test_hooks.py 28 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
"""Tests the hooks with runners.
Wenwei Zhang's avatar
Wenwei Zhang committed
2
3

CommandLine:
4
    pytest tests/test_runner/test_hooks.py
Wenwei Zhang's avatar
Wenwei Zhang committed
5
6
    xdoctest tests/test_hooks.py zero
"""
7
import logging
Jiangmiao Pang's avatar
Jiangmiao Pang committed
8
import os.path as osp
9
import re
10
import shutil
Jiangmiao Pang's avatar
Jiangmiao Pang committed
11
import sys
12
import tempfile
Wenwei Zhang's avatar
Wenwei Zhang committed
13
from unittest.mock import MagicMock, call
Jiangmiao Pang's avatar
Jiangmiao Pang committed
14

15
16
17
import pytest
import torch
import torch.nn as nn
shilong's avatar
shilong committed
18
from torch.nn.init import constant_
19
20
from torch.utils.data import DataLoader

21
22
23
from mmcv.runner import (CheckpointHook, EMAHook, IterTimerHook,
                         MlflowLoggerHook, PaviLoggerHook, WandbLoggerHook,
                         build_runner)
24
from mmcv.runner.hooks.lr_updater import (CosineRestartLrUpdaterHook,
25
26
                                          OneCycleLrUpdaterHook,
                                          StepLrUpdaterHook)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
27
28


29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def test_checkpoint_hook():
    """xdoctest -m tests/test_runner/test_hooks.py test_checkpoint_hook."""

    # test epoch based runner
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner('EpochBasedRunner', max_epochs=1)
    runner.meta = dict()
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(checkpointhook)
    runner.run([loader], [('train', 1)])
    assert runner.meta['hook_msgs']['last_ckpt'] == osp.join(
        runner.work_dir, 'epoch_1.pth')
    shutil.rmtree(runner.work_dir)

    # test iter based runner
    runner = _build_demo_runner(
        'IterBasedRunner', max_iters=1, max_epochs=None)
    runner.meta = dict()
    checkpointhook = CheckpointHook(interval=1, by_epoch=False)
    runner.register_hook(checkpointhook)
    runner.run([loader], [('train', 1)])
    assert runner.meta['hook_msgs']['last_ckpt'] == osp.join(
        runner.work_dir, 'iter_1.pth')
    shutil.rmtree(runner.work_dir)


shilong's avatar
shilong committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
def test_ema_hook():
    """xdoctest -m tests/test_hooks.py test_ema_hook."""

    class DemoModel(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(
                in_channels=1,
                out_channels=2,
                kernel_size=1,
                padding=1,
                bias=True)
            self._init_weight()

        def _init_weight(self):
            constant_(self.conv.weight, 0)
            constant_(self.conv.bias, 0)

        def forward(self, x):
            return self.conv(x).sum()

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

    loader = DataLoader(torch.ones((1, 1, 1, 1)))
    runner = _build_demo_runner()
    demo_model = DemoModel()
    runner.model = demo_model
    emahook = EMAHook(momentum=0.1, interval=2, warm_up=100, resume_from=None)
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(emahook, priority='HIGHEST')
    runner.register_hook(checkpointhook)
91
    runner.run([loader, loader], [('train', 1), ('val', 1)])
shilong's avatar
shilong committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    checkpoint = torch.load(f'{runner.work_dir}/epoch_1.pth')
    contain_ema_buffer = False
    for name, value in checkpoint['state_dict'].items():
        if 'ema' in name:
            contain_ema_buffer = True
            assert value.sum() == 0
            value.fill_(1)
        else:
            assert value.sum() == 0
    assert contain_ema_buffer
    torch.save(checkpoint, f'{runner.work_dir}/epoch_1.pth')
    work_dir = runner.work_dir
    resume_ema_hook = EMAHook(
        momentum=0.5, warm_up=0, resume_from=f'{work_dir}/epoch_1.pth')
106
    runner = _build_demo_runner(max_epochs=2)
shilong's avatar
shilong committed
107
108
109
110
    runner.model = demo_model
    runner.register_hook(resume_ema_hook, priority='HIGHEST')
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(checkpointhook)
111
    runner.run([loader, loader], [('train', 1), ('val', 1)])
shilong's avatar
shilong committed
112
113
114
115
116
117
118
119
120
121
122
123
124
    checkpoint = torch.load(f'{runner.work_dir}/epoch_2.pth')
    contain_ema_buffer = False
    for name, value in checkpoint['state_dict'].items():
        if 'ema' in name:
            contain_ema_buffer = True
            assert value.sum() == 2
        else:
            assert value.sum() == 1
    assert contain_ema_buffer
    shutil.rmtree(runner.work_dir)
    shutil.rmtree(work_dir)


Jiangmiao Pang's avatar
Jiangmiao Pang committed
125
126
127
def test_pavi_hook():
    sys.modules['pavi'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
128
129
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner()
130
    runner.meta = dict(config_dict=dict(lr=0.02, gpu_ids=range(1)))
131
    hook = PaviLoggerHook(add_graph=False, add_last_ckpt=True)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
132
    runner.register_hook(hook)
133
    runner.run([loader, loader], [('train', 1), ('val', 1)])
134
    shutil.rmtree(runner.work_dir)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
135
136

    assert hasattr(hook, 'writer')
Wenwei Zhang's avatar
Wenwei Zhang committed
137
138
139
    hook.writer.add_scalars.assert_called_with('val', {
        'learning_rate': 0.02,
        'momentum': 0.95
140
    }, 1)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
141
    hook.writer.add_snapshot_file.assert_called_with(
142
        tag=runner.work_dir.split('/')[-1],
143
144
        snapshot_file_path=osp.join(runner.work_dir, 'epoch_1.pth'),
        iteration=1)
145
146


Wang Xinjiang's avatar
Wang Xinjiang committed
147
148
149
150
def test_sync_buffers_hook():
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner()
    runner.register_hook_from_cfg(dict(type='SyncBuffersHook'))
151
    runner.run([loader, loader], [('train', 1), ('val', 1)])
Wang Xinjiang's avatar
Wang Xinjiang committed
152
153
154
    shutil.rmtree(runner.work_dir)


155
156
@pytest.mark.parametrize('multi_optimziers', (True, False))
def test_momentum_runner_hook(multi_optimziers):
Kai Chen's avatar
Kai Chen committed
157
    """xdoctest -m tests/test_hooks.py test_momentum_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
158
159
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
160
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)
Wenwei Zhang's avatar
Wenwei Zhang committed
161
162

    # add momentum scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
163
164
    hook_cfg = dict(
        type='CyclicMomentumUpdaterHook',
Wenwei Zhang's avatar
Wenwei Zhang committed
165
166
167
168
        by_epoch=False,
        target_ratio=(0.85 / 0.95, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
Wang Xinjiang's avatar
Wang Xinjiang committed
169
    runner.register_hook_from_cfg(hook_cfg)
Wenwei Zhang's avatar
Wenwei Zhang committed
170
171

    # add momentum LR scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
172
173
    hook_cfg = dict(
        type='CyclicLrUpdaterHook',
Wenwei Zhang's avatar
Wenwei Zhang committed
174
175
176
177
        by_epoch=False,
        target_ratio=(10, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
Wang Xinjiang's avatar
Wang Xinjiang committed
178
179
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
Wenwei Zhang's avatar
Wenwei Zhang committed
180
181

    # add pavi hook
182
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
183
    runner.register_hook(hook)
184
    runner.run([loader], [('train', 1)])
185
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
186
187
188

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.01999999999999999,
                    'learning_rate/model2': 0.009999999999999995,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.2,
                    'learning_rate/model2': 0.1,
                    'momentum/model1': 0.85,
                    'momentum/model2': 0.8052631578947369,
                }, 5),
            call(
                'train', {
                    'learning_rate/model1': 0.155,
                    'learning_rate/model2': 0.0775,
                    'momentum/model1': 0.875,
                    'momentum/model2': 0.8289473684210527,
                }, 7)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.01999999999999999,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.2,
                'momentum': 0.85
            }, 5),
            call('train', {
                'learning_rate': 0.155,
                'momentum': 0.875
            }, 7),
        ]
Wenwei Zhang's avatar
Wenwei Zhang committed
228
229
230
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


231
232
@pytest.mark.parametrize('multi_optimziers', (True, False))
def test_cosine_runner_hook(multi_optimziers):
Kai Chen's avatar
Kai Chen committed
233
    """xdoctest -m tests/test_hooks.py test_cosine_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
234
235
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
236
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)
Wenwei Zhang's avatar
Wenwei Zhang committed
237
238

    # add momentum scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
239
240
241

    hook_cfg = dict(
        type='CosineAnnealingMomentumUpdaterHook',
242
243
244
245
        min_momentum_ratio=0.99 / 0.95,
        by_epoch=False,
        warmup_iters=2,
        warmup_ratio=0.9 / 0.95)
Wang Xinjiang's avatar
Wang Xinjiang committed
246
    runner.register_hook_from_cfg(hook_cfg)
Wenwei Zhang's avatar
Wenwei Zhang committed
247
248

    # add momentum LR scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
249
250
251
252
253
254
255
256
    hook_cfg = dict(
        type='CosineAnnealingLrUpdaterHook',
        by_epoch=False,
        min_lr_ratio=0,
        warmup_iters=2,
        warmup_ratio=0.9)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
257
    runner.register_hook(IterTimerHook())
Wenwei Zhang's avatar
Wenwei Zhang committed
258
    # add pavi hook
259
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
260
    runner.register_hook(hook)
261
    runner.run([loader], [('train', 1)])
262
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
263
264
265

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.97,
                    'momentum/model2': 0.9189473684210527,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0004894348370484647,
                    'learning_rate/model2': 0.00024471741852423234,
                    'momentum/model1': 0.9890211303259032,
                    'momentum/model2': 0.9369673866245399,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.97
            }, 6),
            call(
                'train', {
                    'learning_rate': 0.0004894348370484647,
                    'momentum': 0.9890211303259032
                }, 10)
        ]
Wenwei Zhang's avatar
Wenwei Zhang committed
306
307
308
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


309
310
311
312
@pytest.mark.parametrize('multi_optimziers, max_iters', [(True, 10), (True, 2),
                                                         (False, 10),
                                                         (False, 2)])
def test_one_cycle_runner_hook(multi_optimziers, max_iters):
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    """Test OneCycleLrUpdaterHook and OneCycleMomentumUpdaterHook."""
    with pytest.raises(AssertionError):
        # by_epoch should be False
        OneCycleLrUpdaterHook(max_lr=0.1, by_epoch=True)

    with pytest.raises(ValueError):
        # expected float between 0 and 1
        OneCycleLrUpdaterHook(max_lr=0.1, pct_start=-0.1)

    with pytest.raises(ValueError):
        # anneal_strategy should be either 'cos' or 'linear'
        OneCycleLrUpdaterHook(max_lr=0.1, anneal_strategy='sin')

    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
328
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)
329
330
331
332
333
334
335
336
337
338
339

    # add momentum scheduler
    hook_cfg = dict(
        type='OneCycleMomentumUpdaterHook',
        base_momentum=0.85,
        max_momentum=0.95,
        pct_start=0.5,
        anneal_strategy='cos',
        three_phase=False)
    runner.register_hook_from_cfg(hook_cfg)

340
    # add LR scheduler
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    hook_cfg = dict(
        type='OneCycleLrUpdaterHook',
        max_lr=0.01,
        pct_start=0.5,
        anneal_strategy='cos',
        div_factor=25,
        final_div_factor=1e4,
        three_phase=False)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    runner.register_hook(IterTimerHook())
    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.0003999999999999993,
                    'learning_rate/model2': 0.0003999999999999993,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.95,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.00904508879153485,
                    'learning_rate/model2': 0.00904508879153485,
                    'momentum/model1': 0.8595491502812526,
                    'momentum/model2': 0.8595491502812526,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 4e-08,
                    'learning_rate/model2': 4e-08,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.95,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.0003999999999999993,
                'momentum': 0.95
            }, 1),
            call(
                'train', {
                    'learning_rate': 0.00904508879153485,
                    'momentum': 0.8595491502812526
                }, 6),
            call('train', {
                'learning_rate': 4e-08,
                'momentum': 0.95
            }, 10)
        ]
400
401
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
    # Test OneCycleLrUpdaterHook
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner(
        runner_type='IterBasedRunner', max_epochs=None, max_iters=max_iters)

    args = dict(
        max_lr=0.01,
        total_steps=5,
        pct_start=0.5,
        anneal_strategy='linear',
        div_factor=25,
        final_div_factor=1e4,
    )
    hook = OneCycleLrUpdaterHook(**args)
    runner.register_hook(hook)
    if max_iters == 10:
        # test total_steps < max_iters
        with pytest.raises(ValueError):
            runner.run([loader], [('train', 1)])
    else:
        # test total_steps > max_iters
        runner.run([loader], [('train', 1)])
        lr_last = runner.current_lr()
        t = torch.tensor([0.0], requires_grad=True)
        optim = torch.optim.SGD([t], lr=0.01)
        lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optim, **args)
        lr_target = []
        for _ in range(max_iters):
            optim.step()
            lr_target.append(optim.param_groups[0]['lr'])
            lr_scheduler.step()
        assert lr_target[-1] == lr_last[0]

436

437
438
@pytest.mark.parametrize('multi_optimziers', (True, False))
def test_cosine_restart_lr_update_hook(multi_optimziers):
Harry's avatar
Harry committed
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    """Test CosineRestartLrUpdaterHook."""
    with pytest.raises(AssertionError):
        # either `min_lr` or `min_lr_ratio` should be specified
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5, 0.5],
            min_lr=0.1,
            min_lr_ratio=0)

    with pytest.raises(AssertionError):
        # periods and restart_weights should have the same length
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5],
            min_lr_ratio=0)

    with pytest.raises(ValueError):
        # the last cumulative_periods 7 (out of [5, 7]) should >= 10
        sys.modules['pavi'] = MagicMock()
        loader = DataLoader(torch.ones((10, 2)))
        runner = _build_demo_runner()

        # add cosine restart LR scheduler
        hook = CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[5, 2],  # cumulative_periods [5, 7 (5 + 2)]
            restart_weights=[0.5, 0.5],
            min_lr=0.0001)
        runner.register_hook(hook)
        runner.register_hook(IterTimerHook())

        # add pavi hook
        hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
        runner.register_hook(hook)
475
        runner.run([loader], [('train', 1)])
Harry's avatar
Harry committed
476
477
478
479
        shutil.rmtree(runner.work_dir)

    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
480
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)
Harry's avatar
Harry committed
481
482
483
484
485
486
487
488
489
490
491
492
493

    # add cosine restart LR scheduler
    hook = CosineRestartLrUpdaterHook(
        by_epoch=False,
        periods=[5, 5],
        restart_weights=[0.5, 0.5],
        min_lr_ratio=0)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
494
    runner.run([loader], [('train', 1)])
Harry's avatar
Harry committed
495
496
497
498
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0009549150281252633,
                    'learning_rate/model2': 0.00047745751406263163,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.95
            }, 6),
            call('train', {
                'learning_rate': 0.0009549150281252633,
                'momentum': 0.95
            }, 10)
        ]
Harry's avatar
Harry committed
538
539
540
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
@pytest.mark.parametrize('multi_optimziers', (True, False))
def test_step_lr_update_hook(multi_optimziers):
    """Test StepLrUpdaterHook."""
    with pytest.raises(TypeError):
        # `step` should be specified
        StepLrUpdaterHook()
    with pytest.raises(AssertionError):
        # if `step` is int, should be positive
        StepLrUpdaterHook(-10)
    with pytest.raises(AssertionError):
        # if `step` is list of int, should all be positive
        StepLrUpdaterHook([10, 16, -20])

    # test StepLrUpdaterHook with int `step` value
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((30, 2)))
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)

    # add step LR scheduler
    hook = StepLrUpdaterHook(by_epoch=False, step=5, gamma=0.5, min_lr=1e-3)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0025,
                    'learning_rate/model2': 0.00125,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9
                }, 16),
            call(
                'train', {
                    'learning_rate/model1': 0.00125,
                    'learning_rate/model2': 0.001,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9
                }, 21),
            call(
                'train', {
                    'learning_rate/model1': 0.001,
                    'learning_rate/model2': 0.001,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9
                }, 26),
            call(
                'train', {
                    'learning_rate/model1': 0.001,
                    'learning_rate/model2': 0.001,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9
                }, 30)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.95
            }, 6),
            call('train', {
                'learning_rate': 0.0025,
                'momentum': 0.95
            }, 16),
            call('train', {
                'learning_rate': 0.00125,
                'momentum': 0.95
            }, 21),
            call('train', {
                'learning_rate': 0.001,
                'momentum': 0.95
            }, 26),
            call('train', {
                'learning_rate': 0.001,
                'momentum': 0.95
            }, 30)
        ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

    # test StepLrUpdaterHook with list[int] `step` value
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)

    # add step LR scheduler
    hook = StepLrUpdaterHook(by_epoch=False, step=[4, 6, 8], gamma=0.1)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.002,
                    'learning_rate/model2': 0.001,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9
                }, 5),
            call(
                'train', {
                    'learning_rate/model1': 2.0000000000000004e-4,
                    'learning_rate/model2': 1.0000000000000002e-4,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9
                }, 7),
            call(
                'train', {
                    'learning_rate/model1': 2.0000000000000005e-05,
                    'learning_rate/model2': 1.0000000000000003e-05,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9
                }, 9)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.002,
                'momentum': 0.95
            }, 5),
            call('train', {
                'learning_rate': 2.0000000000000004e-4,
                'momentum': 0.95
            }, 7),
            call('train', {
                'learning_rate': 2.0000000000000005e-05,
                'momentum': 0.95
            }, 9)
        ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


717
718
719
720
721
@pytest.mark.parametrize('log_model', (True, False))
def test_mlflow_hook(log_model):
    sys.modules['mlflow'] = MagicMock()
    sys.modules['mlflow.pytorch'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
722
723
    runner = _build_demo_runner()
    loader = DataLoader(torch.ones((5, 2)))
724

725
    hook = MlflowLoggerHook(exp_name='test', log_model=log_model)
726
    runner.register_hook(hook)
727
    runner.run([loader, loader], [('train', 1), ('val', 1)])
728
    shutil.rmtree(runner.work_dir)
729
730

    hook.mlflow.set_experiment.assert_called_with('test')
Wenwei Zhang's avatar
Wenwei Zhang committed
731
732
733
734
    hook.mlflow.log_metrics.assert_called_with(
        {
            'learning_rate': 0.02,
            'momentum': 0.95
735
        }, step=6)
736
737
738
739
740
741
742
743
744
    if log_model:
        hook.mlflow_pytorch.log_model.assert_called_with(
            runner.model, 'models')
    else:
        assert not hook.mlflow_pytorch.log_model.called


def test_wandb_hook():
    sys.modules['wandb'] = MagicMock()
Wenwei Zhang's avatar
Wenwei Zhang committed
745
    runner = _build_demo_runner()
746
    hook = WandbLoggerHook()
Wenwei Zhang's avatar
Wenwei Zhang committed
747
    loader = DataLoader(torch.ones((5, 2)))
748
749

    runner.register_hook(hook)
750
    runner.run([loader, loader], [('train', 1), ('val', 1)])
751
752
    shutil.rmtree(runner.work_dir)

753
    hook.wandb.init.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
754
755
756
757
    hook.wandb.log.assert_called_with({
        'learning_rate': 0.02,
        'momentum': 0.95
    },
758
759
                                      step=6,
                                      commit=True)
760
    hook.wandb.join.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
761
762


763
764
def _build_demo_runner(runner_type='EpochBasedRunner',
                       max_epochs=1,
765
766
                       max_iters=None,
                       multi_optimziers=False):
767
768
769
770
771
772

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.linear = nn.Linear(2, 1)
773
            self.conv = nn.Conv2d(3, 3, 3)
774
775
776
777
778
779
780
781
782
783
784
785

        def forward(self, x):
            return self.linear(x)

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

    model = Model()

786
787
788
789
790
791
792
793
794
    if multi_optimziers:
        optimizer = {
            'model1':
            torch.optim.SGD(model.linear.parameters(), lr=0.02, momentum=0.95),
            'model2':
            torch.optim.SGD(model.conv.parameters(), lr=0.01, momentum=0.9),
        }
    else:
        optimizer = torch.optim.SGD(model.parameters(), lr=0.02, momentum=0.95)
Wenwei Zhang's avatar
Wenwei Zhang committed
795
796
797
798
799
800

    log_config = dict(
        interval=1, hooks=[
            dict(type='TextLoggerHook'),
        ])

801
    tmp_dir = tempfile.mkdtemp()
802
803
804
805
806
807
808
809
810
    runner = build_runner(
        dict(type=runner_type),
        default_args=dict(
            model=model,
            work_dir=tmp_dir,
            optimizer=optimizer,
            logger=logging.getLogger(),
            max_epochs=max_epochs,
            max_iters=max_iters))
811
    runner.register_checkpoint_hook(dict(interval=1))
Wenwei Zhang's avatar
Wenwei Zhang committed
812
813
    runner.register_logger_hooks(log_config)
    return runner
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852


def test_runner_with_revise_keys():

    import os

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(3, 3, 1)

    class PrefixModel(nn.Module):

        def __init__(self):
            super().__init__()
            self.backbone = Model()

    pmodel = PrefixModel()
    model = Model()
    checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')

    # add prefix
    torch.save(model.state_dict(), checkpoint_path)
    runner = _build_demo_runner(runner_type='EpochBasedRunner')
    runner.model = pmodel
    state_dict = runner.load_checkpoint(
        checkpoint_path, revise_keys=[(r'^', 'backbone.')])
    for key in pmodel.backbone.state_dict().keys():
        assert torch.equal(pmodel.backbone.state_dict()[key], state_dict[key])
    # strip prefix
    torch.save(pmodel.state_dict(), checkpoint_path)
    runner.model = model
    state_dict = runner.load_checkpoint(
        checkpoint_path, revise_keys=[(r'^backbone\.', '')])
    for key in state_dict.keys():
        key_stripped = re.sub(r'^backbone\.', '', key)
        assert torch.equal(model.state_dict()[key_stripped], state_dict[key])
    os.remove(checkpoint_path)