transforms_3d.py 39.6 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
import numpy as np
2
from mmcv import is_tuple_of
3
from mmcv.utils import build_from_cfg
zhangwenwei's avatar
zhangwenwei committed
4

5
from mmdet3d.core import VoxelGenerator
zhangwenwei's avatar
zhangwenwei committed
6
from mmdet3d.core.bbox import box_np_ops
7
from mmdet.datasets.builder import PIPELINES
zhangwenwei's avatar
zhangwenwei committed
8
from mmdet.datasets.pipelines import RandomFlip
zhangwenwei's avatar
zhangwenwei committed
9
10
11
12
from ..registry import OBJECTSAMPLERS
from .data_augment_utils import noise_per_object_v3_


13
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
14
15
16
17
18
19
20
21
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

    Args:
zhangwenwei's avatar
zhangwenwei committed
22
23
24
        sync_2d (bool, optional): Whether to apply flip according to the 2D
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
liyinhao's avatar
liyinhao committed
25
            to that of 2D images. Defaults to True.
wuyuefeng's avatar
wuyuefeng committed
26
        flip_ratio_bev_horizontal (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
27
            in horizontal direction. Defaults to 0.0.
wuyuefeng's avatar
wuyuefeng committed
28
        flip_ratio_bev_vertical (float, optional): The flipping probability
liyinhao's avatar
liyinhao committed
29
            in vertical direction. Defaults to 0.0.
zhangwenwei's avatar
zhangwenwei committed
30
31
    """

wuyuefeng's avatar
wuyuefeng committed
32
33
34
35
36
37
38
    def __init__(self,
                 sync_2d=True,
                 flip_ratio_bev_horizontal=0.0,
                 flip_ratio_bev_vertical=0.0,
                 **kwargs):
        super(RandomFlip3D, self).__init__(
            flip_ratio=flip_ratio_bev_horizontal, **kwargs)
zhangwenwei's avatar
zhangwenwei committed
39
        self.sync_2d = sync_2d
wuyuefeng's avatar
wuyuefeng committed
40
41
42
43
44
45
46
47
48
49
50
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

    def random_flip_data_3d(self, input_dict, direction='horizontal'):
51
52
53
54
55
56
57
58
59
60
        """Flip 3D data randomly.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            direction (str): Flip direction. Default: horizontal.

        Returns:
            dict: Flipped results, 'points', 'bbox3d_fields' keys are \
                updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
61
        assert direction in ['horizontal', 'vertical']
62
63
64
65
66
        if len(input_dict['bbox3d_fields']) == 0:  # test mode
            input_dict['bbox3d_fields'].append('empty_box3d')
            input_dict['empty_box3d'] = input_dict['box_type_3d'](
                np.array([], dtype=np.float32))
        assert len(input_dict['bbox3d_fields']) == 1
zhangwenwei's avatar
zhangwenwei committed
67
        for key in input_dict['bbox3d_fields']:
wuyuefeng's avatar
wuyuefeng committed
68
69
            input_dict['points'] = input_dict[key].flip(
                direction, points=input_dict['points'])
zhangwenwei's avatar
zhangwenwei committed
70
71

    def __call__(self, input_dict):
72
73
74
75
76
77
78
79
80
81
82
        """Call function to flip points, values in the ``bbox3d_fields`` and \
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Flipped results, 'flip', 'flip_direction', \
                'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added \
                into result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
83
        # filp 2D image and its annotations
zhangwenwei's avatar
zhangwenwei committed
84
        super(RandomFlip3D, self).__call__(input_dict)
zhangwenwei's avatar
zhangwenwei committed
85

zhangwenwei's avatar
zhangwenwei committed
86
        if self.sync_2d:
wuyuefeng's avatar
wuyuefeng committed
87
88
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
89
        else:
wuyuefeng's avatar
wuyuefeng committed
90
91
92
93
94
95
96
97
98
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
                ) < self.flip_ratio else False
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

99
100
101
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

wuyuefeng's avatar
wuyuefeng committed
102
103
        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
104
            input_dict['transformation_3d_flow'].extend(['HF'])
wuyuefeng's avatar
wuyuefeng committed
105
106
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
107
            input_dict['transformation_3d_flow'].extend(['VF'])
zhangwenwei's avatar
zhangwenwei committed
108
109
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
110
    def __repr__(self):
111
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
112
        repr_str = self.__class__.__name__
113
114
        repr_str += f'(sync_2d={self.sync_2d},'
        repr_str += f'flip_ratio_bev_vertical={self.flip_ratio_bev_vertical})'
wuyuefeng's avatar
wuyuefeng committed
115
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
116

zhangwenwei's avatar
zhangwenwei committed
117

118
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
119
class ObjectSample(object):
zhangwenwei's avatar
zhangwenwei committed
120
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
121
122
123
124
125

    Args:
        db_sampler (dict): Config dict of the database sampler.
        sample_2d (bool): Whether to also paste 2D image patch to the images
            This should be true when applying multi-modality cut-and-paste.
liyinhao's avatar
liyinhao committed
126
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
127
    """
zhangwenwei's avatar
zhangwenwei committed
128
129
130
131
132
133
134
135
136
137

    def __init__(self, db_sampler, sample_2d=False):
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
        self.db_sampler = build_from_cfg(db_sampler, OBJECTSAMPLERS)

    @staticmethod
    def remove_points_in_boxes(points, boxes):
138
139
140
141
142
143
144
145
146
        """Remove the points in the sampled bounding boxes.

        Args:
            points (np.ndarray): Input point cloud array.
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
147
        masks = box_np_ops.points_in_rbbox(points.coord.numpy(), boxes)
zhangwenwei's avatar
zhangwenwei committed
148
149
150
151
        points = points[np.logical_not(masks.any(-1))]
        return points

    def __call__(self, input_dict):
152
153
154
155
156
157
158
159
160
161
        """Call function to sample ground truth objects to the data.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after object sampling augmentation, \
                'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
162
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
163
164
        gt_labels_3d = input_dict['gt_labels_3d']

zhangwenwei's avatar
zhangwenwei committed
165
166
167
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
168
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
169
170
171
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
172
173
174
175
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
176
177
        else:
            sampled_dict = self.db_sampler.sample_all(
178
                gt_bboxes_3d.tensor.numpy(), gt_labels_3d, img=None)
zhangwenwei's avatar
zhangwenwei committed
179
180
181
182

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
183
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
184

zhangwenwei's avatar
zhangwenwei committed
185
186
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
187
188
189
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
190

zhangwenwei's avatar
zhangwenwei committed
191
192
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
193
            points = points.cat([sampled_points, points])
zhangwenwei's avatar
zhangwenwei committed
194
195
196
197
198

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
199

zhangwenwei's avatar
zhangwenwei committed
200
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
201
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
202
203

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
204
        input_dict['gt_labels_3d'] = gt_labels_3d.astype(np.long)
zhangwenwei's avatar
zhangwenwei committed
205
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
206

zhangwenwei's avatar
zhangwenwei committed
207
208
209
        return input_dict

    def __repr__(self):
210
        """str: Return a string that describes the module."""
211
212
213
214
215
216
217
218
219
        repr_str = self.__class__.__name__
        repr_str += f' sample_2d={self.sample_2d},'
        repr_str += f' data_root={self.sampler_cfg.data_root},'
        repr_str += f' info_path={self.sampler_cfg.info_path},'
        repr_str += f' rate={self.sampler_cfg.rate},'
        repr_str += f' prepare={self.sampler_cfg.prepare},'
        repr_str += f' classes={self.sampler_cfg.classes},'
        repr_str += f' sample_groups={self.sampler_cfg.sample_groups}'
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
220
221


222
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
223
class ObjectNoise(object):
zhangwenwei's avatar
zhangwenwei committed
224
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
225
226

    Args:
227
        translation_std (list[float], optional): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
228
229
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
230
        global_rot_range (list[float], optional): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
231
            Defaults to [0.0, 0.0].
232
        rot_range (list[float], optional): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
233
234
235
236
            Defaults to [-0.15707963267, 0.15707963267].
        num_try (int, optional): Number of times to try if the noise applied is
            invalid. Defaults to 100.
    """
zhangwenwei's avatar
zhangwenwei committed
237
238

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
239
                 translation_std=[0.25, 0.25, 0.25],
zhangwenwei's avatar
zhangwenwei committed
240
                 global_rot_range=[0.0, 0.0],
zhangwenwei's avatar
zhangwenwei committed
241
                 rot_range=[-0.15707963267, 0.15707963267],
zhangwenwei's avatar
zhangwenwei committed
242
                 num_try=100):
zhangwenwei's avatar
zhangwenwei committed
243
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
244
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
245
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
246
247
248
        self.num_try = num_try

    def __call__(self, input_dict):
249
250
251
252
253
254
255
256
257
        """Call function to apply noise to each ground truth in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after adding noise to each object, \
                'points', 'gt_bboxes_3d' keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
258
259
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
260

zhangwenwei's avatar
zhangwenwei committed
261
        # TODO: check this inplace function
262
        numpy_box = gt_bboxes_3d.tensor.numpy()
263
264
        numpy_points = points.tensor.numpy()

zhangwenwei's avatar
zhangwenwei committed
265
        noise_per_object_v3_(
266
            numpy_box,
267
            numpy_points,
zhangwenwei's avatar
zhangwenwei committed
268
269
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
270
271
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
272
273

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
274
        input_dict['points'] = points.new_point(numpy_points)
zhangwenwei's avatar
zhangwenwei committed
275
276
277
        return input_dict

    def __repr__(self):
278
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
279
        repr_str = self.__class__.__name__
280
281
282
283
        repr_str += f'(num_try={self.num_try},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' global_rot_range={self.global_rot_range},'
        repr_str += f' rot_range={self.rot_range})'
zhangwenwei's avatar
zhangwenwei committed
284
285
286
        return repr_str


287
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
288
class GlobalRotScaleTrans(object):
zhangwenwei's avatar
zhangwenwei committed
289
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
290
291
292

    Args:
        rot_range (list[float]): Range of rotation angle.
liyinhao's avatar
liyinhao committed
293
            Defaults to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
zhangwenwei's avatar
zhangwenwei committed
294
        scale_ratio_range (list[float]): Range of scale ratio.
liyinhao's avatar
liyinhao committed
295
            Defaults to [0.95, 1.05].
zhangwenwei's avatar
zhangwenwei committed
296
297
298
        translation_std (list[float]): The standard deviation of ranslation
            noise. This apply random translation to a scene by a noise, which
            is sampled from a gaussian distribution whose standard deviation
liyinhao's avatar
liyinhao committed
299
300
            is set by ``translation_std``. Defaults to [0, 0, 0]
        shift_height (bool): Whether to shift height.
wuyuefeng's avatar
wuyuefeng committed
301
            (the fourth dimension of indoor points) when scaling.
liyinhao's avatar
liyinhao committed
302
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
303
    """
zhangwenwei's avatar
zhangwenwei committed
304
305

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
306
307
                 rot_range=[-0.78539816, 0.78539816],
                 scale_ratio_range=[0.95, 1.05],
wuyuefeng's avatar
wuyuefeng committed
308
309
                 translation_std=[0, 0, 0],
                 shift_height=False):
zhangwenwei's avatar
zhangwenwei committed
310
311
312
        self.rot_range = rot_range
        self.scale_ratio_range = scale_ratio_range
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
313
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
314
315

    def _trans_bbox_points(self, input_dict):
316
317
318
319
320
321
322
323
324
325
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after translation, 'points', 'pcd_trans' \
                and keys in input_dict['bbox3d_fields'] are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
326
327
328
329
330
331
332
333
334
335
        if not isinstance(self.translation_std, (list, tuple, np.ndarray)):
            translation_std = [
                self.translation_std, self.translation_std,
                self.translation_std
            ]
        else:
            translation_std = self.translation_std
        translation_std = np.array(translation_std, dtype=np.float32)
        trans_factor = np.random.normal(scale=translation_std, size=3).T

336
        input_dict['points'].translate(trans_factor)
zhangwenwei's avatar
zhangwenwei committed
337
338
339
340
341
        input_dict['pcd_trans'] = trans_factor
        for key in input_dict['bbox3d_fields']:
            input_dict[key].translate(trans_factor)

    def _rot_bbox_points(self, input_dict):
342
343
344
345
346
347
348
349
350
351
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after rotation, 'points', 'pcd_rotation' \
                and keys in input_dict['bbox3d_fields'] are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
352
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
353
354
355
        if not isinstance(rotation, list):
            rotation = [-rotation, rotation]
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
356
357

        for key in input_dict['bbox3d_fields']:
wuyuefeng's avatar
wuyuefeng committed
358
359
360
361
362
            if len(input_dict[key].tensor) != 0:
                points, rot_mat_T = input_dict[key].rotate(
                    noise_rotation, input_dict['points'])
                input_dict['points'] = points
                input_dict['pcd_rotation'] = rot_mat_T
363
        # input_dict['points_instance'].rotate(noise_rotation)
364

zhangwenwei's avatar
zhangwenwei committed
365
    def _scale_bbox_points(self, input_dict):
366
367
368
369
370
371
372
373
374
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points'and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
375
        scale = input_dict['pcd_scale_factor']
376
377
        points = input_dict['points']
        points.scale(scale)
wuyuefeng's avatar
wuyuefeng committed
378
        if self.shift_height:
379
380
381
            assert 'height' in points.attribute_dims.keys()
            points.tensor[:, points.attribute_dims['height']] *= scale
        input_dict['points'] = points
wuyuefeng's avatar
wuyuefeng committed
382

zhangwenwei's avatar
zhangwenwei committed
383
384
        for key in input_dict['bbox3d_fields']:
            input_dict[key].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
385

zhangwenwei's avatar
zhangwenwei committed
386
    def _random_scale(self, input_dict):
387
388
389
390
391
392
393
394
395
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'pcd_scale_factor' are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
396
397
398
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
399
400

    def __call__(self, input_dict):
401
402
403
404
405
406
407
408
409
410
411
        """Private function to rotate, scale and translate bounding boxes and \
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
                'pcd_scale_factor', 'pcd_trans' and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
412
413
414
        if 'transformation_3d_flow' not in input_dict:
            input_dict['transformation_3d_flow'] = []

zhangwenwei's avatar
zhangwenwei committed
415
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
416

zhangwenwei's avatar
zhangwenwei committed
417
418
419
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
420

zhangwenwei's avatar
zhangwenwei committed
421
        self._trans_bbox_points(input_dict)
422
423

        input_dict['transformation_3d_flow'].extend(['R', 'S', 'T'])
zhangwenwei's avatar
zhangwenwei committed
424
425
426
        return input_dict

    def __repr__(self):
427
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
428
        repr_str = self.__class__.__name__
429
430
431
432
        repr_str += f'(rot_range={self.rot_range},'
        repr_str += f' scale_ratio_range={self.scale_ratio_range},'
        repr_str += f' translation_std={self.translation_std},'
        repr_str += f' shift_height={self.shift_height})'
zhangwenwei's avatar
zhangwenwei committed
433
434
435
        return repr_str


436
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
437
class PointShuffle(object):
438
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
439
440

    def __call__(self, input_dict):
441
442
443
444
445
446
447
448
449
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'points' keys are updated \
                in the result dict.
        """
450
        input_dict['points'].shuffle()
zhangwenwei's avatar
zhangwenwei committed
451
452
453
454
455
456
        return input_dict

    def __repr__(self):
        return self.__class__.__name__


457
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
458
class ObjectRangeFilter(object):
459
460
461
462
463
    """Filter objects by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
464
465
466
467
468
469

    def __init__(self, point_cloud_range):
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
        self.bev_range = self.pcd_range[[0, 1, 3, 4]]

    def __call__(self, input_dict):
470
471
472
473
474
475
476
477
478
        """Call function to filter objects by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' \
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
479
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
480
        gt_labels_3d = input_dict['gt_labels_3d']
481
        mask = gt_bboxes_3d.in_range_bev(self.bev_range)
zhangwenwei's avatar
zhangwenwei committed
482
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
483
484
485
486
487
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
zhangwenwei's avatar
zhangwenwei committed
488
489

        # limit rad to [-pi, pi]
490
491
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
492
493
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
494
495
496
        return input_dict

    def __repr__(self):
497
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
498
        repr_str = self.__class__.__name__
499
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
500
501
502
        return repr_str


503
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
504
class PointsRangeFilter(object):
505
506
507
508
509
    """Filter points by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
510
511

    def __init__(self, point_cloud_range):
512
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
zhangwenwei's avatar
zhangwenwei committed
513
514

    def __call__(self, input_dict):
515
516
517
518
519
520
521
522
523
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'points' keys are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
524
        points = input_dict['points']
525
526
        points_mask = points.in_range_3d(self.pcd_range)
        clean_points = points[points_mask]
zhangwenwei's avatar
zhangwenwei committed
527
528
529
530
        input_dict['points'] = clean_points
        return input_dict

    def __repr__(self):
531
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
532
        repr_str = self.__class__.__name__
533
        repr_str += f'(point_cloud_range={self.pcd_range.tolist()})'
zhangwenwei's avatar
zhangwenwei committed
534
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
535
536
537
538


@PIPELINES.register_module()
class ObjectNameFilter(object):
zhangwenwei's avatar
zhangwenwei committed
539
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
540
541

    Args:
liyinhao's avatar
liyinhao committed
542
        classes (list[str]): List of class names to be kept for training.
zhangwenwei's avatar
zhangwenwei committed
543
544
545
546
547
548
549
    """

    def __init__(self, classes):
        self.classes = classes
        self.labels = list(range(len(self.classes)))

    def __call__(self, input_dict):
550
551
552
553
554
555
556
557
558
        """Call function to filter objects by their names.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' \
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
559
560
561
562
563
564
565
566
567
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
                                  dtype=np.bool_)
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

    def __repr__(self):
568
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
569
570
571
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597


@PIPELINES.register_module()
class IndoorPointSample(object):
    """Indoor point sample.

    Sampling data to a certain number.

    Args:
        name (str): Name of the dataset.
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, num_points):
        self.num_points = num_points

    def points_random_sampling(self,
                               points,
                               num_samples,
                               replace=None,
                               return_choices=False):
        """Points random sampling.

        Sample points to a certain number.

        Args:
598
            points (np.ndarray): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
599
600
            num_samples (int): Number of samples to be sampled.
            replace (bool): Whether the sample is with or without replacement.
liyinhao's avatar
liyinhao committed
601
602
            Defaults to None.
            return_choices (bool): Whether return choice. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
603
604

        Returns:
605
606
607
608
            tuple[np.ndarray] | np.ndarray:

                - points (np.ndarray): 3D Points.
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
609
610
611
612
613
614
615
616
617
618
619
        """
        if replace is None:
            replace = (points.shape[0] < num_samples)
        choices = np.random.choice(
            points.shape[0], num_samples, replace=replace)
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

    def __call__(self, results):
620
621
622
623
624
625
626
627
628
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
629
630
631
        points = results['points']
        points, choices = self.points_random_sampling(
            points, self.num_points, return_choices=True)
632

wuyuefeng's avatar
wuyuefeng committed
633
634
635
636
637
638
639
640
641
642
643
644
645
        pts_instance_mask = results.get('pts_instance_mask', None)
        pts_semantic_mask = results.get('pts_semantic_mask', None)
        results['points'] = points

        if pts_instance_mask is not None and pts_semantic_mask is not None:
            pts_instance_mask = pts_instance_mask[choices]
            pts_semantic_mask = pts_semantic_mask[choices]
            results['pts_instance_mask'] = pts_instance_mask
            results['pts_semantic_mask'] = pts_semantic_mask

        return results

    def __repr__(self):
646
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
647
        repr_str = self.__class__.__name__
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
        repr_str += f'(num_points={self.num_points})'
        return repr_str


@PIPELINES.register_module()
class IndoorPatchPointSample(object):
    r"""Indoor point sample within a patch. Modified from `PointNet++ <https://
    github.com/charlesq34/pointnet2/blob/master/scannet/scannet_dataset.py>`_.

    Sampling data to a certain number for semantic segmentation.

    Args:
        num_points (int): Number of points to be sampled.
        block_size (float, optional): Size of a block to sample points from.
            Defaults to 1.5.
        sample_rate (float, optional): Stride used in sliding patch generation.
            Defaults to 1.0.
        ignore_index (int, optional): Label index that won't be used for the
            segmentation task. This is set in PointSegClassMapping as neg_cls.
            Defaults to None.
        use_normalized_coord (bool, optional): Whether to use normalized xyz as
            additional features. Defaults to False.
        num_try (int, optional): Number of times to try if the patch selected
            is invalid. Defaults to 10.
    """

    def __init__(self,
                 num_points,
                 block_size=1.5,
                 sample_rate=1.0,
                 ignore_index=None,
                 use_normalized_coord=False,
                 num_try=10):
        self.num_points = num_points
        self.block_size = block_size
        self.sample_rate = sample_rate
        self.ignore_index = ignore_index
        self.use_normalized_coord = use_normalized_coord
        self.num_try = num_try

    def _input_generation(self, coords, patch_center, coord_max, attributes,
                          attribute_dims, point_type):
        """Generating model input.

        Generate input by subtracting patch center and adding additional \
            features. Currently support colors and normalized xyz as features.

        Args:
            coords (np.ndarray): Sampled 3D Points.
            patch_center (np.ndarray): Center coordinate of the selected patch.
            coord_max (np.ndarray): Max coordinate of all 3D Points.
            attributes (np.ndarray): features of input points.
            attribute_dims (dict): Dictionary to indicate the meaning of extra
                dimension.
            point_type (type): class of input points.

        Returns:
            np.ndarray: The generated input data.
        """
        # subtract patch center, the z dimension is not centered
        centered_coords = coords.copy()
        centered_coords[:, 0] -= patch_center[0]
        centered_coords[:, 1] -= patch_center[1]

        if self.use_normalized_coord:
            normalized_coord = coords / coord_max
            attributes = np.concatenate([attributes, normalized_coord], axis=1)
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(normalized_coord=[
                    attributes.shape[1], attributes.shape[1] +
                    1, attributes.shape[1] + 2
                ]))

        points = np.concatenate([centered_coords, attributes], axis=1)
        points = point_type(
            points, points_dim=points.shape[1], attribute_dims=attribute_dims)

        return points

    def _patch_points_sampling(self, points, sem_mask, replace=None):
        """Patch points sampling.

        First sample a valid patch.
        Then sample points within that patch to a certain number.

        Args:
            points (BasePoints): 3D Points.
            sem_mask (np.ndarray): semantic segmentation mask for input points.
            replace (bool): Whether the sample is with or without replacement.
                Defaults to None.

        Returns:
            tuple[np.ndarray] | np.ndarray:

                - points (BasePoints): 3D Points.
                - choices (np.ndarray): The generated random samples.
        """
        coords = points.coord.numpy()
        attributes = points.tensor[:, 3:].numpy()
        attribute_dims = points.attribute_dims
        point_type = type(points)

        coord_max = np.amax(coords, axis=0)
        coord_min = np.amin(coords, axis=0)

        for i in range(self.num_try):
            # random sample a point as patch center
            cur_center = coords[np.random.choice(coords.shape[0])]

            # boundary of a patch
            cur_max = cur_center + np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_min = cur_center - np.array(
                [self.block_size / 2.0, self.block_size / 2.0, 0.0])
            cur_max[2] = coord_max[2]
            cur_min[2] = coord_min[2]
            cur_choice = np.sum(
                (coords >= (cur_min - 0.2)) * (coords <= (cur_max + 0.2)),
                axis=1) == 3

            if not cur_choice.any():  # no points in this patch
                continue

            cur_coords = coords[cur_choice, :]
            cur_sem_mask = sem_mask[cur_choice]

            # two criterion for patch sampling, adopted from PointNet++
            # points within selected patch shoule be scattered separately
            mask = np.sum(
                (cur_coords >= (cur_min - 0.01)) * (cur_coords <=
                                                    (cur_max + 0.01)),
                axis=1) == 3
            # not sure if 31, 31, 62 are just some big values used to transform
            # coords from 3d array to 1d and then check their uniqueness
            # this is used in all the ScanNet code following PointNet++
            vidx = np.ceil((cur_coords[mask, :] - cur_min) /
                           (cur_max - cur_min) * np.array([31.0, 31.0, 62.0]))
            vidx = np.unique(vidx[:, 0] * 31.0 * 62.0 + vidx[:, 1] * 62.0 +
                             vidx[:, 2])
            flag1 = len(vidx) / 31.0 / 31.0 / 62.0 >= 0.02

            # selected patch should contain enough annotated points
            if self.ignore_index is None:
                flag2 = True
            else:
                flag2 = np.sum(cur_sem_mask != self.ignore_index) / \
                               len(cur_sem_mask) >= 0.7

            if flag1 and flag2:
                break

        # random sample idx
        if replace is None:
            replace = (cur_sem_mask.shape[0] < self.num_points)
        choices = np.random.choice(
            np.where(cur_choice)[0], self.num_points, replace=replace)

        # construct model input
        points = self._input_generation(coords[choices], cur_center, coord_max,
                                        attributes[choices], attribute_dims,
                                        point_type)

        return points, choices

    def __call__(self, results):
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']

        assert 'pts_semantic_mask' in results.keys(), \
            'semantic mask should be provided in training and evaluation'
        pts_semantic_mask = results['pts_semantic_mask']

        points, choices = self._patch_points_sampling(points,
                                                      pts_semantic_mask)

        results['points'] = points
        results['pts_semantic_mask'] = pts_semantic_mask[choices]
        pts_instance_mask = results.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            results['pts_instance_mask'] = pts_instance_mask[choices]

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
        repr_str += f'(num_points={self.num_points},'
        repr_str += f' block_size={self.block_size},'
        repr_str += f' sample_rate={self.sample_rate},'
        repr_str += f' ignore_index={self.ignore_index},'
        repr_str += f' use_normalized_coord={self.use_normalized_coord},'
        repr_str += f' num_try={self.num_try})'
wuyuefeng's avatar
wuyuefeng committed
850
        return repr_str
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888


@PIPELINES.register_module()
class BackgroundPointsFilter(object):
    """Filter background points near the bounding box.

    Args:
        bbox_enlarge_range (tuple[float], float): Bbox enlarge range.
    """

    def __init__(self, bbox_enlarge_range):
        assert (is_tuple_of(bbox_enlarge_range, float)
                and len(bbox_enlarge_range) == 3) \
            or isinstance(bbox_enlarge_range, float), \
            f'Invalid arguments bbox_enlarge_range {bbox_enlarge_range}'

        if isinstance(bbox_enlarge_range, float):
            bbox_enlarge_range = [bbox_enlarge_range] * 3
        self.bbox_enlarge_range = np.array(
            bbox_enlarge_range, dtype=np.float32)[np.newaxis, :]

    def __call__(self, input_dict):
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'points' keys are updated \
                in the result dict.
        """
        points = input_dict['points']
        gt_bboxes_3d = input_dict['gt_bboxes_3d']

        gt_bboxes_3d_np = gt_bboxes_3d.tensor.numpy()
        gt_bboxes_3d_np[:, :3] = gt_bboxes_3d.gravity_center.numpy()
        enlarged_gt_bboxes_3d = gt_bboxes_3d_np.copy()
        enlarged_gt_bboxes_3d[:, 3:6] += self.bbox_enlarge_range
889
890
891
        points_numpy = points.tensor.numpy()
        foreground_masks = box_np_ops.points_in_rbbox(points_numpy,
                                                      gt_bboxes_3d_np)
892
        enlarge_foreground_masks = box_np_ops.points_in_rbbox(
893
            points_numpy, enlarged_gt_bboxes_3d)
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
        foreground_masks = foreground_masks.max(1)
        enlarge_foreground_masks = enlarge_foreground_masks.max(1)
        valid_masks = ~np.logical_and(~foreground_masks,
                                      enlarge_foreground_masks)

        input_dict['points'] = points[valid_masks]
        pts_instance_mask = input_dict.get('pts_instance_mask', None)
        if pts_instance_mask is not None:
            input_dict['pts_instance_mask'] = pts_instance_mask[valid_masks]

        pts_semantic_mask = input_dict.get('pts_semantic_mask', None)
        if pts_semantic_mask is not None:
            input_dict['pts_semantic_mask'] = pts_semantic_mask[valid_masks]
        return input_dict

    def __repr__(self):
        """str: Return a string that describes the module."""
        repr_str = self.__class__.__name__
912
        repr_str += f'(bbox_enlarge_range={self.bbox_enlarge_range.tolist()})'
913
        return repr_str
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985


@PIPELINES.register_module()
class VoxelBasedPointSampler(object):
    """Voxel based point sampler.

    Apply voxel sampling to multiple sweep points.

    Args:
        cur_sweep_cfg (dict): Config for sampling current points.
        prev_sweep_cfg (dict): Config for sampling previous points.
        time_dim (int): Index that indicate the time dimention
            for input points.
    """

    def __init__(self, cur_sweep_cfg, prev_sweep_cfg=None, time_dim=3):
        self.cur_voxel_generator = VoxelGenerator(**cur_sweep_cfg)
        self.cur_voxel_num = self.cur_voxel_generator._max_voxels
        self.time_dim = time_dim
        if prev_sweep_cfg is not None:
            assert prev_sweep_cfg['max_num_points'] == \
                cur_sweep_cfg['max_num_points']
            self.prev_voxel_generator = VoxelGenerator(**prev_sweep_cfg)
            self.prev_voxel_num = self.prev_voxel_generator._max_voxels
        else:
            self.prev_voxel_generator = None
            self.prev_voxel_num = 0

    def _sample_points(self, points, sampler, point_dim):
        """Sample points for each points subset.

        Args:
            points (np.ndarray): Points subset to be sampled.
            sampler (VoxelGenerator): Voxel based sampler for
                each points subset.
            point_dim (int): The dimention of each points

        Returns:
            np.ndarray: Sampled points.
        """
        voxels, coors, num_points_per_voxel = sampler.generate(points)
        if voxels.shape[0] < sampler._max_voxels:
            padding_points = np.zeros([
                sampler._max_voxels - voxels.shape[0], sampler._max_num_points,
                point_dim
            ],
                                      dtype=points.dtype)
            padding_points[:] = voxels[0]
            sample_points = np.concatenate([voxels, padding_points], axis=0)
        else:
            sample_points = voxels

        return sample_points

    def __call__(self, results):
        """Call function to sample points from multiple sweeps.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
        points = results['points']
        original_dim = points.shape[1]

        # TODO: process instance and semantic mask while _max_num_points
        # is larger than 1
        # Extend points with seg and mask fields
        map_fields2dim = []
        start_dim = original_dim
986
987
        points_numpy = points.tensor.numpy()
        extra_channel = [points_numpy]
988
989
990
991
992
993
994
995
996
        for idx, key in enumerate(results['pts_mask_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

        start_dim += len(results['pts_mask_fields'])
        for idx, key in enumerate(results['pts_seg_fields']):
            map_fields2dim.append((key, idx + start_dim))
            extra_channel.append(results[key][..., None])

997
        points_numpy = np.concatenate(extra_channel, axis=-1)
998
999
1000
1001
1002

        # Split points into two part, current sweep points and
        # previous sweeps points.
        # TODO: support different sampling methods for next sweeps points
        # and previous sweeps points.
1003
1004
1005
        cur_points_flag = (points_numpy[:, self.time_dim] == 0)
        cur_sweep_points = points_numpy[cur_points_flag]
        prev_sweeps_points = points_numpy[~cur_points_flag]
1006
1007
1008
1009
1010
1011
1012
1013
1014
        if prev_sweeps_points.shape[0] == 0:
            prev_sweeps_points = cur_sweep_points

        # Shuffle points before sampling
        np.random.shuffle(cur_sweep_points)
        np.random.shuffle(prev_sweeps_points)

        cur_sweep_points = self._sample_points(cur_sweep_points,
                                               self.cur_voxel_generator,
1015
                                               points_numpy.shape[1])
1016
1017
1018
        if self.prev_voxel_generator is not None:
            prev_sweeps_points = self._sample_points(prev_sweeps_points,
                                                     self.prev_voxel_generator,
1019
                                                     points_numpy.shape[1])
1020

1021
1022
            points_numpy = np.concatenate(
                [cur_sweep_points, prev_sweeps_points], 0)
1023
        else:
1024
            points_numpy = cur_sweep_points
1025
1026

        if self.cur_voxel_generator._max_num_points == 1:
1027
1028
            points_numpy = points_numpy.squeeze(1)
        results['points'] = points.new_point(points_numpy[..., :original_dim])
1029
1030
1031

        # Restore the correspoinding seg and mask fields
        for key, dim_index in map_fields2dim:
1032
            results[key] = points_numpy[..., dim_index]
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055

        return results

    def __repr__(self):
        """str: Return a string that describes the module."""

        def _auto_indent(repr_str, indent):
            repr_str = repr_str.split('\n')
            repr_str = [' ' * indent + t + '\n' for t in repr_str]
            repr_str = ''.join(repr_str)[:-1]
            return repr_str

        repr_str = self.__class__.__name__
        indent = 4
        repr_str += '(\n'
        repr_str += ' ' * indent + f'num_cur_sweep={self.cur_voxel_num},\n'
        repr_str += ' ' * indent + f'num_prev_sweep={self.prev_voxel_num},\n'
        repr_str += ' ' * indent + f'time_dim={self.time_dim},\n'
        repr_str += ' ' * indent + 'cur_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.cur_voxel_generator), 8)},\n'
        repr_str += ' ' * indent + 'prev_voxel_generator=\n'
        repr_str += f'{_auto_indent(repr(self.prev_voxel_generator), 8)})'
        return repr_str