test_hooks.py 64.3 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
Kai Chen's avatar
Kai Chen committed
2
"""Tests the hooks with runners.
Wenwei Zhang's avatar
Wenwei Zhang committed
3
4

CommandLine:
5
    pytest tests/test_runner/test_hooks.py
Wenwei Zhang's avatar
Wenwei Zhang committed
6
7
    xdoctest tests/test_hooks.py zero
"""
8
import logging
Jiangmiao Pang's avatar
Jiangmiao Pang committed
9
import os.path as osp
10
import platform
11
import random
12
import re
13
import shutil
Jiangmiao Pang's avatar
Jiangmiao Pang committed
14
import sys
15
import tempfile
16
from unittest.mock import MagicMock, Mock, call, patch
Jiangmiao Pang's avatar
Jiangmiao Pang committed
17

18
19
20
import pytest
import torch
import torch.nn as nn
shilong's avatar
shilong committed
21
from torch.nn.init import constant_
22
23
from torch.utils.data import DataLoader

24
from mmcv.fileio.file_client import PetrelBackend
25
# yapf: disable
26
from mmcv.runner import (CheckpointHook, DvcliveLoggerHook, EMAHook,
Ma Zerun's avatar
Ma Zerun committed
27
28
29
30
                         Fp16OptimizerHook,
                         GradientCumulativeFp16OptimizerHook,
                         GradientCumulativeOptimizerHook, IterTimerHook,
                         MlflowLoggerHook, NeptuneLoggerHook, OptimizerHook,
31
32
33
                         PaviLoggerHook, SegmindLoggerHook, WandbLoggerHook,
                         build_runner)
# yapf: enable
Ma Zerun's avatar
Ma Zerun committed
34
from mmcv.runner.fp16_utils import auto_fp16
35
from mmcv.runner.hooks.hook import HOOKS, Hook
36
from mmcv.runner.hooks.lr_updater import (CosineRestartLrUpdaterHook,
37
                                          CyclicLrUpdaterHook,
38
                                          FlatCosineAnnealingLrUpdaterHook,
39
40
                                          OneCycleLrUpdaterHook,
                                          StepLrUpdaterHook)
41
from mmcv.utils import TORCH_VERSION
Jiangmiao Pang's avatar
Jiangmiao Pang committed
42

43
44
sys.modules['petrel_client'] = MagicMock()
sys.modules['petrel_client.client'] = MagicMock()
Jiangmiao Pang's avatar
Jiangmiao Pang committed
45

46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def test_optimizerhook():

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv1 = nn.Conv2d(
                in_channels=1,
                out_channels=2,
                kernel_size=3,
                stride=1,
                padding=1,
                dilation=1)
            self.conv2 = nn.Conv2d(
                in_channels=2,
                out_channels=2,
                kernel_size=3,
                stride=1,
                padding=1,
                dilation=1)
            self.conv3 = nn.Conv2d(
                in_channels=1,
                out_channels=2,
                kernel_size=3,
                stride=1,
                padding=1,
                dilation=1)

        def forward(self, x):
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            return x1, x2

    model = Model()
    x = torch.rand(1, 1, 3, 3)

    dummy_runner = Mock()
    dummy_runner.optimizer.zero_grad = Mock(return_value=None)
    dummy_runner.optimizer.step = Mock(return_value=None)
    dummy_runner.model = model
    dummy_runner.outputs = dict()

    dummy_runner.outputs['num_samples'] = 0

    class DummyLogger():

        def __init__(self):
            self.msg = ''

        def log(self, msg=None, **kwargs):
            self.msg += msg

    dummy_runner.logger = DummyLogger()
    optimizer_hook = OptimizerHook(
        dict(max_norm=2), detect_anomalous_params=True)

    dummy_runner.outputs['loss'] = model(x)[0].sum()
    optimizer_hook.after_train_iter(dummy_runner)
    # assert the parameters of conv2 and conv3 are not in the
    # computational graph which is with x1.sum() as root.
    assert 'conv2.weight' in dummy_runner.logger.msg
    assert 'conv2.bias' in dummy_runner.logger.msg
    assert 'conv3.weight' in dummy_runner.logger.msg
    assert 'conv3.bias' in dummy_runner.logger.msg
    assert 'conv1.weight' not in dummy_runner.logger.msg
    assert 'conv1.bias' not in dummy_runner.logger.msg

    dummy_runner.outputs['loss'] = model(x)[1].sum()
    dummy_runner.logger.msg = ''
    optimizer_hook.after_train_iter(dummy_runner)
    # assert the parameters of conv3 are not in the computational graph
    assert 'conv3.weight' in dummy_runner.logger.msg
    assert 'conv3.bias' in dummy_runner.logger.msg
    assert 'conv2.weight' not in dummy_runner.logger.msg
    assert 'conv2.bias' not in dummy_runner.logger.msg
    assert 'conv1.weight' not in dummy_runner.logger.msg
    assert 'conv1.bias' not in dummy_runner.logger.msg


126
def test_checkpoint_hook(tmp_path):
127
128
129
130
131
132
133
134
135
136
137
138
139
    """xdoctest -m tests/test_runner/test_hooks.py test_checkpoint_hook."""

    # test epoch based runner
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner('EpochBasedRunner', max_epochs=1)
    runner.meta = dict()
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(checkpointhook)
    runner.run([loader], [('train', 1)])
    assert runner.meta['hook_msgs']['last_ckpt'] == osp.join(
        runner.work_dir, 'epoch_1.pth')
    shutil.rmtree(runner.work_dir)

140
141
142
143
144
    # test petrel oss when the type of runner is `EpochBasedRunner`
    runner = _build_demo_runner('EpochBasedRunner', max_epochs=4)
    runner.meta = dict()
    out_dir = 's3://user/data'
    with patch.object(PetrelBackend, 'put') as mock_put, \
145
146
            patch.object(PetrelBackend, 'remove') as mock_remove, \
            patch.object(PetrelBackend, 'isfile') as mock_isfile:
147
148
149
150
151
152
        checkpointhook = CheckpointHook(
            interval=1, out_dir=out_dir, by_epoch=True, max_keep_ckpts=2)
        runner.register_hook(checkpointhook)
        runner.run([loader], [('train', 1)])
        basename = osp.basename(runner.work_dir.rstrip(osp.sep))
        assert runner.meta['hook_msgs']['last_ckpt'] == \
153
               '/'.join([out_dir, basename, 'epoch_4.pth'])
154
155
156
157
158
    mock_put.assert_called()
    mock_remove.assert_called()
    mock_isfile.assert_called()
    shutil.rmtree(runner.work_dir)

159
160
161
162
163
164
165
166
167
168
169
    # test iter based runner
    runner = _build_demo_runner(
        'IterBasedRunner', max_iters=1, max_epochs=None)
    runner.meta = dict()
    checkpointhook = CheckpointHook(interval=1, by_epoch=False)
    runner.register_hook(checkpointhook)
    runner.run([loader], [('train', 1)])
    assert runner.meta['hook_msgs']['last_ckpt'] == osp.join(
        runner.work_dir, 'iter_1.pth')
    shutil.rmtree(runner.work_dir)

170
171
172
173
174
175
    # test petrel oss when the type of runner is `IterBasedRunner`
    runner = _build_demo_runner(
        'IterBasedRunner', max_iters=4, max_epochs=None)
    runner.meta = dict()
    out_dir = 's3://user/data'
    with patch.object(PetrelBackend, 'put') as mock_put, \
176
177
            patch.object(PetrelBackend, 'remove') as mock_remove, \
            patch.object(PetrelBackend, 'isfile') as mock_isfile:
178
179
180
181
182
183
        checkpointhook = CheckpointHook(
            interval=1, out_dir=out_dir, by_epoch=False, max_keep_ckpts=2)
        runner.register_hook(checkpointhook)
        runner.run([loader], [('train', 1)])
        basename = osp.basename(runner.work_dir.rstrip(osp.sep))
        assert runner.meta['hook_msgs']['last_ckpt'] == \
184
               '/'.join([out_dir, basename, 'iter_4.pth'])
185
186
187
188
189
    mock_put.assert_called()
    mock_remove.assert_called()
    mock_isfile.assert_called()
    shutil.rmtree(runner.work_dir)

190

shilong's avatar
shilong committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
def test_ema_hook():
    """xdoctest -m tests/test_hooks.py test_ema_hook."""

    class DemoModel(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(
                in_channels=1,
                out_channels=2,
                kernel_size=1,
                padding=1,
                bias=True)
            self._init_weight()

        def _init_weight(self):
            constant_(self.conv.weight, 0)
            constant_(self.conv.bias, 0)

        def forward(self, x):
            return self.conv(x).sum()

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

    loader = DataLoader(torch.ones((1, 1, 1, 1)))
    runner = _build_demo_runner()
    demo_model = DemoModel()
    runner.model = demo_model
    emahook = EMAHook(momentum=0.1, interval=2, warm_up=100, resume_from=None)
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(emahook, priority='HIGHEST')
    runner.register_hook(checkpointhook)
227
    runner.run([loader, loader], [('train', 1), ('val', 1)])
shilong's avatar
shilong committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    checkpoint = torch.load(f'{runner.work_dir}/epoch_1.pth')
    contain_ema_buffer = False
    for name, value in checkpoint['state_dict'].items():
        if 'ema' in name:
            contain_ema_buffer = True
            assert value.sum() == 0
            value.fill_(1)
        else:
            assert value.sum() == 0
    assert contain_ema_buffer
    torch.save(checkpoint, f'{runner.work_dir}/epoch_1.pth')
    work_dir = runner.work_dir
    resume_ema_hook = EMAHook(
        momentum=0.5, warm_up=0, resume_from=f'{work_dir}/epoch_1.pth')
242
    runner = _build_demo_runner(max_epochs=2)
shilong's avatar
shilong committed
243
244
245
246
    runner.model = demo_model
    runner.register_hook(resume_ema_hook, priority='HIGHEST')
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(checkpointhook)
247
    runner.run([loader, loader], [('train', 1), ('val', 1)])
shilong's avatar
shilong committed
248
249
250
251
252
253
254
255
256
257
258
259
260
    checkpoint = torch.load(f'{runner.work_dir}/epoch_2.pth')
    contain_ema_buffer = False
    for name, value in checkpoint['state_dict'].items():
        if 'ema' in name:
            contain_ema_buffer = True
            assert value.sum() == 2
        else:
            assert value.sum() == 1
    assert contain_ema_buffer
    shutil.rmtree(runner.work_dir)
    shutil.rmtree(work_dir)


261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
def test_custom_hook():

    @HOOKS.register_module()
    class ToyHook(Hook):

        def __init__(self, info, *args, **kwargs):
            super().__init__()
            self.info = info

    runner = _build_demo_runner_without_hook('EpochBasedRunner', max_epochs=1)
    # test if custom_hooks is None
    runner.register_custom_hooks(None)
    assert len(runner.hooks) == 0
    # test if custom_hooks is dict list
    custom_hooks_cfg = [
        dict(type='ToyHook', priority=51, info=51),
        dict(type='ToyHook', priority=49, info=49)
    ]
    runner.register_custom_hooks(custom_hooks_cfg)
    assert [hook.info for hook in runner.hooks] == [49, 51]
    # test if custom_hooks is object and without priority
    runner.register_custom_hooks(ToyHook(info='default'))
    assert len(runner.hooks) == 3 and runner.hooks[1].info == 'default'
    shutil.rmtree(runner.work_dir)

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    runner = _build_demo_runner_without_hook('EpochBasedRunner', max_epochs=1)
    # test custom_hooks with string priority setting
    priority_ranks = [
        'HIGHEST', 'VERY_HIGH', 'HIGH', 'ABOVE_NORMAL', 'NORMAL',
        'BELOW_NORMAL', 'LOW', 'VERY_LOW', 'LOWEST'
    ]
    random_priority_ranks = priority_ranks.copy()
    random.shuffle(random_priority_ranks)
    custom_hooks_cfg = [
        dict(type='ToyHook', priority=rank, info=rank)
        for rank in random_priority_ranks
    ]
    runner.register_custom_hooks(custom_hooks_cfg)
    assert [hook.info for hook in runner.hooks] == priority_ranks
    shutil.rmtree(runner.work_dir)

302
303
304
305
    runner = _build_demo_runner_without_hook('EpochBasedRunner', max_epochs=1)
    # test register_training_hooks order
    custom_hooks_cfg = [
        dict(type='ToyHook', priority=1, info='custom 1'),
306
        dict(type='ToyHook', priority='NORMAL', info='custom normal'),
307
308
309
310
311
312
313
314
315
316
        dict(type='ToyHook', priority=89, info='custom 89')
    ]
    runner.register_training_hooks(
        lr_config=ToyHook('lr'),
        optimizer_config=ToyHook('optimizer'),
        checkpoint_config=ToyHook('checkpoint'),
        log_config=dict(interval=1, hooks=[dict(type='ToyHook', info='log')]),
        momentum_config=ToyHook('momentum'),
        timer_config=ToyHook('timer'),
        custom_hooks_config=custom_hooks_cfg)
317
318
    # If custom hooks have same priority with default hooks, custom hooks
    # will be triggered after default hooks.
319
    hooks_order = [
320
321
        'custom 1', 'lr', 'momentum', 'optimizer', 'checkpoint',
        'custom normal', 'timer', 'custom 89', 'log'
322
323
324
325
326
    ]
    assert [hook.info for hook in runner.hooks] == hooks_order
    shutil.rmtree(runner.work_dir)


Jiangmiao Pang's avatar
Jiangmiao Pang committed
327
328
329
def test_pavi_hook():
    sys.modules['pavi'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
330
331
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner()
332
    runner.meta = dict(config_dict=dict(lr=0.02, gpu_ids=range(1)))
333
    hook = PaviLoggerHook(add_graph=False, add_last_ckpt=True)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
334
    runner.register_hook(hook)
335
    runner.run([loader, loader], [('train', 1), ('val', 1)])
336
    shutil.rmtree(runner.work_dir)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
337
338

    assert hasattr(hook, 'writer')
Wenwei Zhang's avatar
Wenwei Zhang committed
339
340
341
    hook.writer.add_scalars.assert_called_with('val', {
        'learning_rate': 0.02,
        'momentum': 0.95
342
    }, 1)
343
    # in Windows environment, the latest checkpoint is copied from epoch_1.pth
344
345
346
347
    if platform.system() == 'Windows':
        snapshot_file_path = osp.join(runner.work_dir, 'latest.pth')
    else:
        snapshot_file_path = osp.join(runner.work_dir, 'epoch_1.pth')
Jiangmiao Pang's avatar
Jiangmiao Pang committed
348
    hook.writer.add_snapshot_file.assert_called_with(
349
        tag=runner.work_dir.split('/')[-1],
350
        snapshot_file_path=snapshot_file_path,
351
        iteration=1)
352
353


Wang Xinjiang's avatar
Wang Xinjiang committed
354
355
356
357
def test_sync_buffers_hook():
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner()
    runner.register_hook_from_cfg(dict(type='SyncBuffersHook'))
358
    runner.run([loader, loader], [('train', 1), ('val', 1)])
Wang Xinjiang's avatar
Wang Xinjiang committed
359
360
361
    shutil.rmtree(runner.work_dir)


Mashiro's avatar
Mashiro committed
362
363
364
365
@pytest.mark.parametrize('multi_optimizers, max_iters, gamma, cyclic_times',
                         [(True, 8, 1, 1), (False, 8, 0.5, 2)])
def test_momentum_runner_hook(multi_optimizers, max_iters, gamma,
                              cyclic_times):
Kai Chen's avatar
Kai Chen committed
366
    """xdoctest -m tests/test_hooks.py test_momentum_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
367
368
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
369
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
Wenwei Zhang's avatar
Wenwei Zhang committed
370
371

    # add momentum scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
372
373
    hook_cfg = dict(
        type='CyclicMomentumUpdaterHook',
Wenwei Zhang's avatar
Wenwei Zhang committed
374
375
        by_epoch=False,
        target_ratio=(0.85 / 0.95, 1),
Mashiro's avatar
Mashiro committed
376
377
378
        cyclic_times=cyclic_times,
        step_ratio_up=0.4,
        gamma=gamma)
Wang Xinjiang's avatar
Wang Xinjiang committed
379
    runner.register_hook_from_cfg(hook_cfg)
Wenwei Zhang's avatar
Wenwei Zhang committed
380
381

    # add momentum LR scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
382
383
    hook_cfg = dict(
        type='CyclicLrUpdaterHook',
Wenwei Zhang's avatar
Wenwei Zhang committed
384
385
386
387
        by_epoch=False,
        target_ratio=(10, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
Wang Xinjiang's avatar
Wang Xinjiang committed
388
389
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
Wenwei Zhang's avatar
Wenwei Zhang committed
390
391

    # add pavi hook
392
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
393
    runner.register_hook(hook)
394
    runner.run([loader], [('train', 1)])
395
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
396
397
398

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
Mashiro's avatar
Mashiro committed
399
    if multi_optimizers:
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.01999999999999999,
                    'learning_rate/model2': 0.009999999999999995,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.2,
                    'learning_rate/model2': 0.1,
                    'momentum/model1': 0.85,
                    'momentum/model2': 0.8052631578947369,
                }, 5),
            call(
                'train', {
                    'learning_rate/model1': 0.155,
                    'learning_rate/model2': 0.0775,
                    'momentum/model1': 0.875,
                    'momentum/model2': 0.8289473684210527,
                }, 7)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.01999999999999999,
                'momentum': 0.95
            }, 1),
            call('train', {
Mashiro's avatar
Mashiro committed
430
                'learning_rate': 0.11,
431
                'momentum': 0.85
Mashiro's avatar
Mashiro committed
432
            }, 3),
433
            call('train', {
Mashiro's avatar
Mashiro committed
434
435
436
437
438
439
440
                'learning_rate': 0.1879422863405995,
                'momentum': 0.95
            }, 6),
            call('train', {
                'learning_rate': 0.11000000000000001,
                'momentum': 0.9
            }, 8),
441
        ]
Wenwei Zhang's avatar
Wenwei Zhang committed
442
443
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

444
445
    # test constant momentum warmup
    sys.modules['pavi'] = MagicMock()
446
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        warmup='constant',
        warmup_iters=5,
        warmup_ratio=0.5,
        step=[10],
    )
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))

    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    assert hasattr(hook, 'writer')
466
    if multi_optimizers:
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.9,
                    'momentum/model2': 1.8,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.9,
                    'momentum/model2': 1.8,
                }, 5),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 10),
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.9
            }, 1),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.9
            }, 5),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 10),
        ]

    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

    # test linear momentum warmup
    sys.modules['pavi'] = MagicMock()
510
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529

    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        warmup='linear',
        warmup_iters=5,
        warmup_ratio=0.5,
        step=[10],
    )
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))

    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    assert hasattr(hook, 'writer')
530
    if multi_optimizers:
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.9,
                    'momentum/model2': 1.8,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.3571428571428572,
                    'momentum/model2': 1.2857142857142858,
                }, 3),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 10),
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.9
            }, 1),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.3571428571428572
            }, 3),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 10),
        ]

    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

    # test exponentially momentum warmup
    sys.modules['pavi'] = MagicMock()
574
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        warmup='exp',
        warmup_iters=5,
        warmup_ratio=0.5,
        step=[10],
    )
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))

    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    assert hasattr(hook, 'writer')
594
    if multi_optimizers:
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.9,
                    'momentum/model2': 1.8,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.4399307381848783,
                    'momentum/model2': 1.3641449098593583,
                }, 3),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 10),
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.9
            }, 1),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.4399307381848783
            }, 3),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 10),
        ]

    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

Wenwei Zhang's avatar
Wenwei Zhang committed
636

637
638
@pytest.mark.parametrize('multi_optimizers', (True, False))
def test_cosine_runner_hook(multi_optimizers):
Kai Chen's avatar
Kai Chen committed
639
    """xdoctest -m tests/test_hooks.py test_cosine_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
640
641
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
642
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
Wenwei Zhang's avatar
Wenwei Zhang committed
643
644

    # add momentum scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
645
646
    hook_cfg = dict(
        type='CosineAnnealingMomentumUpdaterHook',
647
648
649
650
        min_momentum_ratio=0.99 / 0.95,
        by_epoch=False,
        warmup_iters=2,
        warmup_ratio=0.9 / 0.95)
Wang Xinjiang's avatar
Wang Xinjiang committed
651
    runner.register_hook_from_cfg(hook_cfg)
Wenwei Zhang's avatar
Wenwei Zhang committed
652
653

    # add momentum LR scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
654
655
656
657
658
659
660
661
    hook_cfg = dict(
        type='CosineAnnealingLrUpdaterHook',
        by_epoch=False,
        min_lr_ratio=0,
        warmup_iters=2,
        warmup_ratio=0.9)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
662
    runner.register_hook(IterTimerHook())
Wenwei Zhang's avatar
Wenwei Zhang committed
663
    # add pavi hook
664
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
665
    runner.register_hook(hook)
666
    runner.run([loader], [('train', 1)])
667
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
668
669
670

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
671
    if multi_optimizers:
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.97,
                    'momentum/model2': 0.9189473684210527,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0004894348370484647,
                    'learning_rate/model2': 0.00024471741852423234,
                    'momentum/model1': 0.9890211303259032,
                    'momentum/model2': 0.9369673866245399,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.97
            }, 6),
            call(
                'train', {
                    'learning_rate': 0.0004894348370484647,
                    'momentum': 0.9890211303259032
                }, 10)
        ]
Wenwei Zhang's avatar
Wenwei Zhang committed
711
712
713
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
@pytest.mark.parametrize('multi_optimizers', (True, False))
def test_linear_runner_hook(multi_optimizers):
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)

    # add momentum scheduler

    hook_cfg = dict(
        type='LinearAnnealingMomentumUpdaterHook',
        min_momentum_ratio=0.99 / 0.95,
        by_epoch=False,
        warmup_iters=2,
        warmup_ratio=0.9 / 0.95)
    runner.register_hook_from_cfg(hook_cfg)

    # add momentum LR scheduler
    hook_cfg = dict(
        type='LinearAnnealingLrUpdaterHook',
        by_epoch=False,
        min_lr_ratio=0,
        warmup_iters=2,
        warmup_ratio=0.9)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    runner.register_hook(IterTimerHook())
    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    if multi_optimizers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.97,
                    'momentum/model2': 0.9189473684210527,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0019999999999999983,
                    'learning_rate/model2': 0.0009999999999999992,
                    'momentum/model1': 0.9860000000000001,
                    'momentum/model2': 0.9341052631578949,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.97
            }, 6),
            call(
                'train', {
                    'learning_rate': 0.0019999999999999983,
                    'momentum': 0.9860000000000001
                }, 10)
        ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


791
@pytest.mark.parametrize('multi_optimizers, by_epoch', [(False, False),
792
793
794
                                                        (True, False),
                                                        (False, True),
                                                        (True, True)])
795
def test_flat_cosine_runner_hook(multi_optimizers, by_epoch):
796
797
798
799
800
    """xdoctest -m tests/test_hooks.py test_flat_cosine_runner_hook."""
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    max_epochs = 10 if by_epoch else 1
    runner = _build_demo_runner(
801
        multi_optimizers=multi_optimizers, max_epochs=max_epochs)
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826

    with pytest.raises(ValueError):
        # start_percent: expected float between 0 and 1
        FlatCosineAnnealingLrUpdaterHook(start_percent=-0.1, min_lr_ratio=0)

    # add LR scheduler
    hook_cfg = dict(
        type='FlatCosineAnnealingLrUpdaterHook',
        by_epoch=by_epoch,
        min_lr_ratio=0,
        warmup='linear',
        warmup_iters=10 if by_epoch else 2,
        warmup_ratio=0.9,
        start_percent=0.5)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    runner.register_hook(IterTimerHook())
    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
827
    if multi_optimizers:
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
        if by_epoch:
            calls = [
                call(
                    'train', {
                        'learning_rate/model1': 0.018000000000000002,
                        'learning_rate/model2': 0.009000000000000001,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9,
                    }, 1),
                call(
                    'train', {
                        'learning_rate/model1': 0.02,
                        'learning_rate/model2': 0.01,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9,
                    }, 11),
                call(
                    'train', {
                        'learning_rate/model1': 0.018090169943749474,
                        'learning_rate/model2': 0.009045084971874737,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9,
                    }, 61),
                call(
                    'train', {
                        'learning_rate/model1': 0.0019098300562505265,
                        'learning_rate/model2': 0.0009549150281252633,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9,
                    }, 100)
            ]
        else:
            calls = [
                call(
                    'train', {
                        'learning_rate/model1': 0.018000000000000002,
                        'learning_rate/model2': 0.009000000000000001,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9
                    }, 1),
                call(
                    'train', {
                        'learning_rate/model1': 0.02,
                        'learning_rate/model2': 0.01,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9
                    }, 6),
                call(
                    'train', {
                        'learning_rate/model1': 0.018090169943749474,
                        'learning_rate/model2': 0.009045084971874737,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9
                    }, 7),
                call(
                    'train', {
                        'learning_rate/model1': 0.0019098300562505265,
                        'learning_rate/model2': 0.0009549150281252633,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9
                    }, 10)
            ]
    else:
        if by_epoch:
            calls = [
                call('train', {
                    'learning_rate': 0.018000000000000002,
                    'momentum': 0.95
                }, 1),
                call('train', {
                    'learning_rate': 0.02,
                    'momentum': 0.95
                }, 11),
                call('train', {
                    'learning_rate': 0.018090169943749474,
                    'momentum': 0.95
                }, 61),
                call('train', {
                    'learning_rate': 0.0019098300562505265,
                    'momentum': 0.95
                }, 100)
            ]
        else:
            calls = [
                call('train', {
                    'learning_rate': 0.018000000000000002,
                    'momentum': 0.95
                }, 1),
                call('train', {
                    'learning_rate': 0.02,
                    'momentum': 0.95
                }, 6),
                call('train', {
                    'learning_rate': 0.018090169943749474,
                    'momentum': 0.95
                }, 7),
                call('train', {
                    'learning_rate': 0.0019098300562505265,
                    'momentum': 0.95
                }, 10)
            ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


932
@pytest.mark.parametrize('multi_optimizers, max_iters', [(True, 10), (True, 2),
933
934
                                                         (False, 10),
                                                         (False, 2)])
935
def test_one_cycle_runner_hook(multi_optimizers, max_iters):
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
    """Test OneCycleLrUpdaterHook and OneCycleMomentumUpdaterHook."""
    with pytest.raises(AssertionError):
        # by_epoch should be False
        OneCycleLrUpdaterHook(max_lr=0.1, by_epoch=True)

    with pytest.raises(ValueError):
        # expected float between 0 and 1
        OneCycleLrUpdaterHook(max_lr=0.1, pct_start=-0.1)

    with pytest.raises(ValueError):
        # anneal_strategy should be either 'cos' or 'linear'
        OneCycleLrUpdaterHook(max_lr=0.1, anneal_strategy='sin')

    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
951
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
952
953
954
955
956
957
958
959
960
961
962

    # add momentum scheduler
    hook_cfg = dict(
        type='OneCycleMomentumUpdaterHook',
        base_momentum=0.85,
        max_momentum=0.95,
        pct_start=0.5,
        anneal_strategy='cos',
        three_phase=False)
    runner.register_hook_from_cfg(hook_cfg)

963
    # add LR scheduler
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
    hook_cfg = dict(
        type='OneCycleLrUpdaterHook',
        max_lr=0.01,
        pct_start=0.5,
        anneal_strategy='cos',
        div_factor=25,
        final_div_factor=1e4,
        three_phase=False)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    runner.register_hook(IterTimerHook())
    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
983
    if multi_optimizers:
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.0003999999999999993,
                    'learning_rate/model2': 0.0003999999999999993,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.95,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.00904508879153485,
                    'learning_rate/model2': 0.00904508879153485,
                    'momentum/model1': 0.8595491502812526,
                    'momentum/model2': 0.8595491502812526,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 4e-08,
                    'learning_rate/model2': 4e-08,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.95,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.0003999999999999993,
                'momentum': 0.95
            }, 1),
            call(
                'train', {
                    'learning_rate': 0.00904508879153485,
                    'momentum': 0.8595491502812526
                }, 6),
            call('train', {
                'learning_rate': 4e-08,
                'momentum': 0.95
            }, 10)
        ]
1023
1024
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
    # Test OneCycleLrUpdaterHook
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner(
        runner_type='IterBasedRunner', max_epochs=None, max_iters=max_iters)

    args = dict(
        max_lr=0.01,
        total_steps=5,
        pct_start=0.5,
        anneal_strategy='linear',
        div_factor=25,
        final_div_factor=1e4,
    )
    hook = OneCycleLrUpdaterHook(**args)
    runner.register_hook(hook)
    if max_iters == 10:
        # test total_steps < max_iters
        with pytest.raises(ValueError):
            runner.run([loader], [('train', 1)])
    else:
        # test total_steps > max_iters
        runner.run([loader], [('train', 1)])
        lr_last = runner.current_lr()
        t = torch.tensor([0.0], requires_grad=True)
        optim = torch.optim.SGD([t], lr=0.01)
        lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optim, **args)
        lr_target = []
        for _ in range(max_iters):
            optim.step()
            lr_target.append(optim.param_groups[0]['lr'])
            lr_scheduler.step()
        assert lr_target[-1] == lr_last[0]

1059

1060
1061
@pytest.mark.parametrize('multi_optimizers', (True, False))
def test_cosine_restart_lr_update_hook(multi_optimizers):
Harry's avatar
Harry committed
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
    """Test CosineRestartLrUpdaterHook."""
    with pytest.raises(AssertionError):
        # either `min_lr` or `min_lr_ratio` should be specified
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5, 0.5],
            min_lr=0.1,
            min_lr_ratio=0)

    with pytest.raises(AssertionError):
        # periods and restart_weights should have the same length
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5],
            min_lr_ratio=0)

    with pytest.raises(ValueError):
        # the last cumulative_periods 7 (out of [5, 7]) should >= 10
        sys.modules['pavi'] = MagicMock()
        loader = DataLoader(torch.ones((10, 2)))
        runner = _build_demo_runner()

        # add cosine restart LR scheduler
        hook = CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[5, 2],  # cumulative_periods [5, 7 (5 + 2)]
            restart_weights=[0.5, 0.5],
            min_lr=0.0001)
        runner.register_hook(hook)
        runner.register_hook(IterTimerHook())

        # add pavi hook
        hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
        runner.register_hook(hook)
1098
        runner.run([loader], [('train', 1)])
Harry's avatar
Harry committed
1099
1100
1101
1102
        shutil.rmtree(runner.work_dir)

    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
1103
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
Harry's avatar
Harry committed
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116

    # add cosine restart LR scheduler
    hook = CosineRestartLrUpdaterHook(
        by_epoch=False,
        periods=[5, 5],
        restart_weights=[0.5, 0.5],
        min_lr_ratio=0)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
1117
    runner.run([loader], [('train', 1)])
Harry's avatar
Harry committed
1118
1119
1120
1121
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
1122
    if multi_optimizers:
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0009549150281252633,
                    'learning_rate/model2': 0.00047745751406263163,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.95
            }, 6),
            call('train', {
                'learning_rate': 0.0009549150281252633,
                'momentum': 0.95
            }, 10)
        ]
Harry's avatar
Harry committed
1161
1162
1163
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


1164
1165
@pytest.mark.parametrize('multi_optimizers', (True, False))
def test_step_runner_hook(multi_optimizers):
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
    """Test StepLrUpdaterHook."""
    with pytest.raises(TypeError):
        # `step` should be specified
        StepLrUpdaterHook()
    with pytest.raises(AssertionError):
        # if `step` is int, should be positive
        StepLrUpdaterHook(-10)
    with pytest.raises(AssertionError):
        # if `step` is list of int, should all be positive
        StepLrUpdaterHook([10, 16, -20])

    # test StepLrUpdaterHook with int `step` value
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((30, 2)))
1180
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
1181

1182
1183
1184
1185
1186
1187
1188
1189
1190
    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        step=5,
        gamma=0.5,
        min_momentum=0.05)
    runner.register_hook_from_cfg(hook_cfg)

1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
    # add step LR scheduler
    hook = StepLrUpdaterHook(by_epoch=False, step=5, gamma=0.5, min_lr=1e-3)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
1204
    if multi_optimizers:
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
1217
1218
                    'momentum/model1': 0.475,
                    'momentum/model2': 0.45
1219
1220
1221
1222
1223
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0025,
                    'learning_rate/model2': 0.00125,
1224
1225
                    'momentum/model1': 0.11875,
                    'momentum/model2': 0.1125
1226
1227
1228
1229
1230
                }, 16),
            call(
                'train', {
                    'learning_rate/model1': 0.00125,
                    'learning_rate/model2': 0.001,
1231
1232
                    'momentum/model1': 0.059375,
                    'momentum/model2': 0.05625
1233
1234
1235
1236
1237
                }, 21),
            call(
                'train', {
                    'learning_rate/model1': 0.001,
                    'learning_rate/model2': 0.001,
1238
1239
                    'momentum/model1': 0.05,
                    'momentum/model2': 0.05
1240
1241
1242
1243
1244
                }, 26),
            call(
                'train', {
                    'learning_rate/model1': 0.001,
                    'learning_rate/model2': 0.001,
1245
1246
                    'momentum/model1': 0.05,
                    'momentum/model2': 0.05
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
                }, 30)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
1257
                'momentum': 0.475
1258
1259
1260
            }, 6),
            call('train', {
                'learning_rate': 0.0025,
1261
                'momentum': 0.11875
1262
1263
1264
            }, 16),
            call('train', {
                'learning_rate': 0.00125,
1265
                'momentum': 0.059375
1266
1267
1268
            }, 21),
            call('train', {
                'learning_rate': 0.001,
1269
                'momentum': 0.05
1270
1271
1272
            }, 26),
            call('train', {
                'learning_rate': 0.001,
1273
                'momentum': 0.05
1274
1275
1276
1277
1278
1279
1280
            }, 30)
        ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

    # test StepLrUpdaterHook with list[int] `step` value
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
1281
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
1282

1283
1284
1285
1286
1287
1288
1289
1290
    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        step=[4, 6, 8],
        gamma=0.1)
    runner.register_hook_from_cfg(hook_cfg)

1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
    # add step LR scheduler
    hook = StepLrUpdaterHook(by_epoch=False, step=[4, 6, 8], gamma=0.1)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
1304
    if multi_optimizers:
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.002,
                    'learning_rate/model2': 0.001,
1317
1318
                    'momentum/model1': 9.5e-2,
                    'momentum/model2': 9.000000000000001e-2
1319
1320
1321
1322
1323
                }, 5),
            call(
                'train', {
                    'learning_rate/model1': 2.0000000000000004e-4,
                    'learning_rate/model2': 1.0000000000000002e-4,
1324
1325
                    'momentum/model1': 9.500000000000001e-3,
                    'momentum/model2': 9.000000000000003e-3
1326
1327
1328
1329
1330
                }, 7),
            call(
                'train', {
                    'learning_rate/model1': 2.0000000000000005e-05,
                    'learning_rate/model2': 1.0000000000000003e-05,
1331
1332
                    'momentum/model1': 9.500000000000002e-4,
                    'momentum/model2': 9.000000000000002e-4
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
                }, 9)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.002,
1343
                'momentum': 0.095
1344
            }, 5),
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
            call(
                'train', {
                    'learning_rate': 2.0000000000000004e-4,
                    'momentum': 9.500000000000001e-3
                }, 7),
            call(
                'train', {
                    'learning_rate': 2.0000000000000005e-05,
                    'momentum': 9.500000000000002e-4
                }, 9)
1355
1356
1357
1358
        ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


Mashiro's avatar
Mashiro committed
1359
1360
1361
1362
@pytest.mark.parametrize('multi_optimizers, max_iters, gamma, cyclic_times',
                         [(True, 8, 1, 1), (False, 8, 0.5, 2)])
def test_cyclic_lr_update_hook(multi_optimizers, max_iters, gamma,
                               cyclic_times):
1363
1364
1365
1366
1367
1368
    """Test CyclicLrUpdateHook."""
    with pytest.raises(AssertionError):
        # by_epoch should be False
        CyclicLrUpdaterHook(by_epoch=True)

    with pytest.raises(AssertionError):
Mashiro's avatar
Mashiro committed
1369
        # target_ratio must be either float or tuple/list of two floats
1370
1371
1372
        CyclicLrUpdaterHook(by_epoch=False, target_ratio=(10.0, 0.1, 0.2))

    with pytest.raises(AssertionError):
Mashiro's avatar
Mashiro committed
1373
        # step_ratio_up must be in range [0,1)
1374
1375
1376
1377
1378
1379
        CyclicLrUpdaterHook(by_epoch=False, step_ratio_up=1.4)

    with pytest.raises(ValueError):
        # anneal_strategy must be one of "cos" or "linear"
        CyclicLrUpdaterHook(by_epoch=False, anneal_strategy='sin')

Mashiro's avatar
Mashiro committed
1380
1381
1382
1383
    with pytest.raises(AssertionError):
        # gamma must be in range (0, 1]
        CyclicLrUpdaterHook(by_epoch=False, gamma=0)

1384
1385
1386
1387
1388
1389
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner(
        runner_type='IterBasedRunner',
        max_epochs=None,
        max_iters=max_iters,
1390
        multi_optimizers=multi_optimizers)
1391
1392

    # add cyclic LR scheduler
Mashiro's avatar
Mashiro committed
1393
    schedule_hook = CyclicLrUpdaterHook(
1394
1395
        by_epoch=False,
        target_ratio=(10.0, 1.0),
Mashiro's avatar
Mashiro committed
1396
        cyclic_times=cyclic_times,
1397
        step_ratio_up=0.5,
Mashiro's avatar
Mashiro committed
1398
1399
1400
        anneal_strategy='linear',
        gamma=gamma)
    runner.register_hook(schedule_hook)
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    runner.register_hook(IterTimerHook())
    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    assert hasattr(hook, 'writer')
    if multi_optimizers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.155,
                    'learning_rate/model2': 0.0775,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 4),
            call(
                'train', {
                    'learning_rate/model1': 0.155,
                    'learning_rate/model2': 0.0775,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 6)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
Mashiro's avatar
Mashiro committed
1441
                'learning_rate': 0.11,
1442
1443
1444
                'momentum': 0.95
            }, 4),
            call('train', {
Mashiro's avatar
Mashiro committed
1445
                'learning_rate': 0.065,
1446
1447
                'momentum': 0.95
            }, 6),
Mashiro's avatar
Mashiro committed
1448
1449
1450
1451
            call('train', {
                'learning_rate': 0.11,
                'momentum': 0.95
            }, 7),
1452
1453
1454
1455
        ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


1456
1457
1458
1459
1460
@pytest.mark.parametrize('log_model', (True, False))
def test_mlflow_hook(log_model):
    sys.modules['mlflow'] = MagicMock()
    sys.modules['mlflow.pytorch'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
1461
1462
    runner = _build_demo_runner()
    loader = DataLoader(torch.ones((5, 2)))
1463

1464
    hook = MlflowLoggerHook(exp_name='test', log_model=log_model)
1465
    runner.register_hook(hook)
1466
    runner.run([loader, loader], [('train', 1), ('val', 1)])
1467
    shutil.rmtree(runner.work_dir)
1468
1469

    hook.mlflow.set_experiment.assert_called_with('test')
Wenwei Zhang's avatar
Wenwei Zhang committed
1470
1471
1472
1473
    hook.mlflow.log_metrics.assert_called_with(
        {
            'learning_rate': 0.02,
            'momentum': 0.95
1474
        }, step=6)
1475
1476
    if log_model:
        hook.mlflow_pytorch.log_model.assert_called_with(
1477
1478
1479
            runner.model,
            'models',
            pip_requirements=[f'torch=={TORCH_VERSION}'])
1480
1481
1482
1483
    else:
        assert not hook.mlflow_pytorch.log_model.called


1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
def test_segmind_hook():
    sys.modules['segmind'] = MagicMock()
    runner = _build_demo_runner()
    hook = SegmindLoggerHook()
    loader = DataLoader(torch.ones((5, 2)))

    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)])
    shutil.rmtree(runner.work_dir)

    hook.mlflow_log.assert_called_with(
        hook.log_metrics, {
            'learning_rate': 0.02,
            'momentum': 0.95
        },
        step=runner.epoch,
        epoch=runner.epoch)


1503
1504
def test_wandb_hook():
    sys.modules['wandb'] = MagicMock()
Wenwei Zhang's avatar
Wenwei Zhang committed
1505
    runner = _build_demo_runner()
1506
    hook = WandbLoggerHook(log_artifact=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
1507
    loader = DataLoader(torch.ones((5, 2)))
1508
1509

    runner.register_hook(hook)
1510
    runner.run([loader, loader], [('train', 1), ('val', 1)])
1511

1512
1513
    shutil.rmtree(runner.work_dir)

1514
    hook.wandb.init.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
1515
1516
1517
1518
    hook.wandb.log.assert_called_with({
        'learning_rate': 0.02,
        'momentum': 0.95
    },
1519
1520
                                      step=6,
                                      commit=True)
1521
    hook.wandb.log_artifact.assert_called()
1522
    hook.wandb.join.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
1523
1524


fcakyon's avatar
fcakyon committed
1525
1526
1527
1528
1529
def test_neptune_hook():
    sys.modules['neptune'] = MagicMock()
    sys.modules['neptune.new'] = MagicMock()
    runner = _build_demo_runner()
    hook = NeptuneLoggerHook()
1530

fcakyon's avatar
fcakyon committed
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
    loader = DataLoader(torch.ones((5, 2)))

    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)])
    shutil.rmtree(runner.work_dir)

    hook.neptune.init.assert_called_with()
    hook.run['momentum'].log.assert_called_with(0.95, step=6)
    hook.run.stop.assert_called_with()


1542
def test_dvclive_hook():
1543
1544
1545
    sys.modules['dvclive'] = MagicMock()
    runner = _build_demo_runner()

1546
1547
    hook = DvcliveLoggerHook()
    dvclive_mock = hook.dvclive
1548
1549
1550
1551
1552
1553
    loader = DataLoader(torch.ones((5, 2)))

    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)])
    shutil.rmtree(runner.work_dir)

1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
    dvclive_mock.set_step.assert_called_with(6)
    dvclive_mock.log.assert_called_with('momentum', 0.95)


def test_dvclive_hook_model_file(tmp_path):
    sys.modules['dvclive'] = MagicMock()
    runner = _build_demo_runner()

    hook = DvcliveLoggerHook(model_file=osp.join(runner.work_dir, 'model.pth'))
    runner.register_hook(hook)

    loader = torch.utils.data.DataLoader(torch.ones((5, 2)))
    loader = DataLoader(torch.ones((5, 2)))

    runner.run([loader, loader], [('train', 1), ('val', 1)])

    assert osp.exists(osp.join(runner.work_dir, 'model.pth'))

    shutil.rmtree(runner.work_dir)
1573
1574


1575
1576
1577
def _build_demo_runner_without_hook(runner_type='EpochBasedRunner',
                                    max_epochs=1,
                                    max_iters=None,
1578
                                    multi_optimizers=False):
1579
1580
1581
1582
1583
1584

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.linear = nn.Linear(2, 1)
1585
            self.conv = nn.Conv2d(3, 3, 3)
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597

        def forward(self, x):
            return self.linear(x)

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

    model = Model()

1598
    if multi_optimizers:
1599
1600
1601
1602
1603
1604
1605
1606
        optimizer = {
            'model1':
            torch.optim.SGD(model.linear.parameters(), lr=0.02, momentum=0.95),
            'model2':
            torch.optim.SGD(model.conv.parameters(), lr=0.01, momentum=0.9),
        }
    else:
        optimizer = torch.optim.SGD(model.parameters(), lr=0.02, momentum=0.95)
Wenwei Zhang's avatar
Wenwei Zhang committed
1607

1608
    tmp_dir = tempfile.mkdtemp()
1609
1610
1611
1612
1613
1614
1615
1616
1617
    runner = build_runner(
        dict(type=runner_type),
        default_args=dict(
            model=model,
            work_dir=tmp_dir,
            optimizer=optimizer,
            logger=logging.getLogger(),
            max_epochs=max_epochs,
            max_iters=max_iters))
1618
1619
1620
1621
1622
1623
    return runner


def _build_demo_runner(runner_type='EpochBasedRunner',
                       max_epochs=1,
                       max_iters=None,
1624
                       multi_optimizers=False):
1625
1626
1627
1628
1629
1630
    log_config = dict(
        interval=1, hooks=[
            dict(type='TextLoggerHook'),
        ])

    runner = _build_demo_runner_without_hook(runner_type, max_epochs,
1631
                                             max_iters, multi_optimizers)
1632

1633
    runner.register_checkpoint_hook(dict(interval=1))
Wenwei Zhang's avatar
Wenwei Zhang committed
1634
1635
    runner.register_logger_hooks(log_config)
    return runner
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673


def test_runner_with_revise_keys():
    import os

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(3, 3, 1)

    class PrefixModel(nn.Module):

        def __init__(self):
            super().__init__()
            self.backbone = Model()

    pmodel = PrefixModel()
    model = Model()
    checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')

    # add prefix
    torch.save(model.state_dict(), checkpoint_path)
    runner = _build_demo_runner(runner_type='EpochBasedRunner')
    runner.model = pmodel
    state_dict = runner.load_checkpoint(
        checkpoint_path, revise_keys=[(r'^', 'backbone.')])
    for key in pmodel.backbone.state_dict().keys():
        assert torch.equal(pmodel.backbone.state_dict()[key], state_dict[key])
    # strip prefix
    torch.save(pmodel.state_dict(), checkpoint_path)
    runner.model = model
    state_dict = runner.load_checkpoint(
        checkpoint_path, revise_keys=[(r'^backbone\.', '')])
    for key in state_dict.keys():
        key_stripped = re.sub(r'^backbone\.', '', key)
        assert torch.equal(model.state_dict()[key_stripped], state_dict[key])
    os.remove(checkpoint_path)
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690


def test_get_triggered_stages():

    class ToyHook(Hook):
        # test normal stage
        def before_run():
            pass

        # test the method mapped to multi stages.
        def after_epoch():
            pass

    hook = ToyHook()
    # stages output have order, so here is list instead of set.
    expected_stages = ['before_run', 'after_train_epoch', 'after_val_epoch']
    assert hook.get_triggered_stages() == expected_stages
Ma Zerun's avatar
Ma Zerun committed
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894


def test_gradient_cumulative_optimizer_hook():

    class ToyModel(nn.Module):

        def __init__(self, with_norm=False):
            super().__init__()
            self.fp16_enabled = False
            self.fc = nn.Linear(3, 2)
            nn.init.constant_(self.fc.weight, 1.)
            nn.init.constant_(self.fc.bias, 1.)
            self.with_norm = with_norm
            if with_norm:
                self.norm = nn.BatchNorm1d(2)

        def forward(self, x):
            x = self.fc(x)
            if self.with_norm:
                x = self.norm(x)
            return x

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x).mean(), num_samples=x.shape[0])

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x).mean(), num_samples=x.shape[0])

    def build_toy_runner(config=dict(type='EpochBasedRunner', max_epochs=3)):
        model = ToyModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=0.02)
        tmp_dir = tempfile.mkdtemp()

        runner = build_runner(
            config,
            default_args=dict(
                model=model,
                work_dir=tmp_dir,
                optimizer=optimizer,
                logger=logging.getLogger(),
                meta=dict()))
        return runner

    with pytest.raises(AssertionError):
        # cumulative_iters only accepts int
        GradientCumulativeOptimizerHook(cumulative_iters='str')

    with pytest.raises(AssertionError):
        # cumulative_iters only accepts positive number
        GradientCumulativeOptimizerHook(cumulative_iters=-1)

    # test epoch based runner
    data = torch.rand((6, 3))
    # optimize with cumulative_iters
    loader_1 = DataLoader(data, batch_size=1)
    runner_1 = build_toy_runner()
    optimizer_hook = GradientCumulativeOptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    runner_1.register_hook(optimizer_hook)
    runner_1.run([loader_1], [('train', 1)])

    # optimize without cumulative_iters
    loader_2 = DataLoader(data, batch_size=3)
    runner_2 = build_toy_runner()
    optimizer_hook = OptimizerHook(grad_clip=dict(max_norm=0.2))
    runner_2.register_hook(optimizer_hook)
    runner_2.run([loader_2], [('train', 1)])

    # test optimizer works well
    assert (runner_1.model.fc.weight < 1).all()
    assert (runner_1.model.fc.bias < 1).all()
    # test optimizer with cumulative_iters gets the same results
    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    shutil.rmtree(runner_1.work_dir)
    shutil.rmtree(runner_2.work_dir)

    # test iter based runner
    data = torch.rand((8, 3))
    # optimize with cumulative_iters
    loader_1 = DataLoader(data, batch_size=1)
    runner_1 = build_toy_runner(dict(type='IterBasedRunner', max_iters=8))
    optimizer_hook = GradientCumulativeOptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    runner_1.register_hook(optimizer_hook)
    runner_1.run([loader_1], [('train', 1)])

    # optimize without cumulative_iters
    loader_2_divisible = DataLoader(data[:6], batch_size=3)
    loader_2_remainder = DataLoader(data[6:], batch_size=2)
    runner_2 = build_toy_runner(dict(type='IterBasedRunner', max_iters=3))
    optimizer_hook = OptimizerHook(grad_clip=dict(max_norm=0.2))
    runner_2.register_hook(optimizer_hook)
    runner_2.run([loader_2_divisible, loader_2_remainder], [('train', 2),
                                                            ('train', 1)])

    # test optimizer works well
    assert (runner_1.model.fc.weight < 1).all()
    assert (runner_1.model.fc.bias < 1).all()
    # test optimizer with cumulative_iters gets the same results
    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    shutil.rmtree(runner_1.work_dir)
    shutil.rmtree(runner_2.work_dir)

    # test has_batch_norm
    model = ToyModel(with_norm=True)
    optimizer_hook = GradientCumulativeOptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    assert optimizer_hook.has_batch_norm(model)


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_gradient_cumulative_fp16_optimizer_hook():

    class ToyModel(nn.Module):

        def __init__(self):
            super().__init__()
            self.fp16_enabled = False
            self.fc = nn.Linear(3, 2)
            nn.init.constant_(self.fc.weight, 1.)
            nn.init.constant_(self.fc.bias, 1.)

        @auto_fp16(apply_to=('x', ))
        def forward(self, x):
            x = self.fc(x)
            return x

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x).mean(), num_samples=x.shape[0])

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x).mean(), num_samples=x.shape[0])

    def build_toy_runner(config=dict(type='EpochBasedRunner', max_epochs=3)):
        model = ToyModel().cuda()
        optimizer = torch.optim.SGD(model.parameters(), lr=0.02)
        tmp_dir = tempfile.mkdtemp()

        runner = build_runner(
            config,
            default_args=dict(
                model=model,
                work_dir=tmp_dir,
                optimizer=optimizer,
                logger=logging.getLogger(),
                meta=dict()))
        return runner

    # test epoch based runner
    data = torch.rand((6, 3)).cuda()
    # optimize with cumulative_iters
    loader_1 = DataLoader(data, batch_size=1)
    runner_1 = build_toy_runner()
    optimizer_hook = GradientCumulativeFp16OptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    runner_1.register_hook(optimizer_hook)
    runner_1.run([loader_1], [('train', 1)])

    # optimize without cumulative_iters
    loader_2 = DataLoader(data, batch_size=3)
    runner_2 = build_toy_runner()
    optimizer_hook = Fp16OptimizerHook(grad_clip=dict(max_norm=0.2))
    runner_2.register_hook(optimizer_hook)
    runner_2.run([loader_2], [('train', 1)])

    # test optimizer works well
    assert (runner_1.model.fc.weight < 1).all()
    assert (runner_1.model.fc.bias < 1).all()
    # test optimizer with cumulative_iters gets the same results
    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    shutil.rmtree(runner_1.work_dir)
    shutil.rmtree(runner_2.work_dir)

    # test iter based runner
    data = torch.rand((8, 3)).cuda()
    # optimize with cumulative_iters
    loader_1 = DataLoader(data, batch_size=1)
    runner_1 = build_toy_runner(dict(type='IterBasedRunner', max_iters=8))
    optimizer_hook = GradientCumulativeFp16OptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    runner_1.register_hook(optimizer_hook)
    runner_1.run([loader_1], [('train', 1)])

    # optimize without cumulative_iters
    loader_2_divisible = DataLoader(data[:6], batch_size=3)
    loader_2_remainder = DataLoader(data[6:], batch_size=2)
    runner_2 = build_toy_runner(dict(type='IterBasedRunner', max_iters=3))
    optimizer_hook = Fp16OptimizerHook(grad_clip=dict(max_norm=0.2))
    runner_2.register_hook(optimizer_hook)
    runner_2.run([loader_2_divisible, loader_2_remainder], [('train', 2),
                                                            ('train', 1)])

    # test optimizer works well
    assert (runner_1.model.fc.weight < 1).all()
    assert (runner_1.model.fc.bias < 1).all()
    # test optimizer with cumulative_iters gets the same results
    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    shutil.rmtree(runner_1.work_dir)
    shutil.rmtree(runner_2.work_dir)