transforms_3d.py 22.6 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
import numpy as np
2
from mmcv.utils import build_from_cfg
zhangwenwei's avatar
zhangwenwei committed
3
4

from mmdet3d.core.bbox import box_np_ops
5
from mmdet.datasets.builder import PIPELINES
zhangwenwei's avatar
zhangwenwei committed
6
from mmdet.datasets.pipelines import RandomFlip
zhangwenwei's avatar
zhangwenwei committed
7
8
9
10
from ..registry import OBJECTSAMPLERS
from .data_augment_utils import noise_per_object_v3_


11
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
12
13
14
15
16
17
18
19
class RandomFlip3D(RandomFlip):
    """Flip the points & bbox.

    If the input dict contains the key "flip", then the flag will be used,
    otherwise it will be randomly decided by a ratio specified in the init
    method.

    Args:
zhangwenwei's avatar
zhangwenwei committed
20
21
22
23
        sync_2d (bool, optional): Whether to apply flip according to the 2D
            images. If True, it will apply the same flip as that to 2D images.
            If False, it will decide whether to flip randomly and independently
            to that of 2D images.
wuyuefeng's avatar
wuyuefeng committed
24
25
26
27
        flip_ratio_bev_horizontal (float, optional): The flipping probability
            in horizontal direction.
        flip_ratio_bev_vertical (float, optional): The flipping probability
            in vertical direction.
zhangwenwei's avatar
zhangwenwei committed
28
29
    """

wuyuefeng's avatar
wuyuefeng committed
30
31
32
33
34
35
36
    def __init__(self,
                 sync_2d=True,
                 flip_ratio_bev_horizontal=0.0,
                 flip_ratio_bev_vertical=0.0,
                 **kwargs):
        super(RandomFlip3D, self).__init__(
            flip_ratio=flip_ratio_bev_horizontal, **kwargs)
zhangwenwei's avatar
zhangwenwei committed
37
        self.sync_2d = sync_2d
wuyuefeng's avatar
wuyuefeng committed
38
39
40
41
42
43
44
45
46
47
48
        self.flip_ratio_bev_vertical = flip_ratio_bev_vertical
        if flip_ratio_bev_horizontal is not None:
            assert isinstance(
                flip_ratio_bev_horizontal,
                (int, float)) and 0 <= flip_ratio_bev_horizontal <= 1
        if flip_ratio_bev_vertical is not None:
            assert isinstance(
                flip_ratio_bev_vertical,
                (int, float)) and 0 <= flip_ratio_bev_vertical <= 1

    def random_flip_data_3d(self, input_dict, direction='horizontal'):
49
50
51
52
53
54
55
56
57
58
        """Flip 3D data randomly.

        Args:
            input_dict (dict): Result dict from loading pipeline.
            direction (str): Flip direction. Default: horizontal.

        Returns:
            dict: Flipped results, 'points', 'bbox3d_fields' keys are \
                updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
59
        assert direction in ['horizontal', 'vertical']
60
61
62
63
64
        if len(input_dict['bbox3d_fields']) == 0:  # test mode
            input_dict['bbox3d_fields'].append('empty_box3d')
            input_dict['empty_box3d'] = input_dict['box_type_3d'](
                np.array([], dtype=np.float32))
        assert len(input_dict['bbox3d_fields']) == 1
zhangwenwei's avatar
zhangwenwei committed
65
        for key in input_dict['bbox3d_fields']:
wuyuefeng's avatar
wuyuefeng committed
66
67
            input_dict['points'] = input_dict[key].flip(
                direction, points=input_dict['points'])
zhangwenwei's avatar
zhangwenwei committed
68
69

    def __call__(self, input_dict):
70
71
72
73
74
75
76
77
78
79
80
        """Call function to flip points, values in the ``bbox3d_fields`` and \
        also flip 2D image and its annotations.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Flipped results, 'flip', 'flip_direction', \
                'pcd_horizontal_flip' and 'pcd_vertical_flip' keys are added \
                into result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
81
        # filp 2D image and its annotations
zhangwenwei's avatar
zhangwenwei committed
82
        super(RandomFlip3D, self).__call__(input_dict)
zhangwenwei's avatar
zhangwenwei committed
83

zhangwenwei's avatar
zhangwenwei committed
84
        if self.sync_2d:
wuyuefeng's avatar
wuyuefeng committed
85
86
            input_dict['pcd_horizontal_flip'] = input_dict['flip']
            input_dict['pcd_vertical_flip'] = False
zhangwenwei's avatar
zhangwenwei committed
87
        else:
wuyuefeng's avatar
wuyuefeng committed
88
89
90
91
92
93
94
95
96
97
98
99
100
            if 'pcd_horizontal_flip' not in input_dict:
                flip_horizontal = True if np.random.rand(
                ) < self.flip_ratio else False
                input_dict['pcd_horizontal_flip'] = flip_horizontal
            if 'pcd_vertical_flip' not in input_dict:
                flip_vertical = True if np.random.rand(
                ) < self.flip_ratio_bev_vertical else False
                input_dict['pcd_vertical_flip'] = flip_vertical

        if input_dict['pcd_horizontal_flip']:
            self.random_flip_data_3d(input_dict, 'horizontal')
        if input_dict['pcd_vertical_flip']:
            self.random_flip_data_3d(input_dict, 'vertical')
zhangwenwei's avatar
zhangwenwei committed
101
102
        return input_dict

zhangwenwei's avatar
zhangwenwei committed
103
    def __repr__(self):
104
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
105
106
107
108
109
110
111
        repr_str = self.__class__.__name__
        repr_str += '(sync_2d={},'.format(self.sync_2d)
        repr_str += '(flip_ratio_bev_horizontal={},'.format(
            self.flip_ratio_bev_horizontal)
        repr_str += '(flip_ratio_bev_vertical={},'.format(
            self.flip_ratio_bev_vertical)
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
112

zhangwenwei's avatar
zhangwenwei committed
113

114
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
115
class ObjectSample(object):
zhangwenwei's avatar
zhangwenwei committed
116
    """Sample GT objects to the data.
zhangwenwei's avatar
zhangwenwei committed
117
118
119
120
121
122

    Args:
        db_sampler (dict): Config dict of the database sampler.
        sample_2d (bool): Whether to also paste 2D image patch to the images
            This should be true when applying multi-modality cut-and-paste.
    """
zhangwenwei's avatar
zhangwenwei committed
123
124
125
126
127
128
129
130
131
132

    def __init__(self, db_sampler, sample_2d=False):
        self.sampler_cfg = db_sampler
        self.sample_2d = sample_2d
        if 'type' not in db_sampler.keys():
            db_sampler['type'] = 'DataBaseSampler'
        self.db_sampler = build_from_cfg(db_sampler, OBJECTSAMPLERS)

    @staticmethod
    def remove_points_in_boxes(points, boxes):
133
134
135
136
137
138
139
140
141
        """Remove the points in the sampled bounding boxes.

        Args:
            points (np.ndarray): Input point cloud array.
            boxes (np.ndarray): Sampled ground truth boxes.

        Returns:
            np.ndarray: Points with those in the boxes removed.
        """
zhangwenwei's avatar
zhangwenwei committed
142
143
144
145
146
        masks = box_np_ops.points_in_rbbox(points, boxes)
        points = points[np.logical_not(masks.any(-1))]
        return points

    def __call__(self, input_dict):
147
148
149
150
151
152
153
154
155
156
        """Call function to sample ground truth objects to the data.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after object sampling augmentation, \
                'points', 'gt_bboxes_3d', 'gt_labels_3d' keys are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
157
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
158
159
        gt_labels_3d = input_dict['gt_labels_3d']

zhangwenwei's avatar
zhangwenwei committed
160
161
162
        # change to float for blending operation
        points = input_dict['points']
        if self.sample_2d:
wuyuefeng's avatar
wuyuefeng committed
163
            img = input_dict['img']
zhangwenwei's avatar
zhangwenwei committed
164
165
166
            gt_bboxes_2d = input_dict['gt_bboxes']
            # Assume for now 3D & 2D bboxes are the same
            sampled_dict = self.db_sampler.sample_all(
167
168
169
170
                gt_bboxes_3d.tensor.numpy(),
                gt_labels_3d,
                gt_bboxes_2d=gt_bboxes_2d,
                img=img)
zhangwenwei's avatar
zhangwenwei committed
171
172
        else:
            sampled_dict = self.db_sampler.sample_all(
173
                gt_bboxes_3d.tensor.numpy(), gt_labels_3d, img=None)
zhangwenwei's avatar
zhangwenwei committed
174
175
176
177

        if sampled_dict is not None:
            sampled_gt_bboxes_3d = sampled_dict['gt_bboxes_3d']
            sampled_points = sampled_dict['points']
zhangwenwei's avatar
zhangwenwei committed
178
            sampled_gt_labels = sampled_dict['gt_labels_3d']
zhangwenwei's avatar
zhangwenwei committed
179

zhangwenwei's avatar
zhangwenwei committed
180
181
            gt_labels_3d = np.concatenate([gt_labels_3d, sampled_gt_labels],
                                          axis=0)
182
183
184
            gt_bboxes_3d = gt_bboxes_3d.new_box(
                np.concatenate(
                    [gt_bboxes_3d.tensor.numpy(), sampled_gt_bboxes_3d]))
zhangwenwei's avatar
zhangwenwei committed
185

zhangwenwei's avatar
zhangwenwei committed
186
187
188
189
190
191
192
193
194
195
            points = self.remove_points_in_boxes(points, sampled_gt_bboxes_3d)
            # check the points dimension
            dim_inds = points.shape[-1]
            points = np.concatenate([sampled_points[:, :dim_inds], points],
                                    axis=0)

            if self.sample_2d:
                sampled_gt_bboxes_2d = sampled_dict['gt_bboxes_2d']
                gt_bboxes_2d = np.concatenate(
                    [gt_bboxes_2d, sampled_gt_bboxes_2d]).astype(np.float32)
zhangwenwei's avatar
zhangwenwei committed
196

zhangwenwei's avatar
zhangwenwei committed
197
                input_dict['gt_bboxes'] = gt_bboxes_2d
wuyuefeng's avatar
wuyuefeng committed
198
                input_dict['img'] = sampled_dict['img']
zhangwenwei's avatar
zhangwenwei committed
199
200

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
201
        input_dict['gt_labels_3d'] = gt_labels_3d
zhangwenwei's avatar
zhangwenwei committed
202
        input_dict['points'] = points
zhangwenwei's avatar
zhangwenwei committed
203

zhangwenwei's avatar
zhangwenwei committed
204
205
206
        return input_dict

    def __repr__(self):
207
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
208
209
210
        return self.__class__.__name__


211
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
212
class ObjectNoise(object):
zhangwenwei's avatar
zhangwenwei committed
213
    """Apply noise to each GT objects in the scene.
zhangwenwei's avatar
zhangwenwei committed
214
215

    Args:
216
        translation_std (list[float], optional): Standard deviation of the
zhangwenwei's avatar
zhangwenwei committed
217
218
            distribution where translation noise are sampled from.
            Defaults to [0.25, 0.25, 0.25].
219
        global_rot_range (list[float], optional): Global rotation to the scene.
zhangwenwei's avatar
zhangwenwei committed
220
            Defaults to [0.0, 0.0].
221
        rot_range (list[float], optional): Object rotation range.
zhangwenwei's avatar
zhangwenwei committed
222
223
224
225
            Defaults to [-0.15707963267, 0.15707963267].
        num_try (int, optional): Number of times to try if the noise applied is
            invalid. Defaults to 100.
    """
zhangwenwei's avatar
zhangwenwei committed
226
227

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
228
                 translation_std=[0.25, 0.25, 0.25],
zhangwenwei's avatar
zhangwenwei committed
229
                 global_rot_range=[0.0, 0.0],
zhangwenwei's avatar
zhangwenwei committed
230
                 rot_range=[-0.15707963267, 0.15707963267],
zhangwenwei's avatar
zhangwenwei committed
231
                 num_try=100):
zhangwenwei's avatar
zhangwenwei committed
232
        self.translation_std = translation_std
zhangwenwei's avatar
zhangwenwei committed
233
        self.global_rot_range = global_rot_range
zhangwenwei's avatar
zhangwenwei committed
234
        self.rot_range = rot_range
zhangwenwei's avatar
zhangwenwei committed
235
236
237
        self.num_try = num_try

    def __call__(self, input_dict):
238
239
240
241
242
243
244
245
246
        """Call function to apply noise to each ground truth in the scene.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after adding noise to each object, \
                'points', 'gt_bboxes_3d' keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
247
248
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        points = input_dict['points']
zhangwenwei's avatar
zhangwenwei committed
249

zhangwenwei's avatar
zhangwenwei committed
250
        # TODO: check this inplace function
251
        numpy_box = gt_bboxes_3d.tensor.numpy()
zhangwenwei's avatar
zhangwenwei committed
252
        noise_per_object_v3_(
253
            numpy_box,
zhangwenwei's avatar
zhangwenwei committed
254
            points,
zhangwenwei's avatar
zhangwenwei committed
255
256
            rotation_perturb=self.rot_range,
            center_noise_std=self.translation_std,
zhangwenwei's avatar
zhangwenwei committed
257
258
            global_random_rot_range=self.global_rot_range,
            num_try=self.num_try)
259
260

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.new_box(numpy_box)
zhangwenwei's avatar
zhangwenwei committed
261
262
263
264
        input_dict['points'] = points
        return input_dict

    def __repr__(self):
265
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
266
267
        repr_str = self.__class__.__name__
        repr_str += '(num_try={},'.format(self.num_try)
zhangwenwei's avatar
zhangwenwei committed
268
        repr_str += ' translation_std={},'.format(self.translation_std)
zhangwenwei's avatar
zhangwenwei committed
269
        repr_str += ' global_rot_range={},'.format(self.global_rot_range)
zhangwenwei's avatar
zhangwenwei committed
270
        repr_str += ' rot_range={})'.format(self.rot_range)
zhangwenwei's avatar
zhangwenwei committed
271
272
273
        return repr_str


274
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
275
class GlobalRotScaleTrans(object):
zhangwenwei's avatar
zhangwenwei committed
276
    """Apply global rotation, scaling and translation to a 3D scene.
zhangwenwei's avatar
zhangwenwei committed
277
278
279
280
281
282
283
284
285
286

    Args:
        rot_range (list[float]): Range of rotation angle.
            Default to [-0.78539816, 0.78539816] (close to [-pi/4, pi/4]).
        scale_ratio_range (list[float]): Range of scale ratio.
            Default to [0.95, 1.05].
        translation_std (list[float]): The standard deviation of ranslation
            noise. This apply random translation to a scene by a noise, which
            is sampled from a gaussian distribution whose standard deviation
            is set by ``translation_std``. Default to [0, 0, 0]
wuyuefeng's avatar
wuyuefeng committed
287
288
        shift_height (bool): whether to shift height
            (the fourth dimension of indoor points) when scaling.
zhangwenwei's avatar
zhangwenwei committed
289
    """
zhangwenwei's avatar
zhangwenwei committed
290
291

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
292
293
                 rot_range=[-0.78539816, 0.78539816],
                 scale_ratio_range=[0.95, 1.05],
wuyuefeng's avatar
wuyuefeng committed
294
295
                 translation_std=[0, 0, 0],
                 shift_height=False):
zhangwenwei's avatar
zhangwenwei committed
296
297
298
        self.rot_range = rot_range
        self.scale_ratio_range = scale_ratio_range
        self.translation_std = translation_std
wuyuefeng's avatar
wuyuefeng committed
299
        self.shift_height = shift_height
zhangwenwei's avatar
zhangwenwei committed
300
301

    def _trans_bbox_points(self, input_dict):
302
303
304
305
306
307
308
309
310
311
        """Private function to translate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after translation, 'points', 'pcd_trans' \
                and keys in input_dict['bbox3d_fields'] are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
        if not isinstance(self.translation_std, (list, tuple, np.ndarray)):
            translation_std = [
                self.translation_std, self.translation_std,
                self.translation_std
            ]
        else:
            translation_std = self.translation_std
        translation_std = np.array(translation_std, dtype=np.float32)
        trans_factor = np.random.normal(scale=translation_std, size=3).T

        input_dict['points'][:, :3] += trans_factor
        input_dict['pcd_trans'] = trans_factor
        for key in input_dict['bbox3d_fields']:
            input_dict[key].translate(trans_factor)

    def _rot_bbox_points(self, input_dict):
328
329
330
331
332
333
334
335
336
337
        """Private function to rotate bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after rotation, 'points', 'pcd_rotation' \
                and keys in input_dict['bbox3d_fields'] are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
338
        rotation = self.rot_range
zhangwenwei's avatar
zhangwenwei committed
339
340
341
        if not isinstance(rotation, list):
            rotation = [-rotation, rotation]
        noise_rotation = np.random.uniform(rotation[0], rotation[1])
zhangwenwei's avatar
zhangwenwei committed
342
343

        for key in input_dict['bbox3d_fields']:
wuyuefeng's avatar
wuyuefeng committed
344
345
346
347
348
            if len(input_dict[key].tensor) != 0:
                points, rot_mat_T = input_dict[key].rotate(
                    noise_rotation, input_dict['points'])
                input_dict['points'] = points
                input_dict['pcd_rotation'] = rot_mat_T
349

zhangwenwei's avatar
zhangwenwei committed
350
    def _scale_bbox_points(self, input_dict):
351
352
353
354
355
356
357
358
359
        """Private function to scale bounding boxes and points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points'and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
360
361
        scale = input_dict['pcd_scale_factor']
        input_dict['points'][:, :3] *= scale
wuyuefeng's avatar
wuyuefeng committed
362
363
364
        if self.shift_height:
            input_dict['points'][:, -1] *= scale

zhangwenwei's avatar
zhangwenwei committed
365
366
        for key in input_dict['bbox3d_fields']:
            input_dict[key].scale(scale)
zhangwenwei's avatar
zhangwenwei committed
367

zhangwenwei's avatar
zhangwenwei committed
368
    def _random_scale(self, input_dict):
369
370
371
372
373
374
375
376
377
        """Private function to randomly set the scale factor.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'pcd_scale_factor' are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
378
379
380
        scale_factor = np.random.uniform(self.scale_ratio_range[0],
                                         self.scale_ratio_range[1])
        input_dict['pcd_scale_factor'] = scale_factor
zhangwenwei's avatar
zhangwenwei committed
381
382

    def __call__(self, input_dict):
383
384
385
386
387
388
389
390
391
392
393
        """Private function to rotate, scale and translate bounding boxes and \
        points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after scaling, 'points', 'pcd_rotation',
                'pcd_scale_factor', 'pcd_trans' and keys in \
                input_dict['bbox3d_fields'] are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
394
        self._rot_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
395

zhangwenwei's avatar
zhangwenwei committed
396
397
398
        if 'pcd_scale_factor' not in input_dict:
            self._random_scale(input_dict)
        self._scale_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
399

zhangwenwei's avatar
zhangwenwei committed
400
        self._trans_bbox_points(input_dict)
zhangwenwei's avatar
zhangwenwei committed
401
402
403
        return input_dict

    def __repr__(self):
404
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
405
        repr_str = self.__class__.__name__
zhangwenwei's avatar
zhangwenwei committed
406
407
408
        repr_str += '(rot_range={},'.format(self.rot_range)
        repr_str += ' scale_ratio_range={},'.format(self.scale_ratio_range)
        repr_str += ' translation_std={})'.format(self.translation_std)
wuyuefeng's avatar
wuyuefeng committed
409
        repr_str += ' shift_height={})'.format(self.shift_height)
zhangwenwei's avatar
zhangwenwei committed
410
411
412
        return repr_str


413
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
414
class PointShuffle(object):
415
    """Shuffle input points."""
zhangwenwei's avatar
zhangwenwei committed
416
417

    def __call__(self, input_dict):
418
419
420
421
422
423
424
425
426
        """Call function to shuffle points.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'points' keys are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
427
428
429
430
431
432
433
        np.random.shuffle(input_dict['points'])
        return input_dict

    def __repr__(self):
        return self.__class__.__name__


434
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
435
class ObjectRangeFilter(object):
436
437
438
439
440
    """Filter objects by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
441
442
443
444
445
446

    def __init__(self, point_cloud_range):
        self.pcd_range = np.array(point_cloud_range, dtype=np.float32)
        self.bev_range = self.pcd_range[[0, 1, 3, 4]]

    def __call__(self, input_dict):
447
448
449
450
451
452
453
454
455
        """Call function to filter objects by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' \
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
456
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
zhangwenwei's avatar
zhangwenwei committed
457
        gt_labels_3d = input_dict['gt_labels_3d']
458
        mask = gt_bboxes_3d.in_range_bev(self.bev_range)
zhangwenwei's avatar
zhangwenwei committed
459
        gt_bboxes_3d = gt_bboxes_3d[mask]
ZwwWayne's avatar
ZwwWayne committed
460
461
462
463
464
        # mask is a torch tensor but gt_labels_3d is still numpy array
        # using mask to index gt_labels_3d will cause bug when
        # len(gt_labels_3d) == 1, where mask=1 will be interpreted
        # as gt_labels_3d[1] and cause out of index error
        gt_labels_3d = gt_labels_3d[mask.numpy().astype(np.bool)]
zhangwenwei's avatar
zhangwenwei committed
465
466

        # limit rad to [-pi, pi]
467
468
        gt_bboxes_3d.limit_yaw(offset=0.5, period=2 * np.pi)
        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
zhangwenwei's avatar
zhangwenwei committed
469
470
        input_dict['gt_labels_3d'] = gt_labels_3d

zhangwenwei's avatar
zhangwenwei committed
471
472
473
        return input_dict

    def __repr__(self):
474
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
475
476
477
478
479
        repr_str = self.__class__.__name__
        repr_str += '(point_cloud_range={})'.format(self.pcd_range.tolist())
        return repr_str


480
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
481
class PointsRangeFilter(object):
482
483
484
485
486
    """Filter points by the range.

    Args:
        point_cloud_range (list[float]): Point cloud range.
    """
zhangwenwei's avatar
zhangwenwei committed
487
488
489
490
491
492

    def __init__(self, point_cloud_range):
        self.pcd_range = np.array(
            point_cloud_range, dtype=np.float32)[np.newaxis, :]

    def __call__(self, input_dict):
493
494
495
496
497
498
499
500
501
        """Call function to filter points by the range.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'points' keys are updated \
                in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
502
503
504
505
506
507
508
509
510
        points = input_dict['points']
        points_mask = ((points[:, :3] >= self.pcd_range[:, :3])
                       & (points[:, :3] < self.pcd_range[:, 3:]))
        points_mask = points_mask[:, 0] & points_mask[:, 1] & points_mask[:, 2]
        clean_points = points[points_mask, :]
        input_dict['points'] = clean_points
        return input_dict

    def __repr__(self):
511
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
512
513
514
        repr_str = self.__class__.__name__
        repr_str += '(point_cloud_range={})'.format(self.pcd_range.tolist())
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
515
516
517
518


@PIPELINES.register_module()
class ObjectNameFilter(object):
zhangwenwei's avatar
zhangwenwei committed
519
    """Filter GT objects by their names.
zhangwenwei's avatar
zhangwenwei committed
520
521
522
523
524
525
526
527
528
529

    Args:
        classes (list[str]): list of class names to be kept for training
    """

    def __init__(self, classes):
        self.classes = classes
        self.labels = list(range(len(self.classes)))

    def __call__(self, input_dict):
530
531
532
533
534
535
536
537
538
        """Call function to filter objects by their names.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after filtering, 'gt_bboxes_3d', 'gt_labels_3d' \
                keys are updated in the result dict.
        """
zhangwenwei's avatar
zhangwenwei committed
539
540
541
542
543
544
545
546
547
        gt_labels_3d = input_dict['gt_labels_3d']
        gt_bboxes_mask = np.array([n in self.labels for n in gt_labels_3d],
                                  dtype=np.bool_)
        input_dict['gt_bboxes_3d'] = input_dict['gt_bboxes_3d'][gt_bboxes_mask]
        input_dict['gt_labels_3d'] = input_dict['gt_labels_3d'][gt_bboxes_mask]

        return input_dict

    def __repr__(self):
548
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
549
550
551
        repr_str = self.__class__.__name__
        repr_str += f'(classes={self.classes})'
        return repr_str
wuyuefeng's avatar
wuyuefeng committed
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577


@PIPELINES.register_module()
class IndoorPointSample(object):
    """Indoor point sample.

    Sampling data to a certain number.

    Args:
        name (str): Name of the dataset.
        num_points (int): Number of points to be sampled.
    """

    def __init__(self, num_points):
        self.num_points = num_points

    def points_random_sampling(self,
                               points,
                               num_samples,
                               replace=None,
                               return_choices=False):
        """Points random sampling.

        Sample points to a certain number.

        Args:
578
            points (np.ndarray): 3D Points.
wuyuefeng's avatar
wuyuefeng committed
579
580
581
582
583
            num_samples (int): Number of samples to be sampled.
            replace (bool): Whether the sample is with or without replacement.
            return_choices (bool): Whether return choice.

        Returns:
584
585
586
587
            tuple[np.ndarray] | np.ndarray:

                - points (np.ndarray): 3D Points.
                - choices (np.ndarray, optional): The generated random samples.
wuyuefeng's avatar
wuyuefeng committed
588
589
590
591
592
593
594
595
596
597
598
        """
        if replace is None:
            replace = (points.shape[0] < num_samples)
        choices = np.random.choice(
            points.shape[0], num_samples, replace=replace)
        if return_choices:
            return points[choices], choices
        else:
            return points[choices]

    def __call__(self, results):
599
600
601
602
603
604
605
606
607
        """Call function to sample points to in indoor scenes.

        Args:
            input_dict (dict): Result dict from loading pipeline.

        Returns:
            dict: Results after sampling, 'points', 'pts_instance_mask' \
                and 'pts_semantic_mask' keys are updated in the result dict.
        """
wuyuefeng's avatar
wuyuefeng committed
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
        points = results['points']
        points, choices = self.points_random_sampling(
            points, self.num_points, return_choices=True)
        pts_instance_mask = results.get('pts_instance_mask', None)
        pts_semantic_mask = results.get('pts_semantic_mask', None)
        results['points'] = points

        if pts_instance_mask is not None and pts_semantic_mask is not None:
            pts_instance_mask = pts_instance_mask[choices]
            pts_semantic_mask = pts_semantic_mask[choices]
            results['pts_instance_mask'] = pts_instance_mask
            results['pts_semantic_mask'] = pts_semantic_mask

        return results

    def __repr__(self):
624
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
625
626
627
        repr_str = self.__class__.__name__
        repr_str += '(num_points={})'.format(self.num_points)
        return repr_str