transforms_3d.py 65.4 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
2
import random
3
import warnings
4
from typing import Dict
5
6
7

import cv2
import numpy as np
8
from mmcv import is_tuple_of
9
10
from mmcv.transforms import BaseTransform
from mmengine.registry import build_from_cfg
zhangwenwei's avatar
zhangwenwei committed
11

12
from mmdet3d.core import VoxelGenerator
13
14
from mmdet3d.core.bbox import (CameraInstance3DBoxes, DepthInstance3DBoxes,
                               LiDARInstance3DBoxes, box_np_ops)
15
16
from mmdet3d.registry import OBJECTSAMPLERS, TRANSFORMS
from mmdet.datasets.builder import PIPELINES
zhangwenwei's avatar
zhangwenwei committed
17
from mmdet.datasets.pipelines import RandomFlip
zhangwenwei's avatar
zhangwenwei committed
18
19
20
from .data_augment_utils import noise_per_object_v3_


21
22
23
24
25
26
27
28
29
@PIPELINES.register_module()
class RandomDropPointsColor(object):
    r"""Randomly set the color of points to all zeros.

    Once this transform is executed, all the points' color will be dropped.
    Refer to `PAConv <https://github.com/CVMI-Lab/PAConv/blob/main/scene_seg/
    util/transform.py#L223>`_ for more details.

    Args:
30
        drop_ratio (float, optional): The probability of dropping point colors.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
            Defaults to 0.2.
    """

    def __init__(self, drop_ratio=0.2):
        assert isinstance(drop_ratio, (int, float)) and 0 <= drop_ratio <= 1, \
            f'invalid drop_ratio value {drop_ratio}'
        self.drop_ratio = drop_ratio

    def __call__(self, input_dict):
        """Call function to drop point colors.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
46
            dict: Results after color dropping,
47
48
49
50
51
52
53
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        assert points.attribute_dims is not None and \
            'color' in points.attribute_dims, \
            'Expect points have color attribute'

54
55
56
57
58
59
60
        # this if-expression is a bit strange
        # `RandomDropPointsColor` is used in training 3D segmentor PAConv
        # we discovered in our experiments that, using
        # `if np.random.rand() > 1.0 - self.drop_ratio` consistently leads to
        # better results than using `if np.random.rand() < self.drop_ratio`
        # so we keep this hack in our codebase
        if np.random.rand() > 1.0 - self.drop_ratio:
61
62
63
64
65
66
67
68
69
70
            points.color = points.color * 0.0
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(drop_ratio={self.drop_ratio})'
        return repr_str


71
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
72
73
74
75
76
77
78
79
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

    Args:
zhangwenwei's avatar
zhangwenwei committed
80
81
82
        sync_2d (bool, optional): Whether to apply flip according to the 2D
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
liyinhao's avatar
liyinhao committed
83
            to that of 2D images. Defaults to True.
wuyuefeng's avatar
wuyuefeng committed
84
        flip_ratio_bev_horizontal (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
85
            in horizontal direction. Defaults to 0.0.
wuyuefeng's avatar
wuyuefeng committed
86
        flip_ratio_bev_vertical (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
87
            in vertical direction. Defaults to 0.0.
zhangwenwei's avatar
zhangwenwei committed
88
89
    """

wuyuefeng's avatar
wuyuefeng committed
90
91
92
93
94
95
96
    def __init__(self,
                 sync_2d=True,
                 flip_ratio_bev_horizontal=0.0,
                 flip_ratio_bev_vertical=0.0,
                 **kwargs):
        super(RandomFlip3D, self).__init__(
            flip_ratio=flip_ratio_bev_horizontal, **kwargs)
zhangwenwei's avatar
zhangwenwei committed
97
        self.sync_2d = sync_2d
wuyuefeng's avatar
wuyuefeng committed
98
99
100
101
102
103
104
105
106
107
108
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

    def random_flip_data_3d(self, input_dict, direction='horizontal'):
109
110
111
112
        """Flip 3D data randomly.

        Args:
            input_dict (dict): Result dict from loading pipeline.
113
114
            direction (str, optional): Flip direction.
                Default: 'horizontal'.
115
116

        Returns:
117
            dict: Flipped results, 'points', 'bbox3d_fields' keys are
118
119
                updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
120
        assert direction in ['horizontal', 'vertical']
121
122
123
124
        # for semantic segmentation task, only points will be flipped.
        if 'bbox3d_fields' not in input_dict:
            input_dict['points'].flip(direction)
            return
125
126
127
128
129
        if len(input_dict['bbox3d_fields']) == 0:  # test mode
            input_dict['bbox3d_fields'].append('empty_box3d')
            input_dict['empty_box3d'] = input_dict['box_type_3d'](
                np.array([], dtype=np.float32))
        assert len(input_dict['bbox3d_fields']) == 1
zhangwenwei's avatar
zhangwenwei committed
130
        for key in input_dict['bbox3d_fields']:
131
132
133
134
135
136
137
138
            if 'points' in input_dict:
                input_dict['points'] = input_dict[key].flip(
                    direction, points=input_dict['points'])
            else:
                input_dict[key].flip(direction)
        if 'centers2d' in input_dict:
            assert self.sync_2d is True and direction == 'horizontal', \
                'Only support sync_2d=True and horizontal flip with images'
139
            w = input_dict['ori_shape'][1]
140
141
            input_dict['centers2d'][..., 0] = \
                w - input_dict['centers2d'][..., 0]
142
143
            # need to modify the horizontal position of camera center
            # along u-axis in the image (flip like centers2d)
144
            # ['cam2img'][0][2] = c_u
145
146
            # see more details and examples at
            # https://github.com/open-mmlab/mmdetection3d/pull/744
147
            input_dict['cam2img'][0][2] = w - input_dict['cam2img'][0][2]
zhangwenwei's avatar
zhangwenwei committed
148
149

    def __call__(self, input_dict):
150
        """Call function to flip points, values in the ``bbox3d_fields`` and
151
152
153
154
155
156
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
157
158
            dict: Flipped results, 'flip', 'flip_direction',
                'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added
159
160
                into result dict.
        """
161
        # flip 2D image and its annotations
zhangwenwei's avatar
zhangwenwei committed
162
        super(RandomFlip3D, self).__call__(input_dict)
zhangwenwei's avatar
zhangwenwei committed
163

zhangwenwei's avatar
zhangwenwei committed
164
        if self.sync_2d:
wuyuefeng's avatar
wuyuefeng committed
165
166
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
167
        else:
wuyuefeng's avatar
wuyuefeng committed
168
169
170
171
172
173
174
175
176
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
                ) < self.flip_ratio else False
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

177
178
179
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

wuyuefeng's avatar
wuyuefeng committed
180
181
        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
182
            input_dict['transformation_3d_flow'].extend(['HF'])
wuyuefeng's avatar
wuyuefeng committed
183
184
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
185
            input_dict['transformation_3d_flow'].extend(['VF'])
zhangwenwei's avatar
zhangwenwei committed
186
187
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
188
    def __repr__(self):
189
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
190
        repr_str = self.__class__.__name__
191
        repr_str += f'(sync_2d={self.sync_2d},'
192
        repr_str += f' flip_ratio_bev_vertical={self.flip_ratio_bev_vertical})'
wuyuefeng's avatar
wuyuefeng committed
193
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
194

zhangwenwei's avatar
zhangwenwei committed
195

196
197
198
199
@PIPELINES.register_module()
class RandomJitterPoints(object):
    """Randomly jitter point coordinates.

200
    Different from the global translation in ``GlobalRotScaleTrans``, here we
201
202
203
204
        apply different noises to each point in a scene.

    Args:
        jitter_std (list[float]): The standard deviation of jittering noise.
205
206
            This applies random noise to all points in a 3D scene, which is
            sampled from a gaussian distribution whose standard deviation is
207
            set by ``jitter_std``. Defaults to [0.01, 0.01, 0.01]
208
        clip_range (list[float]): Clip the randomly generated jitter
209
210
211
212
            noise into this range. If None is given, don't perform clipping.
            Defaults to [-0.05, 0.05]

    Note:
213
        This transform should only be used in point cloud segmentation tasks
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
            because we don't transform ground-truth bboxes accordingly.
        For similar transform in detection task, please refer to `ObjectNoise`.
    """

    def __init__(self,
                 jitter_std=[0.01, 0.01, 0.01],
                 clip_range=[-0.05, 0.05]):
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(jitter_std, seq_types):
            assert isinstance(jitter_std, (int, float)), \
                f'unsupported jitter_std type {type(jitter_std)}'
            jitter_std = [jitter_std, jitter_std, jitter_std]
        self.jitter_std = jitter_std

        if clip_range is not None:
            if not isinstance(clip_range, seq_types):
                assert isinstance(clip_range, (int, float)), \
                    f'unsupported clip_range type {type(clip_range)}'
                clip_range = [-clip_range, clip_range]
        self.clip_range = clip_range

    def __call__(self, input_dict):
        """Call function to jitter all the points in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
242
            dict: Results after adding noise to each point,
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
                'points' key is updated in the result dict.
        """
        points = input_dict['points']
        jitter_std = np.array(self.jitter_std, dtype=np.float32)
        jitter_noise = \
            np.random.randn(points.shape[0], 3) * jitter_std[None, :]
        if self.clip_range is not None:
            jitter_noise = np.clip(jitter_noise, self.clip_range[0],
                                   self.clip_range[1])

        points.translate(jitter_noise)
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(jitter_std={self.jitter_std},'
        repr_str += f' clip_range={self.clip_range})'
        return repr_str


264
265
@TRANSFORMS.register_module()
class ObjectSample(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
266
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
267

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    Required Keys:

    - points
    - ann_info
    - gt_bboxes_3d
    - gt_labels_3d
    - img (optional)
    - gt_bboxes (optional)

    Modified Keys:
    - points
    - gt_bboxes_3d
    - gt_labels_3d
    - img (optional)
    - gt_bboxes (optional)

    Added Keys:

    - plane (optional)

zhangwenwei's avatar
zhangwenwei committed
288
289
290
291
    Args:
        db_sampler (dict): Config dict of the database sampler.
        sample_2d (bool): Whether to also paste 2D image patch to the images
            This should be true when applying multi-modality cut-and-paste.
liyinhao's avatar
liyinhao committed
292
            Defaults to False.
293
        use_ground_plane (bool): Whether to use ground plane to adjust the
294
            3D labels.
zhangwenwei's avatar
zhangwenwei committed
295
    """
zhangwenwei's avatar
zhangwenwei committed
296

297
    def __init__(self, db_sampler, sample_2d=False, use_ground_plane=False):
zhangwenwei's avatar
zhangwenwei committed
298
299
300
301
302
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
        self.db_sampler = build_from_cfg(db_sampler, OBJECTSAMPLERS)
303
        self.use_ground_plane = use_ground_plane
zhangwenwei's avatar
zhangwenwei committed
304
305
306

    @staticmethod
    def remove_points_in_boxes(points, boxes):
307
308
309
        """Remove the points in the sampled bounding boxes.

        Args:
310
            points (:obj:`BasePoints`): Input point cloud array.
311
312
313
314
315
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
316
        masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes)
zhangwenwei's avatar
zhangwenwei committed
317
318
319
        points = points[np.logical_not(masks.any(-1))]
        return points

320
321
    def transform(self, input_dict: dict) -> dict:
        """Transform function to sample ground truth objects to the data.
322
323
324
325
326

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
327
328
            dict: Results after object sampling augmentation,
                'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated
329
330
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
331
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
332
333
        gt_labels_3d = input_dict['gt_labels_3d']

334
335
336
337
338
        if self.use_ground_plane and 'plane' in input_dict['ann_info']:
            ground_plane = input_dict['ann_info']['plane']
            input_dict['plane'] = ground_plane
        else:
            ground_plane = None
zhangwenwei's avatar
zhangwenwei committed
339
340
341
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
342
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
343
344
345
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
346
347
348
349
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
350
351
        else:
            sampled_dict = self.db_sampler.sample_all(
352
353
354
355
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                img=None,
                ground_plane=ground_plane)
zhangwenwei's avatar
zhangwenwei committed
356
357
358
359

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
360
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
361

zhangwenwei's avatar
zhangwenwei committed
362
363
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
364
365
366
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
367

zhangwenwei's avatar
zhangwenwei committed
368
369
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
370
            points = points.cat([sampled_points, points])
zhangwenwei's avatar
zhangwenwei committed
371
372
373
374
375

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
376

zhangwenwei's avatar
zhangwenwei committed
377
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
378
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
379
380

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
WRH's avatar
WRH committed
381
        input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.int64)
zhangwenwei's avatar
zhangwenwei committed
382
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
383

zhangwenwei's avatar
zhangwenwei committed
384
385
386
        return input_dict

    def __repr__(self):
387
        """str: Return a string that describes the module."""
388
389
390
391
392
393
394
395
396
        repr_str = self.__class__.__name__
        repr_str += f' sample_2d={self.sample_2d},'
        repr_str += f' data_root={self.sampler_cfg.data_root},'
        repr_str += f' info_path={self.sampler_cfg.info_path},'
        repr_str += f' rate={self.sampler_cfg.rate},'
        repr_str += f' prepare={self.sampler_cfg.prepare},'
        repr_str += f' classes={self.sampler_cfg.classes},'
        repr_str += f' sample_groups={self.sampler_cfg.sample_groups}'
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
397
398


399
400
@TRANSFORMS.register_module()
class ObjectNoise(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
401
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
402

403
404
405
406
407
408
409
410
411
412
    Required Keys:

    - points
    - gt_bboxes_3d

    Modified Keys:

    - points
    - gt_bboxes_3d

zhangwenwei's avatar
zhangwenwei committed
413
    Args:
414
        translation_std (list[float], optional): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
415
416
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
417
        global_rot_range (list[float], optional): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
418
            Defaults to [0.0, 0.0].
419
        rot_range (list[float], optional): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
420
421
422
423
            Defaults to [-0.15707963267, 0.15707963267].
        num_try (int, optional): Number of times to try if the noise applied is
            invalid. Defaults to 100.
    """
zhangwenwei's avatar
zhangwenwei committed
424
425

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
426
                 translation_std=[0.25, 0.25, 0.25],
zhangwenwei's avatar
zhangwenwei committed
427
                 global_rot_range=[0.0, 0.0],
zhangwenwei's avatar
zhangwenwei committed
428
                 rot_range=[-0.15707963267, 0.15707963267],
zhangwenwei's avatar
zhangwenwei committed
429
                 num_try=100):
zhangwenwei's avatar
zhangwenwei committed
430
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
431
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
432
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
433
434
        self.num_try = num_try

435
436
    def transform(self, input_dict: dict) -> dict:
        """Transform function to apply noise to each ground truth in the scene.
437
438
439
440
441

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
442
            dict: Results after adding noise to each object,
443
444
                'points', 'gt_bboxes_3d' keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
445
446
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
447

448
        # TODO: this is inplace operation
449
        numpy_box = gt_bboxes_3d.tensor.numpy()
450
451
        numpy_points = points.tensor.numpy()

zhangwenwei's avatar
zhangwenwei committed
452
        noise_per_object_v3_(
453
            numpy_box,
454
            numpy_points,
zhangwenwei's avatar
zhangwenwei committed
455
456
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
457
458
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
459
460

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
461
        input_dict['points'] = points.new_point(numpy_points)
zhangwenwei's avatar
zhangwenwei committed
462
463
464
        return input_dict

    def __repr__(self):
465
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
466
        repr_str = self.__class__.__name__
467
468
469
470
        repr_str += f'(num_try={self.num_try},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' global_rot_range={self.global_rot_range},'
        repr_str += f' rot_range={self.rot_range})'
zhangwenwei's avatar
zhangwenwei committed
471
472
473
        return repr_str


474
475
476
477
478
479
480
481
@PIPELINES.register_module()
class GlobalAlignment(object):
    """Apply global alignment to 3D scene points by rotation and translation.

    Args:
        rotation_axis (int): Rotation axis for points and bboxes rotation.

    Note:
482
483
        We do not record the applied rotation and translation as in
            GlobalRotScaleTrans. Because usually, we do not need to reverse
484
            the alignment step.
485
        For example, ScanNet 3D detection task uses aligned ground-truth
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
            bounding boxes for evaluation.
    """

    def __init__(self, rotation_axis):
        self.rotation_axis = rotation_axis

    def _trans_points(self, input_dict, trans_factor):
        """Private function to translate points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            trans_factor (np.ndarray): Translation vector to be applied.

        Returns:
            dict: Results after translation, 'points' is updated in the dict.
        """
        input_dict['points'].translate(trans_factor)

    def _rot_points(self, input_dict, rot_mat):
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            rot_mat (np.ndarray): Rotation matrix to be applied.

        Returns:
            dict: Results after rotation, 'points' is updated in the dict.
        """
        # input should be rot_mat_T so I transpose it here
        input_dict['points'].rotate(rot_mat.T)

    def _check_rot_mat(self, rot_mat):
        """Check if rotation matrix is valid for self.rotation_axis.

        Args:
            rot_mat (np.ndarray): Rotation matrix to be applied.
        """
        is_valid = np.allclose(np.linalg.det(rot_mat), 1.0)
        valid_array = np.zeros(3)
        valid_array[self.rotation_axis] = 1.0
        is_valid &= (rot_mat[self.rotation_axis, :] == valid_array).all()
        is_valid &= (rot_mat[:, self.rotation_axis] == valid_array).all()
        assert is_valid, f'invalid rotation matrix {rot_mat}'

    def __call__(self, input_dict):
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
537
            dict: Results after global alignment, 'points' and keys in
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
        assert 'axis_align_matrix' in input_dict['ann_info'].keys(), \
            'axis_align_matrix is not provided in GlobalAlignment'

        axis_align_matrix = input_dict['ann_info']['axis_align_matrix']
        assert axis_align_matrix.shape == (4, 4), \
            f'invalid shape {axis_align_matrix.shape} for axis_align_matrix'
        rot_mat = axis_align_matrix[:3, :3]
        trans_vec = axis_align_matrix[:3, -1]

        self._check_rot_mat(rot_mat)
        self._rot_points(input_dict, rot_mat)
        self._trans_points(input_dict, trans_vec)

        return input_dict

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(rotation_axis={self.rotation_axis})'
        return repr_str


561
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
562
class GlobalRotScaleTrans(object):
zhangwenwei's avatar
zhangwenwei committed
563
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
564
565

    Args:
566
        rot_range (list[float], optional): Range of rotation angle.
liyinhao's avatar
liyinhao committed
567
            Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
568
        scale_ratio_range (list[float], optional): Range of scale ratio.
liyinhao's avatar
liyinhao committed
569
            Defaults to [0.95, 1.05].
570
571
        translation_std (list[float], optional): The standard deviation of
            translation noise applied to a scene, which
zhangwenwei's avatar
zhangwenwei committed
572
            is sampled from a gaussian distribution whose standard deviation
liyinhao's avatar
liyinhao committed
573
            is set by ``translation_std``. Defaults to [0, 0, 0]
574
        shift_height (bool, optional): Whether to shift height.
wuyuefeng's avatar
wuyuefeng committed
575
            (the fourth dimension of indoor points) when scaling.
liyinhao's avatar
liyinhao committed
576
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
577
    """
zhangwenwei's avatar
zhangwenwei committed
578
579

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
580
581
                 rot_range=[-0.78539816, 0.78539816],
                 scale_ratio_range=[0.95, 1.05],
wuyuefeng's avatar
wuyuefeng committed
582
583
                 translation_std=[0, 0, 0],
                 shift_height=False):
584
585
586
587
588
        seq_types = (list, tuple, np.ndarray)
        if not isinstance(rot_range, seq_types):
            assert isinstance(rot_range, (int, float)), \
                f'unsupported rot_range type {type(rot_range)}'
            rot_range = [-rot_range, rot_range]
zhangwenwei's avatar
zhangwenwei committed
589
        self.rot_range = rot_range
590
591
592

        assert isinstance(scale_ratio_range, seq_types), \
            f'unsupported scale_ratio_range type {type(scale_ratio_range)}'
zhangwenwei's avatar
zhangwenwei committed
593
        self.scale_ratio_range = scale_ratio_range
594
595
596
597
598
599
600

        if not isinstance(translation_std, seq_types):
            assert isinstance(translation_std, (int, float)), \
                f'unsupported translation_std type {type(translation_std)}'
            translation_std = [
                translation_std, translation_std, translation_std
            ]
601
602
        assert all([std >= 0 for std in translation_std]), \
            'translation_std should be positive'
zhangwenwei's avatar
zhangwenwei committed
603
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
604
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
605
606

    def _trans_bbox_points(self, input_dict):
607
608
609
610
611
612
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
613
614
            dict: Results after translation, 'points', 'pcd_trans'
                and keys in input_dict['bbox3d_fields'] are updated
615
616
                in the result dict.
        """
617
        translation_std = np.array(self.translation_std, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
618
619
        trans_factor = np.random.normal(scale=translation_std, size=3).T

620
        input_dict['points'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
621
622
623
624
625
        input_dict['pcd_trans'] = trans_factor
        for key in input_dict['bbox3d_fields']:
            input_dict[key].translate(trans_factor)

    def _rot_bbox_points(self, input_dict):
626
627
628
629
630
631
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
632
633
            dict: Results after rotation, 'points', 'pcd_rotation'
                and keys in input_dict['bbox3d_fields'] are updated
634
635
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
636
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
637
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
638

639
640
641
642
        # if no bbox in input_dict, only rotate points
        if len(input_dict['bbox3d_fields']) == 0:
            rot_mat_T = input_dict['points'].rotate(noise_rotation)
            input_dict['pcd_rotation'] = rot_mat_T
643
            input_dict['pcd_rotation_angle'] = noise_rotation
644
645
646
            return

        # rotate points with bboxes
zhangwenwei's avatar
zhangwenwei committed
647
        for key in input_dict['bbox3d_fields']:
wuyuefeng's avatar
wuyuefeng committed
648
649
650
651
652
            if len(input_dict[key].tensor) != 0:
                points, rot_mat_T = input_dict[key].rotate(
                    noise_rotation, input_dict['points'])
                input_dict['points'] = points
                input_dict['pcd_rotation'] = rot_mat_T
653
                input_dict['pcd_rotation_angle'] = noise_rotation
654

zhangwenwei's avatar
zhangwenwei committed
655
    def _scale_bbox_points(self, input_dict):
656
657
658
659
660
661
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
662
            dict: Results after scaling, 'points'and keys in
663
664
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
665
        scale = input_dict['pcd_scale_factor']
666
667
        points = input_dict['points']
        points.scale(scale)
wuyuefeng's avatar
wuyuefeng committed
668
        if self.shift_height:
669
670
            assert 'height' in points.attribute_dims.keys(), \
                'setting shift_height=True but points have no height attribute'
671
672
            points.tensor[:, points.attribute_dims['height']] *= scale
        input_dict['points'] = points
wuyuefeng's avatar
wuyuefeng committed
673

zhangwenwei's avatar
zhangwenwei committed
674
675
        for key in input_dict['bbox3d_fields']:
            input_dict[key].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
676

zhangwenwei's avatar
zhangwenwei committed
677
    def _random_scale(self, input_dict):
678
679
680
681
682
683
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
684
            dict: Results after scaling, 'pcd_scale_factor' are updated
685
686
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
687
688
689
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
690
691

    def __call__(self, input_dict):
692
        """Private function to rotate, scale and translate bounding boxes and
693
694
695
696
697
698
699
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
700
                'pcd_scale_factor', 'pcd_trans' and keys in
701
702
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
703
704
705
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

zhangwenwei's avatar
zhangwenwei committed
706
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
707

zhangwenwei's avatar
zhangwenwei committed
708
709
710
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
711

zhangwenwei's avatar
zhangwenwei committed
712
        self._trans_bbox_points(input_dict)
713
714

        input_dict['transformation_3d_flow'].extend(['R', 'S', 'T'])
zhangwenwei's avatar
zhangwenwei committed
715
716
717
        return input_dict

    def __repr__(self):
718
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
719
        repr_str = self.__class__.__name__
720
721
722
723
        repr_str += f'(rot_range={self.rot_range},'
        repr_str += f' scale_ratio_range={self.scale_ratio_range},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' shift_height={self.shift_height})'
zhangwenwei's avatar
zhangwenwei committed
724
725
726
        return repr_str


727
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
728
class PointShuffle(object):
729
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
730
731

    def __call__(self, input_dict):
732
733
734
735
736
737
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
738
            dict: Results after filtering, 'points', 'pts_instance_mask'
739
                and 'pts_semantic_mask' keys are updated in the result dict.
740
        """
741
742
743
744
745
746
747
748
749
750
751
752
        idx = input_dict['points'].shuffle()
        idx = idx.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[idx]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[idx]

zhangwenwei's avatar
zhangwenwei committed
753
754
755
756
757
758
        return input_dict

    def __repr__(self):
        return self.__class__.__name__


759
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
760
class ObjectRangeFilter(object):
761
762
763
764
765
    """Filter objects by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
766
767
768
769
770

    def __init__(self, point_cloud_range):
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)

    def __call__(self, input_dict):
771
772
773
774
775
776
        """Call function to filter objects by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
777
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
778
779
                keys are updated in the result dict.
        """
780
781
782
783
784
785
786
        # Check points instance type and initialise bev_range
        if isinstance(input_dict['gt_bboxes_3d'],
                      (LiDARInstance3DBoxes, DepthInstance3DBoxes)):
            bev_range = self.pcd_range[[0, 1, 3, 4]]
        elif isinstance(input_dict['gt_bboxes_3d'], CameraInstance3DBoxes):
            bev_range = self.pcd_range[[0, 2, 3, 5]]

zhangwenwei's avatar
zhangwenwei committed
787
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
788
        gt_labels_3d = input_dict['gt_labels_3d']
789
        mask = gt_bboxes_3d.in_range_bev(bev_range)
zhangwenwei's avatar
zhangwenwei committed
790
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
791
792
793
794
795
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
zhangwenwei's avatar
zhangwenwei committed
796
797

        # limit rad to [-pi, pi]
798
799
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
800
801
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
802
803
804
        return input_dict

    def __repr__(self):
805
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
806
        repr_str = self.__class__.__name__
807
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
808
809
810
        return repr_str


811
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
812
class PointsRangeFilter(object):
813
814
815
816
817
    """Filter points by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
818
819

    def __init__(self, point_cloud_range):
820
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
821
822

    def __call__(self, input_dict):
823
824
825
826
827
828
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
829
            dict: Results after filtering, 'points', 'pts_instance_mask'
830
                and 'pts_semantic_mask' keys are updated in the result dict.
831
        """
zhangwenwei's avatar
zhangwenwei committed
832
        points = input_dict['points']
833
834
        points_mask = points.in_range_3d(self.pcd_range)
        clean_points = points[points_mask]
zhangwenwei's avatar
zhangwenwei committed
835
        input_dict['points'] = clean_points
836
837
838
839
840
841
842
843
844
845
846
        points_mask = points_mask.numpy()

        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)

        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[points_mask]

        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[points_mask]

zhangwenwei's avatar
zhangwenwei committed
847
848
849
        return input_dict

    def __repr__(self):
850
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
851
        repr_str = self.__class__.__name__
852
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
853
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
854
855
856
857


@PIPELINES.register_module()
class ObjectNameFilter(object):
zhangwenwei's avatar
zhangwenwei committed
858
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
859
860

    Args:
liyinhao's avatar
liyinhao committed
861
        classes (list[str]): List of class names to be kept for training.
zhangwenwei's avatar
zhangwenwei committed
862
863
864
865
866
867
868
    """

    def __init__(self, classes):
        self.classes = classes
        self.labels = list(range(len(self.classes)))

    def __call__(self, input_dict):
869
870
871
872
873
874
        """Call function to filter objects by their names.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
875
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d'
876
877
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
878
879
880
881
882
883
884
885
886
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
                                  dtype=np.bool_)
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

    def __repr__(self):
887
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
888
889
890
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
891
892


893
894
@TRANSFORMS.register_module()
class PointSample(BaseTransform):
895
    """Point sample.
wuyuefeng's avatar
wuyuefeng committed
896
897
898

    Sampling data to a certain number.

899
900
901
902
903
904
905
906
907
908
    Required Keys:
    - points
    - pts_instance_mask (optional)
    - pts_semantic_mask (optional)

    Modified Keys:
    - points
    - pts_instance_mask (optional)
    - pts_semantic_mask (optional)

wuyuefeng's avatar
wuyuefeng committed
909
910
    Args:
        num_points (int): Number of points to be sampled.
911
        sample_range (float, optional): The range where to sample points.
912
913
914
915
            If not None, the points with depth larger than `sample_range` are
            prior to be sampled. Defaults to None.
        replace (bool, optional): Whether the sampling is with or without
            replacement. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
916
917
    """

918
    def __init__(self, num_points, sample_range=None, replace=False):
wuyuefeng's avatar
wuyuefeng committed
919
        self.num_points = num_points
920
921
922
923
924
925
926
927
928
        self.sample_range = sample_range
        self.replace = replace

    def _points_random_sampling(self,
                                points,
                                num_samples,
                                sample_range=None,
                                replace=False,
                                return_choices=False):
wuyuefeng's avatar
wuyuefeng committed
929
930
931
932
933
        """Points random sampling.

        Sample points to a certain number.

        Args:
934
            points (np.ndarray | :obj:`BasePoints`): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
935
            num_samples (int): Number of samples to be sampled.
936
            sample_range (float, optional): Indicating the range where the
937
                points will be sampled. Defaults to None.
938
939
940
941
            replace (bool, optional): Sampling with or without replacement.
                Defaults to None.
            return_choices (bool, optional): Whether return choice.
                Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
942
        Returns:
943
            tuple[np.ndarray] | np.ndarray:
944
                - points (np.ndarray | :obj:`BasePoints`): 3D Points.
945
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
946
        """
947
        if not replace:
wuyuefeng's avatar
wuyuefeng committed
948
            replace = (points.shape[0] < num_samples)
949
950
951
        point_range = range(len(points))
        if sample_range is not None and not replace:
            # Only sampling the near points when len(points) >= num_samples
952
953
954
            dist = np.linalg.norm(points.tensor, axis=1)
            far_inds = np.where(dist >= sample_range)[0]
            near_inds = np.where(dist < sample_range)[0]
955
956
957
958
            # in case there are too many far points
            if len(far_inds) > num_samples:
                far_inds = np.random.choice(
                    far_inds, num_samples, replace=False)
959
960
961
962
963
964
965
            point_range = near_inds
            num_samples -= len(far_inds)
        choices = np.random.choice(point_range, num_samples, replace=replace)
        if sample_range is not None and not replace:
            choices = np.concatenate((far_inds, choices))
            # Shuffle points after sampling
            np.random.shuffle(choices)
wuyuefeng's avatar
wuyuefeng committed
966
967
968
969
970
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

971
972
    def transform(self, input_dict: Dict) -> Dict:
        """Transform function to sample points to in indoor scenes.
973
974
975
976

        Args:
            input_dict (dict): Result dict from loading pipeline.
        Returns:
977
            dict: Results after sampling, 'points', 'pts_instance_mask'
978
979
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
980
        points = input_dict['points']
981
982
983
984
985
986
        points, choices = self._points_random_sampling(
            points,
            self.num_points,
            self.sample_range,
            self.replace,
            return_choices=True)
987
        input_dict['points'] = points
988

989
990
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
wuyuefeng's avatar
wuyuefeng committed
991

992
        if pts_instance_mask is not None:
wuyuefeng's avatar
wuyuefeng committed
993
            pts_instance_mask = pts_instance_mask[choices]
994
            input_dict['pts_instance_mask'] = pts_instance_mask
995
996
997

        if pts_semantic_mask is not None:
            pts_semantic_mask = pts_semantic_mask[choices]
998
            input_dict['pts_semantic_mask'] = pts_semantic_mask
wuyuefeng's avatar
wuyuefeng committed
999

1000
        return input_dict
wuyuefeng's avatar
wuyuefeng committed
1001
1002

    def __repr__(self):
1003
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
1004
        repr_str = self.__class__.__name__
1005
        repr_str += f'(num_points={self.num_points},'
1006
1007
        repr_str += f' sample_range={self.sample_range},'
        repr_str += f' replace={self.replace})'
1008

1009
1010
1011
        return repr_str


1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
@PIPELINES.register_module()
class IndoorPointSample(PointSample):
    """Indoor point sample.

    Sampling data to a certain number.
    NOTE: IndoorPointSample is deprecated in favor of PointSample

    Args:
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, *args, **kwargs):
        warnings.warn(
            'IndoorPointSample is deprecated in favor of PointSample')
        super(IndoorPointSample, self).__init__(*args, **kwargs)


1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
@PIPELINES.register_module()
class IndoorPatchPointSample(object):
    r"""Indoor point sample within a patch. Modified from `PointNet++ <https://
    github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py>`_.

    Sampling data to a certain number for semantic segmentation.

    Args:
        num_points (int): Number of points to be sampled.
        block_size (float, optional): Size of a block to sample points from.
            Defaults to 1.5.
        sample_rate (float, optional): Stride used in sliding patch generation.
1041
1042
1043
            This parameter is unused in `IndoorPatchPointSample` and thus has
            been deprecated. We plan to remove it in the future.
            Defaults to None.
1044
1045
        ignore_index (int, optional): Label index that won't be used for the
            segmentation task. This is set in PointSegClassMapping as neg_cls.
1046
            If not None, will be used as a patch selection criterion.
1047
1048
1049
1050
1051
            Defaults to None.
        use_normalized_coord (bool, optional): Whether to use normalized xyz as
            additional features. Defaults to False.
        num_try (int, optional): Number of times to try if the patch selected
            is invalid. Defaults to 10.
1052
        enlarge_size (float, optional): Enlarge the sampled patch to
1053
            [-block_size / 2 - enlarge_size, block_size / 2 + enlarge_size] as
1054
            an augmentation. If None, set it as 0. Defaults to 0.2.
1055
        min_unique_num (int, optional): Minimum number of unique points
1056
1057
            the sampled patch should contain. If None, use PointNet++'s method
            to judge uniqueness. Defaults to None.
1058
1059
        eps (float, optional): A value added to patch boundary to guarantee
            points coverage. Defaults to 1e-2.
1060
1061
1062
1063
1064
1065

    Note:
        This transform should only be used in the training process of point
            cloud segmentation tasks. For the sliding patch generation and
            inference process in testing, please refer to the `slide_inference`
            function of `EncoderDecoder3D` class.
1066
1067
1068
1069
1070
    """

    def __init__(self,
                 num_points,
                 block_size=1.5,
1071
                 sample_rate=None,
1072
1073
                 ignore_index=None,
                 use_normalized_coord=False,
1074
1075
                 num_try=10,
                 enlarge_size=0.2,
1076
1077
                 min_unique_num=None,
                 eps=1e-2):
1078
1079
1080
1081
1082
        self.num_points = num_points
        self.block_size = block_size
        self.ignore_index = ignore_index
        self.use_normalized_coord = use_normalized_coord
        self.num_try = num_try
1083
        self.enlarge_size = enlarge_size if enlarge_size is not None else 0.0
1084
        self.min_unique_num = min_unique_num
1085
        self.eps = eps
1086
1087
1088
1089
1090

        if sample_rate is not None:
            warnings.warn(
                "'sample_rate' has been deprecated and will be removed in "
                'the future. Please remove them from your code.')
1091
1092
1093
1094
1095

    def _input_generation(self, coords, patch_center, coord_max, attributes,
                          attribute_dims, point_type):
        """Generating model input.

1096
        Generate input by subtracting patch center and adding additional
1097
1098
1099
1100
1101
1102
1103
1104
1105
            features. Currently support colors and normalized xyz as features.

        Args:
            coords (np.ndarray): Sampled 3D Points.
            patch_center (np.ndarray): Center coordinate of the selected patch.
            coord_max (np.ndarray): Max coordinate of all 3D Points.
            attributes (np.ndarray): features of input points.
            attribute_dims (dict): Dictionary to indicate the meaning of extra
                dimension.
1106
            point_type (type): class of input points inherited from BasePoints.
1107
1108

        Returns:
1109
            :obj:`BasePoints`: The generated input data.
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
        """
        # subtract patch center, the z dimension is not centered
        centered_coords = coords.copy()
        centered_coords[:, 0] -= patch_center[0]
        centered_coords[:, 1] -= patch_center[1]

        if self.use_normalized_coord:
            normalized_coord = coords / coord_max
            attributes = np.concatenate([attributes, normalized_coord], axis=1)
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(normalized_coord=[
                    attributes.shape[1], attributes.shape[1] +
                    1, attributes.shape[1] + 2
                ]))

        points = np.concatenate([centered_coords, attributes], axis=1)
        points = point_type(
            points, points_dim=points.shape[1], attribute_dims=attribute_dims)

        return points

1133
    def _patch_points_sampling(self, points, sem_mask):
1134
1135
1136
1137
1138
1139
        """Patch points sampling.

        First sample a valid patch.
        Then sample points within that patch to a certain number.

        Args:
1140
            points (:obj:`BasePoints`): 3D Points.
1141
1142
1143
            sem_mask (np.ndarray): semantic segmentation mask for input points.

        Returns:
1144
            tuple[:obj:`BasePoints`, np.ndarray] | :obj:`BasePoints`:
1145

1146
                - points (:obj:`BasePoints`): 3D Points.
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
                - choices (np.ndarray): The generated random samples.
        """
        coords = points.coord.numpy()
        attributes = points.tensor[:, 3:].numpy()
        attribute_dims = points.attribute_dims
        point_type = type(points)

        coord_max = np.amax(coords, axis=0)
        coord_min = np.amin(coords, axis=0)

1157
        for _ in range(self.num_try):
1158
1159
1160
            # random sample a point as patch center
            cur_center = coords[np.random.choice(coords.shape[0])]

1161
1162
            # boundary of a patch, which would be enlarged by
            # `self.enlarge_size` as an augmentation
1163
1164
1165
1166
1167
1168
1169
            cur_max = cur_center + np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_min = cur_center - np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_max[2] = coord_max[2]
            cur_min[2] = coord_min[2]
            cur_choice = np.sum(
1170
1171
                (coords >= (cur_min - self.enlarge_size)) *
                (coords <= (cur_max + self.enlarge_size)),
1172
1173
1174
1175
1176
1177
1178
                axis=1) == 3

            if not cur_choice.any():  # no points in this patch
                continue

            cur_coords = coords[cur_choice, :]
            cur_sem_mask = sem_mask[cur_choice]
1179
            point_idxs = np.where(cur_choice)[0]
1180
            mask = np.sum(
1181
1182
                (cur_coords >= (cur_min - self.eps)) * (cur_coords <=
                                                        (cur_max + self.eps)),
1183
                axis=1) == 3
1184

1185
1186
            # two criteria for patch sampling, adopted from PointNet++
            # 1. selected patch should contain enough unique points
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
            if self.min_unique_num is None:
                # use PointNet++'s method as default
                # [31, 31, 62] are just some big values used to transform
                # coords from 3d array to 1d and then check their uniqueness
                # this is used in all the ScanNet code following PointNet++
                vidx = np.ceil(
                    (cur_coords[mask, :] - cur_min) / (cur_max - cur_min) *
                    np.array([31.0, 31.0, 62.0]))
                vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 + vidx[:, 1] * 62.0 +
                                 vidx[:, 2])
                flag1 = len(vidx) / 31.0 / 31.0 / 62.0 >= 0.02
            else:
1199
                # if `min_unique_num` is provided, directly compare with it
1200
                flag1 = mask.sum() >= self.min_unique_num
1201

1202
            # 2. selected patch should contain enough annotated points
1203
1204
1205
1206
1207
1208
1209
1210
1211
            if self.ignore_index is None:
                flag2 = True
            else:
                flag2 = np.sum(cur_sem_mask != self.ignore_index) / \
                               len(cur_sem_mask) >= 0.7

            if flag1 and flag2:
                break

1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
        # sample idx to `self.num_points`
        if point_idxs.size >= self.num_points:
            # no duplicate in sub-sampling
            choices = np.random.choice(
                point_idxs, self.num_points, replace=False)
        else:
            # do not use random choice here to avoid some points not counted
            dup = np.random.choice(point_idxs.size,
                                   self.num_points - point_idxs.size)
            idx_dup = np.concatenate(
                [np.arange(point_idxs.size),
                 np.array(dup)], 0)
            choices = point_idxs[idx_dup]
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239

        # construct model input
        points = self._input_generation(coords[choices], cur_center, coord_max,
                                        attributes[choices], attribute_dims,
                                        point_type)

        return points, choices

    def __call__(self, results):
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1240
            dict: Results after sampling, 'points', 'pts_instance_mask'
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']

        assert 'pts_semantic_mask' in results.keys(), \
            'semantic mask should be provided in training and evaluation'
        pts_semantic_mask = results['pts_semantic_mask']

        points, choices = self._patch_points_sampling(points,
                                                      pts_semantic_mask)

        results['points'] = points
        results['pts_semantic_mask'] = pts_semantic_mask[choices]
        pts_instance_mask = results.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            results['pts_instance_mask'] = pts_instance_mask[choices]

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(num_points={self.num_points},'
        repr_str += f' block_size={self.block_size},'
        repr_str += f' ignore_index={self.ignore_index},'
        repr_str += f' use_normalized_coord={self.use_normalized_coord},'
1267
1268
        repr_str += f' num_try={self.num_try},'
        repr_str += f' enlarge_size={self.enlarge_size},'
1269
1270
        repr_str += f' min_unique_num={self.min_unique_num},'
        repr_str += f' eps={self.eps})'
wuyuefeng's avatar
wuyuefeng committed
1271
        return repr_str
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299


@PIPELINES.register_module()
class BackgroundPointsFilter(object):
    """Filter background points near the bounding box.

    Args:
        bbox_enlarge_range (tuple[float], float): Bbox enlarge range.
    """

    def __init__(self, bbox_enlarge_range):
        assert (is_tuple_of(bbox_enlarge_range, float)
                and len(bbox_enlarge_range) == 3) \
            or isinstance(bbox_enlarge_range, float), \
            f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}'

        if isinstance(bbox_enlarge_range, float):
            bbox_enlarge_range = [bbox_enlarge_range] * 3
        self.bbox_enlarge_range = np.array(
            bbox_enlarge_range, dtype=np.float32)[np.newaxis, :]

    def __call__(self, input_dict):
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1300
            dict: Results after filtering, 'points', 'pts_instance_mask'
1301
                and 'pts_semantic_mask' keys are updated in the result dict.
1302
1303
1304
1305
        """
        points = input_dict['points']
        gt_bboxes_3d = input_dict['gt_bboxes_3d']

xiliu8006's avatar
xiliu8006 committed
1306
1307
1308
1309
        # avoid groundtruth being modified
        gt_bboxes_3d_np = gt_bboxes_3d.tensor.clone().numpy()
        gt_bboxes_3d_np[:, :3] = gt_bboxes_3d.gravity_center.clone().numpy()

1310
1311
        enlarged_gt_bboxes_3d = gt_bboxes_3d_np.copy()
        enlarged_gt_bboxes_3d[:, 3:6] += self.bbox_enlarge_range
xiliu8006's avatar
xiliu8006 committed
1312
        points_numpy = points.tensor.clone().numpy()
1313
1314
        foreground_masks = box_np_ops.points_in_rbbox(
            points_numpy, gt_bboxes_3d_np, origin=(0.5, 0.5, 0.5))
1315
        enlarge_foreground_masks = box_np_ops.points_in_rbbox(
1316
            points_numpy, enlarged_gt_bboxes_3d, origin=(0.5, 0.5, 0.5))
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
        foreground_masks = foreground_masks.max(1)
        enlarge_foreground_masks = enlarge_foreground_masks.max(1)
        valid_masks = ~np.logical_and(~foreground_masks,
                                      enlarge_foreground_masks)

        input_dict['points'] = points[valid_masks]
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[valid_masks]

        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[valid_masks]
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
1335
        repr_str += f'(bbox_enlarge_range={self.bbox_enlarge_range.tolist()})'
1336
        return repr_str
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347


@PIPELINES.register_module()
class VoxelBasedPointSampler(object):
    """Voxel based point sampler.

    Apply voxel sampling to multiple sweep points.

    Args:
        cur_sweep_cfg (dict): Config for sampling current points.
        prev_sweep_cfg (dict): Config for sampling previous points.
1348
        time_dim (int): Index that indicate the time dimension
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
            for input points.
    """

    def __init__(self, cur_sweep_cfg, prev_sweep_cfg=None, time_dim=3):
        self.cur_voxel_generator = VoxelGenerator(**cur_sweep_cfg)
        self.cur_voxel_num = self.cur_voxel_generator._max_voxels
        self.time_dim = time_dim
        if prev_sweep_cfg is not None:
            assert prev_sweep_cfg['max_num_points'] == \
                cur_sweep_cfg['max_num_points']
            self.prev_voxel_generator = VoxelGenerator(**prev_sweep_cfg)
            self.prev_voxel_num = self.prev_voxel_generator._max_voxels
        else:
            self.prev_voxel_generator = None
            self.prev_voxel_num = 0

    def _sample_points(self, points, sampler, point_dim):
        """Sample points for each points subset.

        Args:
            points (np.ndarray): Points subset to be sampled.
            sampler (VoxelGenerator): Voxel based sampler for
                each points subset.
1372
            point_dim (int): The dimension of each points
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397

        Returns:
            np.ndarray: Sampled points.
        """
        voxels, coors, num_points_per_voxel = sampler.generate(points)
        if voxels.shape[0] < sampler._max_voxels:
            padding_points = np.zeros([
                sampler._max_voxels - voxels.shape[0], sampler._max_num_points,
                point_dim
            ],
                                      dtype=points.dtype)
            padding_points[:] = voxels[0]
            sample_points = np.concatenate([voxels, padding_points], axis=0)
        else:
            sample_points = voxels

        return sample_points

    def __call__(self, results):
        """Call function to sample points from multiple sweeps.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
1398
            dict: Results after sampling, 'points', 'pts_instance_mask'
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']
        original_dim = points.shape[1]

        # TODO: process instance and semantic mask while _max_num_points
        # is larger than 1
        # Extend points with seg and mask fields
        map_fields2dim = []
        start_dim = original_dim
1409
1410
        points_numpy = points.tensor.numpy()
        extra_channel = [points_numpy]
1411
1412
1413
1414
1415
1416
1417
1418
1419
        for idx, key in enumerate(results['pts_mask_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

        start_dim += len(results['pts_mask_fields'])
        for idx, key in enumerate(results['pts_seg_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

1420
        points_numpy = np.concatenate(extra_channel, axis=-1)
1421
1422
1423
1424
1425

        # Split points into two part, current sweep points and
        # previous sweeps points.
        # TODO: support different sampling methods for next sweeps points
        # and previous sweeps points.
1426
1427
1428
        cur_points_flag = (points_numpy[:, self.time_dim] == 0)
        cur_sweep_points = points_numpy[cur_points_flag]
        prev_sweeps_points = points_numpy[~cur_points_flag]
1429
1430
1431
1432
1433
1434
1435
1436
1437
        if prev_sweeps_points.shape[0] == 0:
            prev_sweeps_points = cur_sweep_points

        # Shuffle points before sampling
        np.random.shuffle(cur_sweep_points)
        np.random.shuffle(prev_sweeps_points)

        cur_sweep_points = self._sample_points(cur_sweep_points,
                                               self.cur_voxel_generator,
1438
                                               points_numpy.shape[1])
1439
1440
1441
        if self.prev_voxel_generator is not None:
            prev_sweeps_points = self._sample_points(prev_sweeps_points,
                                                     self.prev_voxel_generator,
1442
                                                     points_numpy.shape[1])
1443

1444
1445
            points_numpy = np.concatenate(
                [cur_sweep_points, prev_sweeps_points], 0)
1446
        else:
1447
            points_numpy = cur_sweep_points
1448
1449

        if self.cur_voxel_generator._max_num_points == 1:
1450
1451
            points_numpy = points_numpy.squeeze(1)
        results['points'] = points.new_point(points_numpy[..., :original_dim])
1452

1453
        # Restore the corresponding seg and mask fields
1454
        for key, dim_index in map_fields2dim:
1455
            results[key] = points_numpy[..., dim_index]
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""

        def _auto_indent(repr_str, indent):
            repr_str = repr_str.split('\n')
            repr_str = [' ' * indent + t + '\n' for t in repr_str]
            repr_str = ''.join(repr_str)[:-1]
            return repr_str

        repr_str = self.__class__.__name__
        indent = 4
        repr_str += '(\n'
        repr_str += ' ' * indent + f'num_cur_sweep={self.cur_voxel_num},\n'
        repr_str += ' ' * indent + f'num_prev_sweep={self.prev_voxel_num},\n'
        repr_str += ' ' * indent + f'time_dim={self.time_dim},\n'
        repr_str += ' ' * indent + 'cur_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.cur_voxel_generator), 8)},\n'
        repr_str += ' ' * indent + 'prev_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.prev_voxel_generator), 8)})'
        return repr_str
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605


@PIPELINES.register_module()
class AffineResize(object):
    """Get the affine transform matrices to the target size.

    Different from :class:`RandomAffine` in MMDetection, this class can
    calculate the affine transform matrices while resizing the input image
    to a fixed size. The affine transform matrices include: 1) matrix
    transforming original image to the network input image size. 2) matrix
    transforming original image to the network output feature map size.

    Args:
        img_scale (tuple): Images scales for resizing.
        down_ratio (int): The down ratio of feature map.
            Actually the arg should be >= 1.
        bbox_clip_border (bool, optional): Whether clip the objects
            outside the border of the image. Defaults to True.
    """

    def __init__(self, img_scale, down_ratio, bbox_clip_border=True):

        self.img_scale = img_scale
        self.down_ratio = down_ratio
        self.bbox_clip_border = bbox_clip_border

    def __call__(self, results):
        """Call function to do affine transform to input image and labels.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after affine resize, 'affine_aug', 'trans_mat'
                keys are added in the result dict.
        """
        # The results have gone through RandomShiftScale before AffineResize
        if 'center' not in results:
            img = results['img']
            height, width = img.shape[:2]
            center = np.array([width / 2, height / 2], dtype=np.float32)
            size = np.array([width, height], dtype=np.float32)
            results['affine_aug'] = False
        else:
            # The results did not go through RandomShiftScale before
            # AffineResize
            img = results['img']
            center = results['center']
            size = results['size']

        trans_affine = self._get_transform_matrix(center, size, self.img_scale)

        img = cv2.warpAffine(img, trans_affine[:2, :], self.img_scale)

        if isinstance(self.down_ratio, tuple):
            trans_mat = [
                self._get_transform_matrix(
                    center, size,
                    (self.img_scale[0] // ratio, self.img_scale[1] // ratio))
                for ratio in self.down_ratio
            ]  # (3, 3)
        else:
            trans_mat = self._get_transform_matrix(
                center, size, (self.img_scale[0] // self.down_ratio,
                               self.img_scale[1] // self.down_ratio))

        results['img'] = img
        results['img_shape'] = img.shape
        results['pad_shape'] = img.shape
        results['trans_mat'] = trans_mat

        self._affine_bboxes(results, trans_affine)

        if 'centers2d' in results:
            centers2d = self._affine_transform(results['centers2d'],
                                               trans_affine)
            valid_index = (centers2d[:, 0] >
                           0) & (centers2d[:, 0] <
                                 self.img_scale[0]) & (centers2d[:, 1] > 0) & (
                                     centers2d[:, 1] < self.img_scale[1])
            results['centers2d'] = centers2d[valid_index]

            for key in results.get('bbox_fields', []):
                if key in ['gt_bboxes']:
                    results[key] = results[key][valid_index]
                    if 'gt_labels' in results:
                        results['gt_labels'] = results['gt_labels'][
                            valid_index]
                    if 'gt_masks' in results:
                        raise NotImplementedError(
                            'AffineResize only supports bbox.')

            for key in results.get('bbox3d_fields', []):
                if key in ['gt_bboxes_3d']:
                    results[key].tensor = results[key].tensor[valid_index]
                    if 'gt_labels_3d' in results:
                        results['gt_labels_3d'] = results['gt_labels_3d'][
                            valid_index]

            results['depths'] = results['depths'][valid_index]

        return results

    def _affine_bboxes(self, results, matrix):
        """Affine transform bboxes to input image.

        Args:
            results (dict): Result dict from loading pipeline.
            matrix (np.ndarray): Matrix transforming original
                image to the network input image size.
                shape: (3, 3)
        """

        for key in results.get('bbox_fields', []):
            bboxes = results[key]
            bboxes[:, :2] = self._affine_transform(bboxes[:, :2], matrix)
            bboxes[:, 2:] = self._affine_transform(bboxes[:, 2:], matrix)
            if self.bbox_clip_border:
                bboxes[:,
                       [0, 2]] = bboxes[:,
                                        [0, 2]].clip(0, self.img_scale[0] - 1)
                bboxes[:,
                       [1, 3]] = bboxes[:,
                                        [1, 3]].clip(0, self.img_scale[1] - 1)
            results[key] = bboxes

    def _affine_transform(self, points, matrix):
1606
        """Affine transform bbox points to input image.
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659

        Args:
            points (np.ndarray): Points to be transformed.
                shape: (N, 2)
            matrix (np.ndarray): Affine transform matrix.
                shape: (3, 3)

        Returns:
            np.ndarray: Transformed points.
        """
        num_points = points.shape[0]
        hom_points_2d = np.concatenate((points, np.ones((num_points, 1))),
                                       axis=1)
        hom_points_2d = hom_points_2d.T
        affined_points = np.matmul(matrix, hom_points_2d).T
        return affined_points[:, :2]

    def _get_transform_matrix(self, center, scale, output_scale):
        """Get affine transform matrix.

        Args:
            center (tuple): Center of current image.
            scale (tuple): Scale of current image.
            output_scale (tuple[float]): The transform target image scales.

        Returns:
            np.ndarray: Affine transform matrix.
        """
        # TODO: further add rot and shift here.
        src_w = scale[0]
        dst_w = output_scale[0]
        dst_h = output_scale[1]

        src_dir = np.array([0, src_w * -0.5])
        dst_dir = np.array([0, dst_w * -0.5])

        src = np.zeros((3, 2), dtype=np.float32)
        dst = np.zeros((3, 2), dtype=np.float32)
        src[0, :] = center
        src[1, :] = center + src_dir
        dst[0, :] = np.array([dst_w * 0.5, dst_h * 0.5])
        dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir

        src[2, :] = self._get_ref_point(src[0, :], src[1, :])
        dst[2, :] = self._get_ref_point(dst[0, :], dst[1, :])

        get_matrix = cv2.getAffineTransform(src, dst)

        matrix = np.concatenate((get_matrix, [[0., 0., 1.]]))

        return matrix.astype(np.float32)

    def _get_ref_point(self, ref_point1, ref_point2):
1660
        """Get reference point to calculate affine transform matrix.
1661
1662

        While using opencv to calculate the affine matrix, we need at least
1663
        three corresponding points separately on original image and target
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
        image. Here we use two points to get the the third reference point.
        """
        d = ref_point1 - ref_point2
        ref_point3 = ref_point2 + np.array([-d[1], d[0]])
        return ref_point3

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(img_scale={self.img_scale}, '
        repr_str += f'down_ratio={self.down_ratio}) '
        return repr_str


@PIPELINES.register_module()
class RandomShiftScale(object):
    """Random shift scale.

    Different from the normal shift and scale function, it doesn't
    directly shift or scale image. It can record the shift and scale
1683
    infos into loading pipelines. It's designed to be used with
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
    AffineResize together.

    Args:
        shift_scale (tuple[float]): Shift and scale range.
        aug_prob (float): The shifting and scaling probability.
    """

    def __init__(self, shift_scale, aug_prob):

        self.shift_scale = shift_scale
        self.aug_prob = aug_prob

    def __call__(self, results):
        """Call function to record random shift and scale infos.

        Args:
            results (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after random shift and scale, 'center', 'size'
                and 'affine_aug' keys are added in the result dict.
        """
        img = results['img']

        height, width = img.shape[:2]

        center = np.array([width / 2, height / 2], dtype=np.float32)
        size = np.array([width, height], dtype=np.float32)

        if random.random() < self.aug_prob:
            shift, scale = self.shift_scale[0], self.shift_scale[1]
            shift_ranges = np.arange(-shift, shift + 0.1, 0.1)
            center[0] += size[0] * random.choice(shift_ranges)
            center[1] += size[1] * random.choice(shift_ranges)
            scale_ranges = np.arange(1 - scale, 1 + scale + 0.1, 0.1)
            size *= random.choice(scale_ranges)
            results['affine_aug'] = True
        else:
            results['affine_aug'] = False

        results['center'] = center
        results['size'] = size

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += f'(shift_scale={self.shift_scale}, '
        repr_str += f'aug_prob={self.aug_prob}) '
        return repr_str