transforms_3d.py 23.1 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
import numpy as np
2
from mmcv.utils import build_from_cfg
zhangwenwei's avatar
zhangwenwei committed
3
4

from mmdet3d.core.bbox import box_np_ops
5
from mmdet.datasets.builder import PIPELINES
zhangwenwei's avatar
zhangwenwei committed
6
from mmdet.datasets.pipelines import RandomFlip
zhangwenwei's avatar
zhangwenwei committed
7
8
9
10
from ..registry import OBJECTSAMPLERS
from .data_augment_utils import noise_per_object_v3_


11
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
12
13
14
15
16
17
18
19
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

    Args:
zhangwenwei's avatar
zhangwenwei committed
20
21
22
        sync_2d (bool, optional): Whether to apply flip according to the 2D
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
liyinhao's avatar
liyinhao committed
23
            to that of 2D images. Defaults to True.
wuyuefeng's avatar
wuyuefeng committed
24
        flip_ratio_bev_horizontal (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
25
            in horizontal direction. Defaults to 0.0.
wuyuefeng's avatar
wuyuefeng committed
26
        flip_ratio_bev_vertical (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
27
            in vertical direction. Defaults to 0.0.
zhangwenwei's avatar
zhangwenwei committed
28
29
    """

wuyuefeng's avatar
wuyuefeng committed
30
31
32
33
34
35
36
    def __init__(self,
                 sync_2d=True,
                 flip_ratio_bev_horizontal=0.0,
                 flip_ratio_bev_vertical=0.0,
                 **kwargs):
        super(RandomFlip3D, self).__init__(
            flip_ratio=flip_ratio_bev_horizontal, **kwargs)
zhangwenwei's avatar
zhangwenwei committed
37
        self.sync_2d = sync_2d
wuyuefeng's avatar
wuyuefeng committed
38
39
40
41
42
43
44
45
46
47
48
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

    def random_flip_data_3d(self, input_dict, direction='horizontal'):
49
50
51
52
53
54
55
56
57
58
        """Flip 3D data randomly.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            direction (str): Flip direction. Default: horizontal.

        Returns:
            dict: Flipped results, 'points', 'bbox3d_fields' keys are \
                updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
59
        assert direction in ['horizontal', 'vertical']
60
61
62
63
64
        if len(input_dict['bbox3d_fields']) == 0:  # test mode
            input_dict['bbox3d_fields'].append('empty_box3d')
            input_dict['empty_box3d'] = input_dict['box_type_3d'](
                np.array([], dtype=np.float32))
        assert len(input_dict['bbox3d_fields']) == 1
zhangwenwei's avatar
zhangwenwei committed
65
        for key in input_dict['bbox3d_fields']:
wuyuefeng's avatar
wuyuefeng committed
66
67
            input_dict['points'] = input_dict[key].flip(
                direction, points=input_dict['points'])
zhangwenwei's avatar
zhangwenwei committed
68
69

    def __call__(self, input_dict):
70
71
72
73
74
75
76
77
78
79
80
        """Call function to flip points, values in the ``bbox3d_fields`` and \
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Flipped results, 'flip', 'flip_direction', \
                'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added \
                into result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
81
        # filp 2D image and its annotations
zhangwenwei's avatar
zhangwenwei committed
82
        super(RandomFlip3D, self).__call__(input_dict)
zhangwenwei's avatar
zhangwenwei committed
83

zhangwenwei's avatar
zhangwenwei committed
84
        if self.sync_2d:
wuyuefeng's avatar
wuyuefeng committed
85
86
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
87
        else:
wuyuefeng's avatar
wuyuefeng committed
88
89
90
91
92
93
94
95
96
97
98
99
100
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
                ) < self.flip_ratio else False
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
zhangwenwei's avatar
zhangwenwei committed
101
102
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
103
    def __repr__(self):
104
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
105
106
        repr_str = self.__class__.__name__
        repr_str += '(sync_2d={},'.format(self.sync_2d)
yinchimaoliang's avatar
yinchimaoliang committed
107
        repr_str += 'flip_ratio_bev_vertical={})'.format(
wuyuefeng's avatar
wuyuefeng committed
108
109
            self.flip_ratio_bev_vertical)
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
110

zhangwenwei's avatar
zhangwenwei committed
111

112
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
113
class ObjectSample(object):
zhangwenwei's avatar
zhangwenwei committed
114
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
115
116
117
118
119

    Args:
        db_sampler (dict): Config dict of the database sampler.
        sample_2d (bool): Whether to also paste 2D image patch to the images
            This should be true when applying multi-modality cut-and-paste.
liyinhao's avatar
liyinhao committed
120
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
121
    """
zhangwenwei's avatar
zhangwenwei committed
122
123
124
125
126
127
128
129
130
131

    def __init__(self, db_sampler, sample_2d=False):
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
        self.db_sampler = build_from_cfg(db_sampler, OBJECTSAMPLERS)

    @staticmethod
    def remove_points_in_boxes(points, boxes):
132
133
134
135
136
137
138
139
140
        """Remove the points in the sampled bounding boxes.

        Args:
            points (np.ndarray): Input point cloud array.
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
zhangwenwei's avatar
zhangwenwei committed
141
142
143
144
145
        masks = box_np_ops.points_in_rbbox(points, boxes)
        points = points[np.logical_not(masks.any(-1))]
        return points

    def __call__(self, input_dict):
146
147
148
149
150
151
152
153
154
155
        """Call function to sample ground truth objects to the data.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after object sampling augmentation, \
                'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
156
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
157
158
        gt_labels_3d = input_dict['gt_labels_3d']

zhangwenwei's avatar
zhangwenwei committed
159
160
161
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
162
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
163
164
165
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
166
167
168
169
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
170
171
        else:
            sampled_dict = self.db_sampler.sample_all(
172
                gt_bboxes_3d.tensor.numpy(), gt_labels_3d, img=None)
zhangwenwei's avatar
zhangwenwei committed
173
174
175
176

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
177
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
178

zhangwenwei's avatar
zhangwenwei committed
179
180
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
181
182
183
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
184

zhangwenwei's avatar
zhangwenwei committed
185
186
187
188
189
190
191
192
193
194
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
            dim_inds = points.shape[-1]
            points = np.concatenate([sampled_points[:, :dim_inds], points],
                                    axis=0)

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
195

zhangwenwei's avatar
zhangwenwei committed
196
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
197
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
198
199

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
200
        input_dict['gt_labels_3d'] = gt_labels_3d
zhangwenwei's avatar
zhangwenwei committed
201
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
202

zhangwenwei's avatar
zhangwenwei committed
203
204
205
        return input_dict

    def __repr__(self):
206
        """str: Return a string that describes the module."""
207
208
209
210
211
212
213
214
215
        repr_str = self.__class__.__name__
        repr_str += f' sample_2d={self.sample_2d},'
        repr_str += f' data_root={self.sampler_cfg.data_root},'
        repr_str += f' info_path={self.sampler_cfg.info_path},'
        repr_str += f' rate={self.sampler_cfg.rate},'
        repr_str += f' prepare={self.sampler_cfg.prepare},'
        repr_str += f' classes={self.sampler_cfg.classes},'
        repr_str += f' sample_groups={self.sampler_cfg.sample_groups}'
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
216
217


218
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
219
class ObjectNoise(object):
zhangwenwei's avatar
zhangwenwei committed
220
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
221
222

    Args:
223
        translation_std (list[float], optional): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
224
225
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
226
        global_rot_range (list[float], optional): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
227
            Defaults to [0.0, 0.0].
228
        rot_range (list[float], optional): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
229
230
231
232
            Defaults to [-0.15707963267, 0.15707963267].
        num_try (int, optional): Number of times to try if the noise applied is
            invalid. Defaults to 100.
    """
zhangwenwei's avatar
zhangwenwei committed
233
234

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
235
                 translation_std=[0.25, 0.25, 0.25],
zhangwenwei's avatar
zhangwenwei committed
236
                 global_rot_range=[0.0, 0.0],
zhangwenwei's avatar
zhangwenwei committed
237
                 rot_range=[-0.15707963267, 0.15707963267],
zhangwenwei's avatar
zhangwenwei committed
238
                 num_try=100):
zhangwenwei's avatar
zhangwenwei committed
239
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
240
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
241
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
242
243
244
        self.num_try = num_try

    def __call__(self, input_dict):
245
246
247
248
249
250
251
252
253
        """Call function to apply noise to each ground truth in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after adding noise to each object, \
                'points', 'gt_bboxes_3d' keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
254
255
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
256

zhangwenwei's avatar
zhangwenwei committed
257
        # TODO: check this inplace function
258
        numpy_box = gt_bboxes_3d.tensor.numpy()
zhangwenwei's avatar
zhangwenwei committed
259
        noise_per_object_v3_(
260
            numpy_box,
zhangwenwei's avatar
zhangwenwei committed
261
            points,
zhangwenwei's avatar
zhangwenwei committed
262
263
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
264
265
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
266
267

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
zhangwenwei's avatar
zhangwenwei committed
268
269
270
271
        input_dict['points'] = points
        return input_dict

    def __repr__(self):
272
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
273
274
        repr_str = self.__class__.__name__
        repr_str += '(num_try={},'.format(self.num_try)
zhangwenwei's avatar
zhangwenwei committed
275
        repr_str += ' translation_std={},'.format(self.translation_std)
zhangwenwei's avatar
zhangwenwei committed
276
        repr_str += ' global_rot_range={},'.format(self.global_rot_range)
zhangwenwei's avatar
zhangwenwei committed
277
        repr_str += ' rot_range={})'.format(self.rot_range)
zhangwenwei's avatar
zhangwenwei committed
278
279
280
        return repr_str


281
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
282
class GlobalRotScaleTrans(object):
zhangwenwei's avatar
zhangwenwei committed
283
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
284
285
286

    Args:
        rot_range (list[float]): Range of rotation angle.
liyinhao's avatar
liyinhao committed
287
            Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
zhangwenwei's avatar
zhangwenwei committed
288
        scale_ratio_range (list[float]): Range of scale ratio.
liyinhao's avatar
liyinhao committed
289
            Defaults to [0.95, 1.05].
zhangwenwei's avatar
zhangwenwei committed
290
291
292
        translation_std (list[float]): The standard deviation of ranslation
            noise. This apply random translation to a scene by a noise, which
            is sampled from a gaussian distribution whose standard deviation
liyinhao's avatar
liyinhao committed
293
294
            is set by ``translation_std``. Defaults to [0, 0, 0]
        shift_height (bool): Whether to shift height.
wuyuefeng's avatar
wuyuefeng committed
295
            (the fourth dimension of indoor points) when scaling.
liyinhao's avatar
liyinhao committed
296
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
297
    """
zhangwenwei's avatar
zhangwenwei committed
298
299

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
300
301
                 rot_range=[-0.78539816, 0.78539816],
                 scale_ratio_range=[0.95, 1.05],
wuyuefeng's avatar
wuyuefeng committed
302
303
                 translation_std=[0, 0, 0],
                 shift_height=False):
zhangwenwei's avatar
zhangwenwei committed
304
305
306
        self.rot_range = rot_range
        self.scale_ratio_range = scale_ratio_range
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
307
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
308
309

    def _trans_bbox_points(self, input_dict):
310
311
312
313
314
315
316
317
318
319
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after translation, 'points', 'pcd_trans' \
                and keys in input_dict['bbox3d_fields'] are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
        if not isinstance(self.translation_std, (list, tuple, np.ndarray)):
            translation_std = [
                self.translation_std, self.translation_std,
                self.translation_std
            ]
        else:
            translation_std = self.translation_std
        translation_std = np.array(translation_std, dtype=np.float32)
        trans_factor = np.random.normal(scale=translation_std, size=3).T

        input_dict['points'][:, :3] += trans_factor
        input_dict['pcd_trans'] = trans_factor
        for key in input_dict['bbox3d_fields']:
            input_dict[key].translate(trans_factor)

    def _rot_bbox_points(self, input_dict):
336
337
338
339
340
341
342
343
344
345
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after rotation, 'points', 'pcd_rotation' \
                and keys in input_dict['bbox3d_fields'] are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
346
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
347
348
349
        if not isinstance(rotation, list):
            rotation = [-rotation, rotation]
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
350
351

        for key in input_dict['bbox3d_fields']:
wuyuefeng's avatar
wuyuefeng committed
352
353
354
355
356
            if len(input_dict[key].tensor) != 0:
                points, rot_mat_T = input_dict[key].rotate(
                    noise_rotation, input_dict['points'])
                input_dict['points'] = points
                input_dict['pcd_rotation'] = rot_mat_T
357

zhangwenwei's avatar
zhangwenwei committed
358
    def _scale_bbox_points(self, input_dict):
359
360
361
362
363
364
365
366
367
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points'and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
368
369
        scale = input_dict['pcd_scale_factor']
        input_dict['points'][:, :3] *= scale
wuyuefeng's avatar
wuyuefeng committed
370
371
372
        if self.shift_height:
            input_dict['points'][:, -1] *= scale

zhangwenwei's avatar
zhangwenwei committed
373
374
        for key in input_dict['bbox3d_fields']:
            input_dict[key].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
375

zhangwenwei's avatar
zhangwenwei committed
376
    def _random_scale(self, input_dict):
377
378
379
380
381
382
383
384
385
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'pcd_scale_factor' are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
386
387
388
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
389
390

    def __call__(self, input_dict):
391
392
393
394
395
396
397
398
399
400
401
        """Private function to rotate, scale and translate bounding boxes and \
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
                'pcd_scale_factor', 'pcd_trans' and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
402
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
403

zhangwenwei's avatar
zhangwenwei committed
404
405
406
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
407

zhangwenwei's avatar
zhangwenwei committed
408
        self._trans_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
409
410
411
        return input_dict

    def __repr__(self):
412
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
413
        repr_str = self.__class__.__name__
zhangwenwei's avatar
zhangwenwei committed
414
415
416
        repr_str += '(rot_range={},'.format(self.rot_range)
        repr_str += ' scale_ratio_range={},'.format(self.scale_ratio_range)
        repr_str += ' translation_std={})'.format(self.translation_std)
wuyuefeng's avatar
wuyuefeng committed
417
        repr_str += ' shift_height={})'.format(self.shift_height)
zhangwenwei's avatar
zhangwenwei committed
418
419
420
        return repr_str


421
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
422
class PointShuffle(object):
423
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
424
425

    def __call__(self, input_dict):
426
427
428
429
430
431
432
433
434
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'points' keys are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
435
436
437
438
439
440
441
        np.random.shuffle(input_dict['points'])
        return input_dict

    def __repr__(self):
        return self.__class__.__name__


442
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
443
class ObjectRangeFilter(object):
444
445
446
447
448
    """Filter objects by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
449
450
451
452
453
454

    def __init__(self, point_cloud_range):
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
        self.bev_range = self.pcd_range[[0, 1, 3, 4]]

    def __call__(self, input_dict):
455
456
457
458
459
460
461
462
463
        """Call function to filter objects by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' \
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
464
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
465
        gt_labels_3d = input_dict['gt_labels_3d']
466
        mask = gt_bboxes_3d.in_range_bev(self.bev_range)
zhangwenwei's avatar
zhangwenwei committed
467
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
468
469
470
471
472
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
zhangwenwei's avatar
zhangwenwei committed
473
474

        # limit rad to [-pi, pi]
475
476
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
477
478
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
479
480
481
        return input_dict

    def __repr__(self):
482
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
483
484
485
486
487
        repr_str = self.__class__.__name__
        repr_str += '(point_cloud_range={})'.format(self.pcd_range.tolist())
        return repr_str


488
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
489
class PointsRangeFilter(object):
490
491
492
493
494
    """Filter points by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
495
496
497
498
499
500

    def __init__(self, point_cloud_range):
        self.pcd_range = np.array(
            point_cloud_range, dtype=np.float32)[np.newaxis, :]

    def __call__(self, input_dict):
501
502
503
504
505
506
507
508
509
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'points' keys are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
510
511
512
513
514
515
516
517
518
        points = input_dict['points']
        points_mask = ((points[:, :3] >= self.pcd_range[:, :3])
                       & (points[:, :3] < self.pcd_range[:, 3:]))
        points_mask = points_mask[:, 0] & points_mask[:, 1] & points_mask[:, 2]
        clean_points = points[points_mask, :]
        input_dict['points'] = clean_points
        return input_dict

    def __repr__(self):
519
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
520
521
522
        repr_str = self.__class__.__name__
        repr_str += '(point_cloud_range={})'.format(self.pcd_range.tolist())
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
523
524
525
526


@PIPELINES.register_module()
class ObjectNameFilter(object):
zhangwenwei's avatar
zhangwenwei committed
527
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
528
529

    Args:
liyinhao's avatar
liyinhao committed
530
        classes (list[str]): List of class names to be kept for training.
zhangwenwei's avatar
zhangwenwei committed
531
532
533
534
535
536
537
    """

    def __init__(self, classes):
        self.classes = classes
        self.labels = list(range(len(self.classes)))

    def __call__(self, input_dict):
538
539
540
541
542
543
544
545
546
        """Call function to filter objects by their names.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' \
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
547
548
549
550
551
552
553
554
555
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
                                  dtype=np.bool_)
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

    def __repr__(self):
556
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
557
558
559
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585


@PIPELINES.register_module()
class IndoorPointSample(object):
    """Indoor point sample.

    Sampling data to a certain number.

    Args:
        name (str): Name of the dataset.
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, num_points):
        self.num_points = num_points

    def points_random_sampling(self,
                               points,
                               num_samples,
                               replace=None,
                               return_choices=False):
        """Points random sampling.

        Sample points to a certain number.

        Args:
586
            points (np.ndarray): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
587
588
            num_samples (int): Number of samples to be sampled.
            replace (bool): Whether the sample is with or without replacement.
liyinhao's avatar
liyinhao committed
589
590
            Defaults to None.
            return_choices (bool): Whether return choice. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
591
592

        Returns:
593
594
595
596
            tuple[np.ndarray] | np.ndarray:

                - points (np.ndarray): 3D Points.
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
597
598
599
600
601
602
603
604
605
606
607
        """
        if replace is None:
            replace = (points.shape[0] < num_samples)
        choices = np.random.choice(
            points.shape[0], num_samples, replace=replace)
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

    def __call__(self, results):
608
609
610
611
612
613
614
615
616
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
        points = results['points']
        points, choices = self.points_random_sampling(
            points, self.num_points, return_choices=True)
        pts_instance_mask = results.get('pts_instance_mask', None)
        pts_semantic_mask = results.get('pts_semantic_mask', None)
        results['points'] = points

        if pts_instance_mask is not None and pts_semantic_mask is not None:
            pts_instance_mask = pts_instance_mask[choices]
            pts_semantic_mask = pts_semantic_mask[choices]
            results['pts_instance_mask'] = pts_instance_mask
            results['pts_semantic_mask'] = pts_semantic_mask

        return results

    def __repr__(self):
633
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
634
635
636
        repr_str = self.__class__.__name__
        repr_str += '(num_points={})'.format(self.num_points)
        return repr_str