avatar
zhangwenwei committed
757
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
758
759
760
761
762
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
zhangwenwei's avatar
zhangwenwei committed
763
764

        # limit rad to [-pi, pi]
765
766
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
767
768
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
769
770
771
        return input_dict

    def __repr__(self):
772
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
773
        repr_str = self.__class__.__name__
774
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
775
776
777
        return repr_str


778
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
779
class PointsRangeFilter(object):
780
781
782
783
784
    """Filter points by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
785
786

    def __init__(self, point_cloud_range):
787
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
788
789

    def __call__(self, input_dict):
790
791
792
793
794
795
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
796
            dict: Results after filtering, 'points', 'pts_instance_mask'
797
                and 'pts_semantic_mask' keys are updated in the result dict.
798
        """
zhangwenwei's avatar
zhangwenwei committed
799
        points = input_dict['points']
800
801
        points_mask = points.in_range_3d(self.pcd_range)
        clean_points = points[points_mask]
zhangwenwei's avatar
zhangwenwei committed
802
        input_dict['points'] = clean_points
803
804
805
806
807
808
809
810
811
812
813
        points_mask = points_mask.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[points_mask]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[points_mask]

zhangwenwei's avatar
zhangwenwei committed
814
815
816
        return input_dict

    def __repr__(self):
817
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
818
        repr_str = self.__class__.__name__
819
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
820
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
821
822
823
824


@PIPELINES.register_module()
class ObjectNameFilter(object):
zhangwenwei's avatar
zhangwenwei committed
825
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
826
827

    Args:
liyinhao's avatar
liyinhao committed
828
        classes (list[str]): List of class names to be kept for training.
zhangwenwei's avatar
zhangwenwei committed
829
830
831
832
833
834
835
    """

    def __init__(self, classes):
        self.classes = classes
        self.labels = list(range(len(self.classes)))

    def __call__(self, input_dict):
836
837
838
839
840
841
        """Call function to filter objects by their names.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
842
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
843
844
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
845
846
847
848
849
850
851
852
853
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
                                  dtype=np.bool_)
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

    def __repr__(self):
854
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
855
856
857
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
858
859
860


@PIPELINES.register_module()
861
862
class PointSample(object):
    """Point sample.
wuyuefeng's avatar
wuyuefeng committed
863
864
865
866
867

    Sampling data to a certain number.

    Args:
        num_points (int): Number of points to be sampled.
868
        sample_range (float, optional): The range where to sample points.
869
870
871
872
            If not None, the points with depth larger than `sample_range` are
            prior to be sampled. Defaults to None.
        replace (bool, optional): Whether the sampling is with or without
            replacement. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
873
874
    """

875
    def __init__(self, num_points, sample_range=None, replace=False):
wuyuefeng's avatar
wuyuefeng committed
876
        self.num_points = num_points
877
878
879
880
881
882
883
884
885
        self.sample_range = sample_range
        self.replace = replace

    def _points_random_sampling(self,
                                points,
                                num_samples,
                                sample_range=None,
                                replace=False,
                                return_choices=False):
wuyuefeng's avatar
wuyuefeng committed
886
887
888
889
890
        """Points random sampling.

        Sample points to a certain number.

        Args:
891
            points (np.ndarray | :obj:`BasePoints`): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
892
            num_samples (int): Number of samples to be sampled.
893
            sample_range (float, optional): Indicating the range where the
894
                points will be sampled. Defaults to None.
895
896
897
898
            replace (bool, optional): Sampling with or without replacement.
                Defaults to None.
            return_choices (bool, optional): Whether return choice.
                Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
899
        Returns:
900
            tuple[np.ndarray] | np.ndarray:
901
                - points (np.ndarray | :obj:`BasePoints`): 3D Points.
902
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
903
        """
904
        if not replace:
wuyuefeng's avatar
wuyuefeng committed
905
            replace = (points.shape[0] < num_samples)
906
907
908
        point_range = range(len(points))
        if sample_range is not None and not replace:
            # Only sampling the near points when len(points) >= num_samples
909
910
911
            dist = np.linalg.norm(points.tensor, axis=1)
            far_inds = np.where(dist >= sample_range)[0]
            near_inds = np.where(dist < sample_range)[0]
912
913
914
915
            # in case there are too many far points
            if len(far_inds) > num_samples:
                far_inds = np.random.choice(
                    far_inds, num_samples, replace=False)
916
917
918
919
920
921
922
            point_range = near_inds
            num_samples -= len(far_inds)
        choices = np.random.choice(point_range, num_samples, replace=replace)
        if sample_range is not None and not replace:
            choices = np.concatenate((far_inds, choices))
            # Shuffle points after sampling
            np.random.shuffle(choices)
wuyuefeng's avatar
wuyuefeng committed
923
924
925
926
927
928
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

    def __call__(self, results):
929
930
931
932
933
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.
        Returns:
934
            dict: Results after sampling, 'points', 'pts_instance_mask'
935
936
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
937
        points = results['points']
938
939
940
941
942
943
        points, choices = self._points_random_sampling(
            points,
            self.num_points,
            self.sample_range,
            self.replace,
            return_choices=True)
944
        results['points'] = points
945

wuyuefeng's avatar
wuyuefeng committed
946
947
948
        pts_instance_mask = results.get('pts_instance_mask', None)
        pts_semantic_mask = results.get('pts_semantic_mask', None)

949
        if pts_instance_mask is not None:
wuyuefeng's avatar
wuyuefeng committed
950
951
            pts_instance_mask = pts_instance_mask[choices]
            results['pts_instance_mask'] = pts_instance_mask
952
953
954

        if pts_semantic_mask is not None:
            pts_semantic_mask = pts_semantic_mask[choices]
wuyuefeng's avatar
wuyuefeng committed
955
956
957
958
959
            results['pts_semantic_mask'] = pts_semantic_mask

        return results

    def __repr__(self):
960
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
961
        repr_str = self.__class__.__name__
962
        repr_str += f'(num_points={self.num_points},'
963
964
        repr_str += f' sample_range={self.sample_range},'
        repr_str += f' replace={self.replace})'
965

966
967
968
        return repr_str


969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
@PIPELINES.register_module()
class IndoorPointSample(PointSample):
    """Indoor point sample.

    Sampling data to a certain number.
    NOTE: IndoorPointSample is deprecated in favor of PointSample

    Args:
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, *args, **kwargs):
        warnings.warn(
            'IndoorPointSample is deprecated in favor of PointSample')
        super(IndoorPointSample, self).__init__(*args, **kwargs)


986
987
988
989
990
991
992
993
994
995
996
997
@PIPELINES.register_module()
class IndoorPatchPointSample(object):
    r"""Indoor point sample within a patch. Modified from `PointNet++ <https://
    github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py>`_.

    Sampling data to a certain number for semantic segmentation.

    Args:
        num_points (int): Number of points to be sampled.
        block_size (float, optional): Size of a block to sample points from.
            Defaults to 1.5.
        sample_rate (float, optional): Stride used in sliding patch generation.
998
999
1000
            This parameter is unused in `IndoorPatchPointSample` and thus has
            been deprecated. We plan to remove it in the future.
            Defaults to None.
1001
1002
        ignore_index (int, optional): Label index that won't be used for the
            segmentation task. This is set in PointSegClassMapping as neg_cls.
1003
            If not None, will be used as a patch selection criterion.
1004
1005
1006
1007
1008
            Defaults to None.
        use_normalized_coord (bool, optional): Whether to use normalized xyz as
            additional features. Defaults to False.
        num_try (int, optional): Number of times to try if the patch selected
            is invalid. Defaults to 10.
1009
        enlarge_size (float, optional): Enlarge the sampled patch to
1010
            [-block_size / 2 - enlarge_size, block_size / 2 + enlarge_size] as
1011
            an augmentation. If None, set it as 0. Defaults to 0.2.
1012
        min_unique_num (int, optional): Minimum number of unique points
1013
1014
            the sampled patch should contain. If None, use PointNet++'s method
            to judge uniqueness. Defaults to None.
1015
1016
        eps (float, optional): A value added to patch boundary to guarantee
            points coverage. Defaults to 1e-2.
1017
1018
1019
1020
1021
1022

    Note:
        This transform should only be used in the training process of point
            cloud segmentation tasks. For the sliding patch generation and
            inference process in testing, please refer to the `slide_inference`
            function of `EncoderDecoder3D` class.
1023
1024
1025
1026
1027
    """

    def __init__(self,
                 num_points,
                 block_size=1.5,
1028
                 sample_rate=None,
1029
1030
                 ignore_index=None,
                 use_normalized_coord=False,
1031
1032
                 num_try=10,
                 enlarge_size=0.2,
1033
1034
                 min_unique_num=None,
                 eps=1e-2):
1035
1036
1037
1038
1039
        self.num_points = num_points
        self.block_size = block_size
        self.ignore_index = ignore_index
        self.use_normalized_coord = use_normalized_coord
        self.num_try = num_try
1040
        self.enlarge_size = enlarge_size if enlarge_size is not None else 0.0
1041
        self.min_unique_num = min_unique_num
1042
        self.eps = eps
1043
1044
1045
1046
1047

        if sample_rate is not None:
            warnings.warn(
                "'sample_rate' has been deprecated and will be removed in "
                'the future. Please remove them from your code.')
1048
1049
1050
1051
1052

    def _input_generation(self, coords, patch_center, coord_max, attributes,
                          attribute_dims, point_type):
        """Generating model input.

1053
        Generate input by subtracting patch center and adding additional
1054
1055
1056
1057
1058
1059
1060
1061
1062
            features. Currently support colors and normalized xyz as features.

        Args:
            coords (np.ndarray): Sampled 3D Points.
            patch_center (np.ndarray): Center coordinate of the selected patch.
            coord_max (np.ndarray): Max coordinate of all 3D Points.
            attributes (np.ndarray): features of input points.
            attribute_dims (dict): Dictionary to indicate the meaning of extra
                dimension.
1063
            point_type (type): class of input points inherited from BasePoints.
1064
1065

        Returns:
1066
            :obj:`BasePoints`: The generated input data.
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
        """
        # subtract patch center, the z dimension is not centered
        centered_coords = coords.copy()
        centered_coords[:, 0] -= patch_center[0]
        centered_coords[:, 1] -= patch_center[1]

        if self.use_normalized_coord:
            normalized_coord = coords / coord_max
            attributes = np.concatenate([attributes, normalized_coord], axis=1)
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(normalized_coord=[
                    attributes.shape[1], attributes.shape[1] +
                    1, attributes.shape[1] + 2
                ]))

        points = np.concatenate([centered_coords, attributes], axis=1)
        points = point_type(
            points, points_dim=points.shape[1], attribute_dims=attribute_dims)

        return points

1090
    def _patch_points_sampling(self, points, sem_mask):
1091
1092
1093
1094
1095
1096
        """Patch points sampling.

        First sample a valid patch.
        Then sample points within that patch to a certain number.

        Args:
1097
            points (:obj:`BasePoints`): 3D Points.
1098
1099
1100
            sem_mask (np.ndarray): semantic segmentation mask for input points.

        Returns:
1101
            tuple[:obj:`BasePoints`, np.ndarray] | :obj:`BasePoints`:
1102

1103
                - points (:obj:`BasePoints`): 3D Points.
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
                - choices (np.ndarray): The generated random samples.
        """
        coords = points.coord.numpy()
        attributes = points.tensor[:, 3:].numpy()
        attribute_dims = points.attribute_dims
        point_type = type(points)

        coord_max = np.amax(coords, axis=0)
        coord_min = np.amin(coords, axis=0)

1114
        for _ in range(self.num_try):
1115
1116
1117
            # random sample a point as patch center
            cur_center = coords[np.random.choice(coords.shape[0])]

1118
1119
            # boundary of a patch, which would be enlarged by
            # `self.enlarge_size` as an augmentation
1120
1121
1122
1123
1124
1125
1126
            cur_max = cur_center + np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_min = cur_center - np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_max[2] = coord_max[2]
            cur_min[2] = coord_min[2]
            cur_choice = np.sum(
1127
1128
                (coords >= (cur_min - self.enlarge_size)) *
                (coords <= (cur_max + self.enlarge_size)),
1129
1130
1131
1132
1133
1134
1135
                axis=1) == 3

            if not cur_choice.any():  # no points in this patch
                continue

            cur_coords = coords[cur_choice, :]
            cur_sem_mask = sem_mask[cur_choice]
1136
            point_idxs = np.where(cur_choice)[0]
1137
            mask = np.sum(
1138
1139
                (cur_coords >= (cur_min - self.eps)) * (cur_coords <=
                                                        (cur_max + self.eps)),
1140
                axis=1) == 3
1141

1142
1143
            # two criteria for patch sampling, adopted from PointNet++
            # 1. selected patch should contain enough unique points
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
            if self.min_unique_num is None:
                # use PointNet++'s method as default
                # [31, 31, 62] are just some big values used to transform
                # coords from 3d array to 1d and then check their uniqueness
                # this is used in all the ScanNet code following PointNet++
                vidx = np.ceil(
                    (cur_coords[mask, :] - cur_min) / (cur_max - cur_min) *
                    np.array([31.0, 31.0, 62.0]))
                vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 + vidx[:, 1] * 62.0 +
                                 vidx[:, 2])
                flag1 = len(vidx) / 31.0 / 31.0 / 62.0 >= 0.02
            else:
1156
                # if `min_unique_num` is provided, directly compare with it
1157
                flag1 = mask.sum() >= self.min_unique_num
1158

1159
            # 2. selected patch should contain enough annotated points
1160
1161
1162
1163
1164
1165
1166
1167
1168
            if self.ignore_index is None:
                flag2 = True
            else:
                flag2 = np.sum(cur_sem_mask != self.ignore_index) / \
                               len(cur_sem_mask) >= 0.7

            if flag1 and flag2:
                break

1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
        # sample idx to `self.num_points`
        if point_idxs.size >= self.num_points:
            # no duplicate in sub-sampling
            choices = np.random.choice(
                point_idxs, self.num_points, replace=False)
        else:
            # do not use random choice here to avoid some points not counted
            dup = np.random.choice(point_idxs.size,
                                   self.num_points - point_idxs.size)
            idx_dup = np.concatenate(
                [np.arange(point_idxs.size),
                 np.array(dup)], 0)
            choices = point_idxs[idx_dup]
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

        # construct model input
        points = self._input_generation(coords[choices], cur_center, coord_max,
                                        attributes[choices], attribute_dims,
                                        point_type)

        return points, choices

    def __call__(self, results):
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1197
            dict: Results after sampling, 'points', 'pts_instance_mask'
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']

        assert 'pts_semantic_mask' in results.keys(), \
            'semantic mask should be provided in training and evaluation'
        pts_semantic_mask = results['pts_semantic_mask']

        points, choices = self._patch_points_sampling(points,
                                                      pts_semantic_mask)

        results['points'] = points
        results['pts_semantic_mask'] = pts_semantic_mask[choices]
        pts_instance_mask = results.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            results['pts_instance_mask'] = pts_instance_mask[choices]

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(num_points={self.num_points},'
        repr_str += f' block_size={self.block_size},'
        repr_str += f' ignore_index={self.ignore_index},'
        repr_str += f' use_normalized_coord={self.use_normalized_coord},'
1224
1225
        repr_str += f' num_try={self.num_try},'
        repr_str += f' enlarge_size={self.enlarge_size},'
1226
1227
        repr_str += f' min_unique_num={self.min_unique_num},'
        repr_str += f' eps={self.eps})'
wuyuefeng's avatar
wuyuefeng committed
1228
        return repr_str
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256


@PIPELINES.register_module()
class BackgroundPointsFilter(object):
    """Filter background points near the bounding box.

    Args:
        bbox_enlarge_range (tuple[float], float): Bbox enlarge range.
    """

    def __init__(self, bbox_enlarge_range):
        assert (is_tuple_of(bbox_enlarge_range, float)
                and len(bbox_enlarge_range) == 3) \
            or isinstance(bbox_enlarge_range, float), \
            f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}'

        if isinstance(bbox_enlarge_range, float):
            bbox_enlarge_range = [bbox_enlarge_range] * 3
        self.bbox_enlarge_range = np.array(
            bbox_enlarge_range, dtype=np.float32)[np.newaxis, :]

    def __call__(self, input_dict):
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1257
            dict: Results after filtering, 'points', 'pts_instance_mask'
1258
                and 'pts_semantic_mask' keys are updated in the result dict.
1259
1260
1261
1262
        """
        points = input_dict['points']
        gt_bboxes_3d = input_dict['gt_bboxes_3d']

xiliu8006's avatar
xiliu8006 committed
1263
1264
1265
1266
        # avoid groundtruth being modified
        gt_bboxes_3d_np = gt_bboxes_3d.tensor.clone().numpy()
        gt_bboxes_3d_np[:, :3] = gt_bboxes_3d.gravity_center.clone().numpy()

1267
1268
        enlarged_gt_bboxes_3d = gt_bboxes_3d_np.copy()
        enlarged_gt_bboxes_3d[:, 3:6] += self.bbox_enlarge_range
xiliu8006's avatar
xiliu8006 committed
1269
        points_numpy = points.tensor.clone().numpy()
1270
1271
        foreground_masks = box_np_ops.points_in_rbbox(
            points_numpy, gt_bboxes_3d_np, origin=(0.5, 0.5, 0.5))
1272
        enlarge_foreground_masks = box_np_ops.points_in_rbbox(
1273
            points_numpy, enlarged_gt_bboxes_3d, origin=(0.5, 0.5, 0.5))
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
        foreground_masks = foreground_masks.max(1)
        enlarge_foreground_masks = enlarge_foreground_masks.max(1)
        valid_masks = ~np.logical_and(~foreground_masks,
                                      enlarge_foreground_masks)

        input_dict['points'] = points[valid_masks]
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[valid_masks]

        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[valid_masks]
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
1292
        repr_str += f'(bbox_enlarge_range={self.bbox_enlarge_range.tolist()})'
1293
        return repr_str
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304


@PIPELINES.register_module()
class VoxelBasedPointSampler(object):
    """Voxel based point sampler.

    Apply voxel sampling to multiple sweep points.

    Args:
        cur_sweep_cfg (dict): Config for sampling current points.
        prev_sweep_cfg (dict): Config for sampling previous points.
1305
        time_dim (int): Index that indicate the time dimension
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
            for input points.
    """

    def __init__(self, cur_sweep_cfg, prev_sweep_cfg=None, time_dim=3):
        self.cur_voxel_generator = VoxelGenerator(**cur_sweep_cfg)
        self.cur_voxel_num = self.cur_voxel_generator._max_voxels
        self.time_dim = time_dim
        if prev_sweep_cfg is not None:
            assert prev_sweep_cfg['max_num_points'] == \
                cur_sweep_cfg['max_num_points']
            self.prev_voxel_generator = VoxelGenerator(**prev_sweep_cfg)
            self.prev_voxel_num = self.prev_voxel_generator._max_voxels
        else:
            self.prev_voxel_generator = None
            self.prev_voxel_num = 0

    def _sample_points(self, points, sampler, point_dim):
        """Sample points for each points subset.

        Args:
            points (np.ndarray): Points subset to be sampled.
            sampler (VoxelGenerator): Voxel based sampler for
                each points subset.
1329
            point_dim (int): The dimension of each points
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354

        Returns:
            np.ndarray: Sampled points.
        """
        voxels, coors, num_points_per_voxel = sampler.generate(points)
        if voxels.shape[0] < sampler._max_voxels:
            padding_points = np.zeros([
                sampler._max_voxels - voxels.shape[0], sampler._max_num_points,
                point_dim
            ],
                                      dtype=points.dtype)
            padding_points[:] = voxels[0]
            sample_points = np.concatenate([voxels, padding_points], axis=0)
        else:
            sample_points = voxels

        return sample_points

    def __call__(self, results):
        """Call function to sample points from multiple sweeps.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1355
            dict: Results after sampling, 'points', 'pts_instance_mask'
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']
        original_dim = points.shape[1]

        # TODO: process instance and semantic mask while _max_num_points
        # is larger than 1
        # Extend points with seg and mask fields
        map_fields2dim = []
        start_dim = original_dim
1366
1367
        points_numpy = points.tensor.numpy()
        extra_channel = [points_numpy]
1368
1369
1370
1371
1372
1373
1374
1375
1376
        for idx, key in enumerate(results['pts_mask_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

        start_dim += len(results['pts_mask_fields'])
        for idx, key in enumerate(results['pts_seg_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

1377
        points_numpy = np.concatenate(extra_channel, axis=-1)
1378
1379
1380
1381
1382

        # Split points into two part, current sweep points and
        # previous sweeps points.
        # TODO: support different sampling methods for next sweeps points
        # and previous sweeps points.
1383
1384
1385
        cur_points_flag = (points_numpy[:, self.time_dim] == 0)
        cur_sweep_points = points_numpy[cur_points_flag]
        prev_sweeps_points = points_numpy[~cur_points_flag]
1386
1387
1388
1389
1390
1391
1392
1393
1394
        if prev_sweeps_points.shape[0] == 0:
            prev_sweeps_points = cur_sweep_points

        # Shuffle points before sampling
        np.random.shuffle(cur_sweep_points)
        np.random.shuffle(prev_sweeps_points)

        cur_sweep_points = self._sample_points(cur_sweep_points,
                                               self.cur_voxel_generator,
1395
                                               points_numpy.shape[1])
1396
1397
1398
        if self.prev_voxel_generator is not None:
            prev_sweeps_points = self._sample_points(prev_sweeps_points,
                                                     self.prev_voxel_generator,
1399
                                                     points_numpy.shape[1])
1400

1401
1402
            points_numpy = np.concatenate(
                [cur_sweep_points, prev_sweeps_points], 0)
1403
        else:
1404
            points_numpy = cur_sweep_points
1405
1406

        if self.cur_voxel_generator._max_num_points == 1:
1407
1408
            points_numpy = points_numpy.squeeze(1)
        results['points'] = points.new_point(points_numpy[..., :original_dim])
1409

1410
        # Restore the corresponding seg and mask fields
1411
        for key, dim_index in map_fields2dim:
1412
            results[key] = points_numpy[..., dim_index]
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""

        def _auto_indent(repr_str, indent):
            repr_str = repr_str.split('\n')
            repr_str = [' ' * indent + t + '\n' for t in repr_str]
            repr_str = ''.join(repr_str)[:-1]
            return repr_str

        repr_str = self.__class__.__name__
        indent = 4
        repr_str += '(\n'
        repr_str += ' ' * indent + f'num_cur_sweep={self.cur_voxel_num},\n'
        repr_str += ' ' * indent + f'num_prev_sweep={self.prev_voxel_num},\n'
        repr_str += ' ' * indent + f'time_dim={self.time_dim},\n'
        repr_str += ' ' * indent + 'cur_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.cur_voxel_generator), 8)},\n'
        repr_str += ' ' * indent + 'prev_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.prev_voxel_generator), 8)})'
        return repr_str
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562


@PIPELINES.register_module()
class AffineResize(object):
    """Get the affine transform matrices to the target size.

    Different from :class:`RandomAffine` in MMDetection, this class can
    calculate the affine transform matrices while resizing the input image
    to a fixed size. The affine transform matrices include: 1) matrix
    transforming original image to the network input image size. 2) matrix
    transforming original image to the network output feature map size.

    Args:
        img_scale (tuple): Images scales for resizing.
        down_ratio (int): The down ratio of feature map.
            Actually the arg should be >= 1.
        bbox_clip_border (bool, optional): Whether clip the objects
            outside the border of the image. Defaults to True.
    """

    def __init__(self, img_scale, down_ratio, bbox_clip_border=True):

        self.img_scale = img_scale
        self.down_ratio = down_ratio
        self.bbox_clip_border = bbox_clip_border

    def __call__(self, results):
        """Call function to do affine transform to input image and labels.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after affine resize, 'affine_aug', 'trans_mat'
                keys are added in the result dict.
        """
        # The results have gone through RandomShiftScale before AffineResize
        if 'center' not in results:
            img = results['img']
            height, width = img.shape[:2]
            center = np.array([width / 2, height / 2], dtype=np.float32)
            size = np.array([width, height], dtype=np.float32)
            results['affine_aug'] = False
        else:
            # The results did not go through RandomShiftScale before
            # AffineResize
            img = results['img']
            center = results['center']
            size = results['size']

        trans_affine = self._get_transform_matrix(center, size, self.img_scale)

        img = cv2.warpAffine(img, trans_affine[:2, :], self.img_scale)

        if isinstance(self.down_ratio, tuple):
            trans_mat = [
                self._get_transform_matrix(
                    center, size,
                    (self.img_scale[0] // ratio, self.img_scale[1] // ratio))
                for ratio in self.down_ratio
            ]  # (3, 3)
        else:
            trans_mat = self._get_transform_matrix(
                center, size, (self.img_scale[0] // self.down_ratio,
                               self.img_scale[1] // self.down_ratio))

        results['img'] = img
        results['img_shape'] = img.shape
        results['pad_shape'] = img.shape
        results['trans_mat'] = trans_mat

        self._affine_bboxes(results, trans_affine)

        if 'centers2d' in results:
            centers2d = self._affine_transform(results['centers2d'],
                                               trans_affine)
            valid_index = (centers2d[:, 0] >
                           0) & (centers2d[:, 0] <
                                 self.img_scale[0]) & (centers2d[:, 1] > 0) & (
                                     centers2d[:, 1] < self.img_scale[1])
            results['centers2d'] = centers2d[valid_index]

            for key in results.get('bbox_fields', []):
                if key in ['gt_bboxes']:
                    results[key] = results[key][valid_index]
                    if 'gt_labels' in results:
                        results['gt_labels'] = results['gt_labels'][
                            valid_index]
                    if 'gt_masks' in results:
                        raise NotImplementedError(
                            'AffineResize only supports bbox.')

            for key in results.get('bbox3d_fields', []):
                if key in ['gt_bboxes_3d']:
                    results[key].tensor = results[key].tensor[valid_index]
                    if 'gt_labels_3d' in results:
                        results['gt_labels_3d'] = results['gt_labels_3d'][
                            valid_index]

            results['depths'] = results['depths'][valid_index]

        return results

    def _affine_bboxes(self, results, matrix):
        """Affine transform bboxes to input image.

        Args:
            results (dict): Result dict from loading pipeline.
            matrix (np.ndarray): Matrix transforming original
                image to the network input image size.
                shape: (3, 3)
        """

        for key in results.get('bbox_fields', []):
            bboxes = results[key]
            bboxes[:, :2] = self._affine_transform(bboxes[:, :2], matrix)
            bboxes[:, 2:] = self._affine_transform(bboxes[:, 2:], matrix)
            if self.bbox_clip_border:
                bboxes[:,
                       [0, 2]] = bboxes[:,
                                        [0, 2]].clip(0, self.img_scale[0] - 1)
                bboxes[:,
                       [1, 3]] = bboxes[:,
                                        [1, 3]].clip(0, self.img_scale[1] - 1)
            results[key] = bboxes

    def _affine_transform(self, points, matrix):
1563
        """Affine transform bbox points to input image.
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616

        Args:
            points (np.ndarray): Points to be transformed.
                shape: (N, 2)
            matrix (np.ndarray): Affine transform matrix.
                shape: (3, 3)

        Returns:
            np.ndarray: Transformed points.
        """
        num_points = points.shape[0]
        hom_points_2d = np.concatenate((points, np.ones((num_points, 1))),
                                       axis=1)
        hom_points_2d = hom_points_2d.T
        affined_points = np.matmul(matrix, hom_points_2d).T
        return affined_points[:, :2]

    def _get_transform_matrix(self, center, scale, output_scale):
        """Get affine transform matrix.

        Args:
            center (tuple): Center of current image.
            scale (tuple): Scale of current image.
            output_scale (tuple[float]): The transform target image scales.

        Returns:
            np.ndarray: Affine transform matrix.
        """
        # TODO: further add rot and shift here.
        src_w = scale[0]
        dst_w = output_scale[0]
        dst_h = output_scale[1]

        src_dir = np.array([0, src_w * -0.5])
        dst_dir = np.array([0, dst_w * -0.5])

        src = np.zeros((3, 2), dtype=np.float32)
        dst = np.zeros((3, 2), dtype=np.float32)
        src[0, :] = center
        src[1, :] = center + src_dir
        dst[0, :] = np.array([dst_w * 0.5, dst_h * 0.5])
        dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir

        src[2, :] = self._get_ref_point(src[0, :], src[1, :])
        dst[2, :] = self._get_ref_point(dst[0, :], dst[1, :])

        get_matrix = cv2.getAffineTransform(src, dst)

        matrix = np.concatenate((get_matrix, [[0., 0., 1.]]))

        return matrix.astype(np.float32)

    def _get_ref_point(self, ref_point1, ref_point2):
1617
        """Get reference point to calculate affine transform matrix.
1618
1619

        While using opencv to calculate the affine matrix, we need at least
1620
        three corresponding points separately on original image and target
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
        image. Here we use two points to get the the third reference point.
        """
        d = ref_point1 - ref_point2
        ref_point3 = ref_point2 + np.array([-d[1], d[0]])
        return ref_point3

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(img_scale={self.img_scale}, '
        repr_str += f'down_ratio={self.down_ratio}) '
        return repr_str


@PIPELINES.register_module()
class RandomShiftScale(object):
    """Random shift scale.

    Different from the normal shift and scale function, it doesn't
    directly shift or scale image. It can record the shift and scale
1640
    infos into loading pipelines. It's designed to be used with
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
    AffineResize together.

    Args:
        shift_scale (tuple[float]): Shift and scale range.
        aug_prob (float): The shifting and scaling probability.
    """

    def __init__(self, shift_scale, aug_prob):

        self.shift_scale = shift_scale
        self.aug_prob = aug_prob

    def __call__(self, results):
        """Call function to record random shift and scale infos.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after random shift and scale, 'center', 'size'
                and 'affine_aug' keys are added in the result dict.
        """
        img = results['img']

        height, width = img.shape[:2]

        center = np.array([width / 2, height / 2], dtype=np.float32)
        size = np.array([width, height], dtype=np.float32)

        if random.random() < self.aug_prob:
            shift, scale = self.shift_scale[0], self.shift_scale[1]
            shift_ranges = np.arange(-shift, shift + 0.1, 0.1)
            center[0] += size[0] * random.choice(shift_ranges)
            center[1] += size[1] * random.choice(shift_ranges)
            scale_ranges = np.arange(1 - scale, 1 + scale + 0.1, 0.1)
            size *= random.choice(scale_ranges)
            results['affine_aug'] = True
        else:
            results['affine_aug'] = False

        results['center'] = center
        results['size'] = size

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(shift_scale={self.shift_scale}, '
        repr_str += f'aug_prob={self.aug_prob}) '
        return repr_str