test_hooks.py 51.7 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
"""Tests the hooks with runners.
Wenwei Zhang's avatar
Wenwei Zhang committed
2
3

CommandLine:
4
    pytest tests/test_runner/test_hooks.py
Wenwei Zhang's avatar
Wenwei Zhang committed
5
6
    xdoctest tests/test_hooks.py zero
"""
7
import logging
Jiangmiao Pang's avatar
Jiangmiao Pang committed
8
import os.path as osp
9
import platform
10
import random
11
import re
12
import shutil
Jiangmiao Pang's avatar
Jiangmiao Pang committed
13
import sys
14
import tempfile
15
from unittest.mock import MagicMock, call, patch
Jiangmiao Pang's avatar
Jiangmiao Pang committed
16

17
18
19
import pytest
import torch
import torch.nn as nn
shilong's avatar
shilong committed
20
from torch.nn.init import constant_
21
22
from torch.utils.data import DataLoader

23
from mmcv.fileio.file_client import PetrelBackend
24
from mmcv.runner import (CheckpointHook, DvcliveLoggerHook, EMAHook,
Ma Zerun's avatar
Ma Zerun committed
25
26
27
28
                         Fp16OptimizerHook,
                         GradientCumulativeFp16OptimizerHook,
                         GradientCumulativeOptimizerHook, IterTimerHook,
                         MlflowLoggerHook, NeptuneLoggerHook, OptimizerHook,
29
                         PaviLoggerHook, WandbLoggerHook, build_runner)
Ma Zerun's avatar
Ma Zerun committed
30
from mmcv.runner.fp16_utils import auto_fp16
31
from mmcv.runner.hooks.hook import HOOKS, Hook
32
from mmcv.runner.hooks.lr_updater import (CosineRestartLrUpdaterHook,
33
                                          CyclicLrUpdaterHook,
34
                                          FlatCosineAnnealingLrUpdaterHook,
35
36
                                          OneCycleLrUpdaterHook,
                                          StepLrUpdaterHook)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
37

38
39
sys.modules['petrel_client'] = MagicMock()
sys.modules['petrel_client.client'] = MagicMock()
Jiangmiao Pang's avatar
Jiangmiao Pang committed
40

41
42

def test_checkpoint_hook(tmp_path):
43
44
45
46
47
48
49
50
51
52
53
54
55
    """xdoctest -m tests/test_runner/test_hooks.py test_checkpoint_hook."""

    # test epoch based runner
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner('EpochBasedRunner', max_epochs=1)
    runner.meta = dict()
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(checkpointhook)
    runner.run([loader], [('train', 1)])
    assert runner.meta['hook_msgs']['last_ckpt'] == osp.join(
        runner.work_dir, 'epoch_1.pth')
    shutil.rmtree(runner.work_dir)

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    # test petrel oss when the type of runner is `EpochBasedRunner`
    runner = _build_demo_runner('EpochBasedRunner', max_epochs=4)
    runner.meta = dict()
    out_dir = 's3://user/data'
    with patch.object(PetrelBackend, 'put') as mock_put, \
         patch.object(PetrelBackend, 'remove') as mock_remove, \
         patch.object(PetrelBackend, 'isfile') as mock_isfile:
        checkpointhook = CheckpointHook(
            interval=1, out_dir=out_dir, by_epoch=True, max_keep_ckpts=2)
        runner.register_hook(checkpointhook)
        runner.run([loader], [('train', 1)])
        basename = osp.basename(runner.work_dir.rstrip(osp.sep))
        assert runner.meta['hook_msgs']['last_ckpt'] == \
            '/'.join([out_dir, basename, 'epoch_4.pth'])
    mock_put.assert_called()
    mock_remove.assert_called()
    mock_isfile.assert_called()
    shutil.rmtree(runner.work_dir)

75
76
77
78
79
80
81
82
83
84
85
    # test iter based runner
    runner = _build_demo_runner(
        'IterBasedRunner', max_iters=1, max_epochs=None)
    runner.meta = dict()
    checkpointhook = CheckpointHook(interval=1, by_epoch=False)
    runner.register_hook(checkpointhook)
    runner.run([loader], [('train', 1)])
    assert runner.meta['hook_msgs']['last_ckpt'] == osp.join(
        runner.work_dir, 'iter_1.pth')
    shutil.rmtree(runner.work_dir)

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    # test petrel oss when the type of runner is `IterBasedRunner`
    runner = _build_demo_runner(
        'IterBasedRunner', max_iters=4, max_epochs=None)
    runner.meta = dict()
    out_dir = 's3://user/data'
    with patch.object(PetrelBackend, 'put') as mock_put, \
         patch.object(PetrelBackend, 'remove') as mock_remove, \
         patch.object(PetrelBackend, 'isfile') as mock_isfile:
        checkpointhook = CheckpointHook(
            interval=1, out_dir=out_dir, by_epoch=False, max_keep_ckpts=2)
        runner.register_hook(checkpointhook)
        runner.run([loader], [('train', 1)])
        basename = osp.basename(runner.work_dir.rstrip(osp.sep))
        assert runner.meta['hook_msgs']['last_ckpt'] == \
            '/'.join([out_dir, basename, 'iter_4.pth'])
    mock_put.assert_called()
    mock_remove.assert_called()
    mock_isfile.assert_called()
    shutil.rmtree(runner.work_dir)

106

shilong's avatar
shilong committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
def test_ema_hook():
    """xdoctest -m tests/test_hooks.py test_ema_hook."""

    class DemoModel(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(
                in_channels=1,
                out_channels=2,
                kernel_size=1,
                padding=1,
                bias=True)
            self._init_weight()

        def _init_weight(self):
            constant_(self.conv.weight, 0)
            constant_(self.conv.bias, 0)

        def forward(self, x):
            return self.conv(x).sum()

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

    loader = DataLoader(torch.ones((1, 1, 1, 1)))
    runner = _build_demo_runner()
    demo_model = DemoModel()
    runner.model = demo_model
    emahook = EMAHook(momentum=0.1, interval=2, warm_up=100, resume_from=None)
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(emahook, priority='HIGHEST')
    runner.register_hook(checkpointhook)
143
    runner.run([loader, loader], [('train', 1), ('val', 1)])
shilong's avatar
shilong committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    checkpoint = torch.load(f'{runner.work_dir}/epoch_1.pth')
    contain_ema_buffer = False
    for name, value in checkpoint['state_dict'].items():
        if 'ema' in name:
            contain_ema_buffer = True
            assert value.sum() == 0
            value.fill_(1)
        else:
            assert value.sum() == 0
    assert contain_ema_buffer
    torch.save(checkpoint, f'{runner.work_dir}/epoch_1.pth')
    work_dir = runner.work_dir
    resume_ema_hook = EMAHook(
        momentum=0.5, warm_up=0, resume_from=f'{work_dir}/epoch_1.pth')
158
    runner = _build_demo_runner(max_epochs=2)
shilong's avatar
shilong committed
159
160
161
162
    runner.model = demo_model
    runner.register_hook(resume_ema_hook, priority='HIGHEST')
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(checkpointhook)
163
    runner.run([loader, loader], [('train', 1), ('val', 1)])
shilong's avatar
shilong committed
164
165
166
167
168
169
170
171
172
173
174
175
176
    checkpoint = torch.load(f'{runner.work_dir}/epoch_2.pth')
    contain_ema_buffer = False
    for name, value in checkpoint['state_dict'].items():
        if 'ema' in name:
            contain_ema_buffer = True
            assert value.sum() == 2
        else:
            assert value.sum() == 1
    assert contain_ema_buffer
    shutil.rmtree(runner.work_dir)
    shutil.rmtree(work_dir)


177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
def test_custom_hook():

    @HOOKS.register_module()
    class ToyHook(Hook):

        def __init__(self, info, *args, **kwargs):
            super().__init__()
            self.info = info

    runner = _build_demo_runner_without_hook('EpochBasedRunner', max_epochs=1)
    # test if custom_hooks is None
    runner.register_custom_hooks(None)
    assert len(runner.hooks) == 0
    # test if custom_hooks is dict list
    custom_hooks_cfg = [
        dict(type='ToyHook', priority=51, info=51),
        dict(type='ToyHook', priority=49, info=49)
    ]
    runner.register_custom_hooks(custom_hooks_cfg)
    assert [hook.info for hook in runner.hooks] == [49, 51]
    # test if custom_hooks is object and without priority
    runner.register_custom_hooks(ToyHook(info='default'))
    assert len(runner.hooks) == 3 and runner.hooks[1].info == 'default'
    shutil.rmtree(runner.work_dir)

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    runner = _build_demo_runner_without_hook('EpochBasedRunner', max_epochs=1)
    # test custom_hooks with string priority setting
    priority_ranks = [
        'HIGHEST', 'VERY_HIGH', 'HIGH', 'ABOVE_NORMAL', 'NORMAL',
        'BELOW_NORMAL', 'LOW', 'VERY_LOW', 'LOWEST'
    ]
    random_priority_ranks = priority_ranks.copy()
    random.shuffle(random_priority_ranks)
    custom_hooks_cfg = [
        dict(type='ToyHook', priority=rank, info=rank)
        for rank in random_priority_ranks
    ]
    runner.register_custom_hooks(custom_hooks_cfg)
    assert [hook.info for hook in runner.hooks] == priority_ranks
    shutil.rmtree(runner.work_dir)

218
219
220
221
    runner = _build_demo_runner_without_hook('EpochBasedRunner', max_epochs=1)
    # test register_training_hooks order
    custom_hooks_cfg = [
        dict(type='ToyHook', priority=1, info='custom 1'),
222
        dict(type='ToyHook', priority='NORMAL', info='custom normal'),
223
224
225
226
227
228
229
230
231
232
        dict(type='ToyHook', priority=89, info='custom 89')
    ]
    runner.register_training_hooks(
        lr_config=ToyHook('lr'),
        optimizer_config=ToyHook('optimizer'),
        checkpoint_config=ToyHook('checkpoint'),
        log_config=dict(interval=1, hooks=[dict(type='ToyHook', info='log')]),
        momentum_config=ToyHook('momentum'),
        timer_config=ToyHook('timer'),
        custom_hooks_config=custom_hooks_cfg)
233
234
    # If custom hooks have same priority with default hooks, custom hooks
    # will be triggered after default hooks.
235
    hooks_order = [
236
237
        'custom 1', 'lr', 'momentum', 'optimizer', 'checkpoint',
        'custom normal', 'timer', 'custom 89', 'log'
238
239
240
241
242
    ]
    assert [hook.info for hook in runner.hooks] == hooks_order
    shutil.rmtree(runner.work_dir)


Jiangmiao Pang's avatar
Jiangmiao Pang committed
243
244
245
def test_pavi_hook():
    sys.modules['pavi'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
246
247
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner()
248
    runner.meta = dict(config_dict=dict(lr=0.02, gpu_ids=range(1)))
249
    hook = PaviLoggerHook(add_graph=False, add_last_ckpt=True)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
250
    runner.register_hook(hook)
251
    runner.run([loader, loader], [('train', 1), ('val', 1)])
252
    shutil.rmtree(runner.work_dir)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
253
254

    assert hasattr(hook, 'writer')
Wenwei Zhang's avatar
Wenwei Zhang committed
255
256
257
    hook.writer.add_scalars.assert_called_with('val', {
        'learning_rate': 0.02,
        'momentum': 0.95
258
    }, 1)
259
260
261
262
263
    # in windows environment, the latest checkpoint is copied from epoch_1.pth
    if platform.system() == 'Windows':
        snapshot_file_path = osp.join(runner.work_dir, 'latest.pth')
    else:
        snapshot_file_path = osp.join(runner.work_dir, 'epoch_1.pth')
Jiangmiao Pang's avatar
Jiangmiao Pang committed
264
    hook.writer.add_snapshot_file.assert_called_with(
265
        tag=runner.work_dir.split('/')[-1],
266
        snapshot_file_path=snapshot_file_path,
267
        iteration=1)
268
269


Wang Xinjiang's avatar
Wang Xinjiang committed
270
271
272
273
def test_sync_buffers_hook():
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner()
    runner.register_hook_from_cfg(dict(type='SyncBuffersHook'))
274
    runner.run([loader, loader], [('train', 1), ('val', 1)])
Wang Xinjiang's avatar
Wang Xinjiang committed
275
276
277
    shutil.rmtree(runner.work_dir)


278
279
@pytest.mark.parametrize('multi_optimziers', (True, False))
def test_momentum_runner_hook(multi_optimziers):
Kai Chen's avatar
Kai Chen committed
280
    """xdoctest -m tests/test_hooks.py test_momentum_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
281
282
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
283
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)
Wenwei Zhang's avatar
Wenwei Zhang committed
284
285

    # add momentum scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
286
287
    hook_cfg = dict(
        type='CyclicMomentumUpdaterHook',
Wenwei Zhang's avatar
Wenwei Zhang committed
288
289
290
291
        by_epoch=False,
        target_ratio=(0.85 / 0.95, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
Wang Xinjiang's avatar
Wang Xinjiang committed
292
    runner.register_hook_from_cfg(hook_cfg)
Wenwei Zhang's avatar
Wenwei Zhang committed
293
294

    # add momentum LR scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
295
296
    hook_cfg = dict(
        type='CyclicLrUpdaterHook',
Wenwei Zhang's avatar
Wenwei Zhang committed
297
298
299
300
        by_epoch=False,
        target_ratio=(10, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
Wang Xinjiang's avatar
Wang Xinjiang committed
301
302
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
Wenwei Zhang's avatar
Wenwei Zhang committed
303
304

    # add pavi hook
305
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
306
    runner.register_hook(hook)
307
    runner.run([loader], [('train', 1)])
308
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
309
310
311

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.01999999999999999,
                    'learning_rate/model2': 0.009999999999999995,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.2,
                    'learning_rate/model2': 0.1,
                    'momentum/model1': 0.85,
                    'momentum/model2': 0.8052631578947369,
                }, 5),
            call(
                'train', {
                    'learning_rate/model1': 0.155,
                    'learning_rate/model2': 0.0775,
                    'momentum/model1': 0.875,
                    'momentum/model2': 0.8289473684210527,
                }, 7)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.01999999999999999,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.2,
                'momentum': 0.85
            }, 5),
            call('train', {
                'learning_rate': 0.155,
                'momentum': 0.875
            }, 7),
        ]
Wenwei Zhang's avatar
Wenwei Zhang committed
351
352
353
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


354
355
@pytest.mark.parametrize('multi_optimziers', (True, False))
def test_cosine_runner_hook(multi_optimziers):
Kai Chen's avatar
Kai Chen committed
356
    """xdoctest -m tests/test_hooks.py test_cosine_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
357
358
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
359
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)
Wenwei Zhang's avatar
Wenwei Zhang committed
360
361

    # add momentum scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
362
363
364

    hook_cfg = dict(
        type='CosineAnnealingMomentumUpdaterHook',
365
366
367
368
        min_momentum_ratio=0.99 / 0.95,
        by_epoch=False,
        warmup_iters=2,
        warmup_ratio=0.9 / 0.95)
Wang Xinjiang's avatar
Wang Xinjiang committed
369
    runner.register_hook_from_cfg(hook_cfg)
Wenwei Zhang's avatar
Wenwei Zhang committed
370
371

    # add momentum LR scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
372
373
374
375
376
377
378
379
    hook_cfg = dict(
        type='CosineAnnealingLrUpdaterHook',
        by_epoch=False,
        min_lr_ratio=0,
        warmup_iters=2,
        warmup_ratio=0.9)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
380
    runner.register_hook(IterTimerHook())
Wenwei Zhang's avatar
Wenwei Zhang committed
381
    # add pavi hook
382
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
383
    runner.register_hook(hook)
384
    runner.run([loader], [('train', 1)])
385
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
386
387
388

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.97,
                    'momentum/model2': 0.9189473684210527,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0004894348370484647,
                    'learning_rate/model2': 0.00024471741852423234,
                    'momentum/model1': 0.9890211303259032,
                    'momentum/model2': 0.9369673866245399,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.97
            }, 6),
            call(
                'train', {
                    'learning_rate': 0.0004894348370484647,
                    'momentum': 0.9890211303259032
                }, 10)
        ]
Wenwei Zhang's avatar
Wenwei Zhang committed
429
430
431
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
@pytest.mark.parametrize('multi_optimziers, by_epoch', [(False, False),
                                                        (True, False),
                                                        (False, True),
                                                        (True, True)])
def test_flat_cosine_runner_hook(multi_optimziers, by_epoch):
    """xdoctest -m tests/test_hooks.py test_flat_cosine_runner_hook."""
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    max_epochs = 10 if by_epoch else 1
    runner = _build_demo_runner(
        multi_optimziers=multi_optimziers, max_epochs=max_epochs)

    with pytest.raises(ValueError):
        # start_percent: expected float between 0 and 1
        FlatCosineAnnealingLrUpdaterHook(start_percent=-0.1, min_lr_ratio=0)

    # add LR scheduler
    hook_cfg = dict(
        type='FlatCosineAnnealingLrUpdaterHook',
        by_epoch=by_epoch,
        min_lr_ratio=0,
        warmup='linear',
        warmup_iters=10 if by_epoch else 2,
        warmup_ratio=0.9,
        start_percent=0.5)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    runner.register_hook(IterTimerHook())
    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    if multi_optimziers:
        if by_epoch:
            calls = [
                call(
                    'train', {
                        'learning_rate/model1': 0.018000000000000002,
                        'learning_rate/model2': 0.009000000000000001,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9,
                    }, 1),
                call(
                    'train', {
                        'learning_rate/model1': 0.02,
                        'learning_rate/model2': 0.01,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9,
                    }, 11),
                call(
                    'train', {
                        'learning_rate/model1': 0.018090169943749474,
                        'learning_rate/model2': 0.009045084971874737,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9,
                    }, 61),
                call(
                    'train', {
                        'learning_rate/model1': 0.0019098300562505265,
                        'learning_rate/model2': 0.0009549150281252633,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9,
                    }, 100)
            ]
        else:
            calls = [
                call(
                    'train', {
                        'learning_rate/model1': 0.018000000000000002,
                        'learning_rate/model2': 0.009000000000000001,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9
                    }, 1),
                call(
                    'train', {
                        'learning_rate/model1': 0.02,
                        'learning_rate/model2': 0.01,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9
                    }, 6),
                call(
                    'train', {
                        'learning_rate/model1': 0.018090169943749474,
                        'learning_rate/model2': 0.009045084971874737,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9
                    }, 7),
                call(
                    'train', {
                        'learning_rate/model1': 0.0019098300562505265,
                        'learning_rate/model2': 0.0009549150281252633,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9
                    }, 10)
            ]
    else:
        if by_epoch:
            calls = [
                call('train', {
                    'learning_rate': 0.018000000000000002,
                    'momentum': 0.95
                }, 1),
                call('train', {
                    'learning_rate': 0.02,
                    'momentum': 0.95
                }, 11),
                call('train', {
                    'learning_rate': 0.018090169943749474,
                    'momentum': 0.95
                }, 61),
                call('train', {
                    'learning_rate': 0.0019098300562505265,
                    'momentum': 0.95
                }, 100)
            ]
        else:
            calls = [
                call('train', {
                    'learning_rate': 0.018000000000000002,
                    'momentum': 0.95
                }, 1),
                call('train', {
                    'learning_rate': 0.02,
                    'momentum': 0.95
                }, 6),
                call('train', {
                    'learning_rate': 0.018090169943749474,
                    'momentum': 0.95
                }, 7),
                call('train', {
                    'learning_rate': 0.0019098300562505265,
                    'momentum': 0.95
                }, 10)
            ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


573
574
575
576
@pytest.mark.parametrize('multi_optimziers, max_iters', [(True, 10), (True, 2),
                                                         (False, 10),
                                                         (False, 2)])
def test_one_cycle_runner_hook(multi_optimziers, max_iters):
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
    """Test OneCycleLrUpdaterHook and OneCycleMomentumUpdaterHook."""
    with pytest.raises(AssertionError):
        # by_epoch should be False
        OneCycleLrUpdaterHook(max_lr=0.1, by_epoch=True)

    with pytest.raises(ValueError):
        # expected float between 0 and 1
        OneCycleLrUpdaterHook(max_lr=0.1, pct_start=-0.1)

    with pytest.raises(ValueError):
        # anneal_strategy should be either 'cos' or 'linear'
        OneCycleLrUpdaterHook(max_lr=0.1, anneal_strategy='sin')

    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
592
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)
593
594
595
596
597
598
599
600
601
602
603

    # add momentum scheduler
    hook_cfg = dict(
        type='OneCycleMomentumUpdaterHook',
        base_momentum=0.85,
        max_momentum=0.95,
        pct_start=0.5,
        anneal_strategy='cos',
        three_phase=False)
    runner.register_hook_from_cfg(hook_cfg)

604
    # add LR scheduler
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
    hook_cfg = dict(
        type='OneCycleLrUpdaterHook',
        max_lr=0.01,
        pct_start=0.5,
        anneal_strategy='cos',
        div_factor=25,
        final_div_factor=1e4,
        three_phase=False)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    runner.register_hook(IterTimerHook())
    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.0003999999999999993,
                    'learning_rate/model2': 0.0003999999999999993,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.95,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.00904508879153485,
                    'learning_rate/model2': 0.00904508879153485,
                    'momentum/model1': 0.8595491502812526,
                    'momentum/model2': 0.8595491502812526,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 4e-08,
                    'learning_rate/model2': 4e-08,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.95,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.0003999999999999993,
                'momentum': 0.95
            }, 1),
            call(
                'train', {
                    'learning_rate': 0.00904508879153485,
                    'momentum': 0.8595491502812526
                }, 6),
            call('train', {
                'learning_rate': 4e-08,
                'momentum': 0.95
            }, 10)
        ]
664
665
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
    # Test OneCycleLrUpdaterHook
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner(
        runner_type='IterBasedRunner', max_epochs=None, max_iters=max_iters)

    args = dict(
        max_lr=0.01,
        total_steps=5,
        pct_start=0.5,
        anneal_strategy='linear',
        div_factor=25,
        final_div_factor=1e4,
    )
    hook = OneCycleLrUpdaterHook(**args)
    runner.register_hook(hook)
    if max_iters == 10:
        # test total_steps < max_iters
        with pytest.raises(ValueError):
            runner.run([loader], [('train', 1)])
    else:
        # test total_steps > max_iters
        runner.run([loader], [('train', 1)])
        lr_last = runner.current_lr()
        t = torch.tensor([0.0], requires_grad=True)
        optim = torch.optim.SGD([t], lr=0.01)
        lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optim, **args)
        lr_target = []
        for _ in range(max_iters):
            optim.step()
            lr_target.append(optim.param_groups[0]['lr'])
            lr_scheduler.step()
        assert lr_target[-1] == lr_last[0]

700

701
702
@pytest.mark.parametrize('multi_optimziers', (True, False))
def test_cosine_restart_lr_update_hook(multi_optimziers):
Harry's avatar
Harry committed
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
    """Test CosineRestartLrUpdaterHook."""
    with pytest.raises(AssertionError):
        # either `min_lr` or `min_lr_ratio` should be specified
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5, 0.5],
            min_lr=0.1,
            min_lr_ratio=0)

    with pytest.raises(AssertionError):
        # periods and restart_weights should have the same length
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5],
            min_lr_ratio=0)

    with pytest.raises(ValueError):
        # the last cumulative_periods 7 (out of [5, 7]) should >= 10
        sys.modules['pavi'] = MagicMock()
        loader = DataLoader(torch.ones((10, 2)))
        runner = _build_demo_runner()

        # add cosine restart LR scheduler
        hook = CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[5, 2],  # cumulative_periods [5, 7 (5 + 2)]
            restart_weights=[0.5, 0.5],
            min_lr=0.0001)
        runner.register_hook(hook)
        runner.register_hook(IterTimerHook())

        # add pavi hook
        hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
        runner.register_hook(hook)
739
        runner.run([loader], [('train', 1)])
Harry's avatar
Harry committed
740
741
742
743
        shutil.rmtree(runner.work_dir)

    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
744
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)
Harry's avatar
Harry committed
745
746
747
748
749
750
751
752
753
754
755
756
757

    # add cosine restart LR scheduler
    hook = CosineRestartLrUpdaterHook(
        by_epoch=False,
        periods=[5, 5],
        restart_weights=[0.5, 0.5],
        min_lr_ratio=0)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
758
    runner.run([loader], [('train', 1)])
Harry's avatar
Harry committed
759
760
761
762
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0009549150281252633,
                    'learning_rate/model2': 0.00047745751406263163,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.95
            }, 6),
            call('train', {
                'learning_rate': 0.0009549150281252633,
                'momentum': 0.95
            }, 10)
        ]
Harry's avatar
Harry committed
802
803
804
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


805
@pytest.mark.parametrize('multi_optimziers', (True, False))
806
def test_step_runner_hook(multi_optimziers):
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
    """Test StepLrUpdaterHook."""
    with pytest.raises(TypeError):
        # `step` should be specified
        StepLrUpdaterHook()
    with pytest.raises(AssertionError):
        # if `step` is int, should be positive
        StepLrUpdaterHook(-10)
    with pytest.raises(AssertionError):
        # if `step` is list of int, should all be positive
        StepLrUpdaterHook([10, 16, -20])

    # test StepLrUpdaterHook with int `step` value
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((30, 2)))
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)

823
824
825
826
827
828
829
830
831
    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        step=5,
        gamma=0.5,
        min_momentum=0.05)
    runner.register_hook_from_cfg(hook_cfg)

832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
    # add step LR scheduler
    hook = StepLrUpdaterHook(by_epoch=False, step=5, gamma=0.5, min_lr=1e-3)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
858
859
                    'momentum/model1': 0.475,
                    'momentum/model2': 0.45
860
861
862
863
864
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0025,
                    'learning_rate/model2': 0.00125,
865
866
                    'momentum/model1': 0.11875,
                    'momentum/model2': 0.1125
867
868
869
870
871
                }, 16),
            call(
                'train', {
                    'learning_rate/model1': 0.00125,
                    'learning_rate/model2': 0.001,
872
873
                    'momentum/model1': 0.059375,
                    'momentum/model2': 0.05625
874
875
876
877
878
                }, 21),
            call(
                'train', {
                    'learning_rate/model1': 0.001,
                    'learning_rate/model2': 0.001,
879
880
                    'momentum/model1': 0.05,
                    'momentum/model2': 0.05
881
882
883
884
885
                }, 26),
            call(
                'train', {
                    'learning_rate/model1': 0.001,
                    'learning_rate/model2': 0.001,
886
887
                    'momentum/model1': 0.05,
                    'momentum/model2': 0.05
888
889
890
891
892
893
894
895
896
897
                }, 30)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
898
                'momentum': 0.475
899
900
901
            }, 6),
            call('train', {
                'learning_rate': 0.0025,
902
                'momentum': 0.11875
903
904
905
            }, 16),
            call('train', {
                'learning_rate': 0.00125,
906
                'momentum': 0.059375
907
908
909
            }, 21),
            call('train', {
                'learning_rate': 0.001,
910
                'momentum': 0.05
911
912
913
            }, 26),
            call('train', {
                'learning_rate': 0.001,
914
                'momentum': 0.05
915
916
917
918
919
920
921
922
923
            }, 30)
        ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

    # test StepLrUpdaterHook with list[int] `step` value
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)

924
925
926
927
928
929
930
931
    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        step=[4, 6, 8],
        gamma=0.1)
    runner.register_hook_from_cfg(hook_cfg)

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
    # add step LR scheduler
    hook = StepLrUpdaterHook(by_epoch=False, step=[4, 6, 8], gamma=0.1)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.002,
                    'learning_rate/model2': 0.001,
958
959
                    'momentum/model1': 9.5e-2,
                    'momentum/model2': 9.000000000000001e-2
960
961
962
963
964
                }, 5),
            call(
                'train', {
                    'learning_rate/model1': 2.0000000000000004e-4,
                    'learning_rate/model2': 1.0000000000000002e-4,
965
966
                    'momentum/model1': 9.500000000000001e-3,
                    'momentum/model2': 9.000000000000003e-3
967
968
969
970
971
                }, 7),
            call(
                'train', {
                    'learning_rate/model1': 2.0000000000000005e-05,
                    'learning_rate/model2': 1.0000000000000003e-05,
972
973
                    'momentum/model1': 9.500000000000002e-4,
                    'momentum/model2': 9.000000000000002e-4
974
975
976
977
978
979
980
981
982
983
                }, 9)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.002,
984
                'momentum': 0.095
985
            }, 5),
986
987
988
989
990
991
992
993
994
995
            call(
                'train', {
                    'learning_rate': 2.0000000000000004e-4,
                    'momentum': 9.500000000000001e-3
                }, 7),
            call(
                'train', {
                    'learning_rate': 2.0000000000000005e-05,
                    'momentum': 9.500000000000002e-4
                }, 9)
996
997
998
999
        ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
@pytest.mark.parametrize('multi_optimizers, max_iters', [(True, 8),
                                                         (False, 8)])
def test_cyclic_lr_update_hook(multi_optimizers, max_iters):
    """Test CyclicLrUpdateHook."""
    with pytest.raises(AssertionError):
        # by_epoch should be False
        CyclicLrUpdaterHook(by_epoch=True)

    with pytest.raises(AssertionError):
        # target_ratio" must be either float or tuple/list of two floats
        CyclicLrUpdaterHook(by_epoch=False, target_ratio=(10.0, 0.1, 0.2))

    with pytest.raises(AssertionError):
        # step_ratio_up" must be in range [0,1)
        CyclicLrUpdaterHook(by_epoch=False, step_ratio_up=1.4)

    with pytest.raises(ValueError):
        # anneal_strategy must be one of "cos" or "linear"
        CyclicLrUpdaterHook(by_epoch=False, anneal_strategy='sin')

    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner(
        runner_type='IterBasedRunner',
        max_epochs=None,
        max_iters=max_iters,
        multi_optimziers=multi_optimizers)

    # add cyclic LR scheduler
    hook = CyclicLrUpdaterHook(
        by_epoch=False,
        target_ratio=(10.0, 1.0),
        cyclic_times=1,
        step_ratio_up=0.5,
        anneal_strategy='linear')
    runner.register_hook(hook)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    runner.register_hook(IterTimerHook())
    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    assert hasattr(hook, 'writer')
    if multi_optimizers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.155,
                    'learning_rate/model2': 0.0775,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 4),
            call(
                'train', {
                    'learning_rate/model1': 0.155,
                    'learning_rate/model2': 0.0775,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 6)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.155,
                'momentum': 0.95
            }, 4),
            call('train', {
                'learning_rate': 0.155,
                'momentum': 0.95
            }, 6),
        ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


1087
1088
1089
1090
1091
@pytest.mark.parametrize('log_model', (True, False))
def test_mlflow_hook(log_model):
    sys.modules['mlflow'] = MagicMock()
    sys.modules['mlflow.pytorch'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
1092
1093
    runner = _build_demo_runner()
    loader = DataLoader(torch.ones((5, 2)))
1094

1095
    hook = MlflowLoggerHook(exp_name='test', log_model=log_model)
1096
    runner.register_hook(hook)
1097
    runner.run([loader, loader], [('train', 1), ('val', 1)])
1098
    shutil.rmtree(runner.work_dir)
1099
1100

    hook.mlflow.set_experiment.assert_called_with('test')
Wenwei Zhang's avatar
Wenwei Zhang committed
1101
1102
1103
1104
    hook.mlflow.log_metrics.assert_called_with(
        {
            'learning_rate': 0.02,
            'momentum': 0.95
1105
        }, step=6)
1106
1107
1108
1109
1110
1111
1112
1113
1114
    if log_model:
        hook.mlflow_pytorch.log_model.assert_called_with(
            runner.model, 'models')
    else:
        assert not hook.mlflow_pytorch.log_model.called


def test_wandb_hook():
    sys.modules['wandb'] = MagicMock()
Wenwei Zhang's avatar
Wenwei Zhang committed
1115
    runner = _build_demo_runner()
1116
    hook = WandbLoggerHook()
Wenwei Zhang's avatar
Wenwei Zhang committed
1117
    loader = DataLoader(torch.ones((5, 2)))
1118
1119

    runner.register_hook(hook)
1120
    runner.run([loader, loader], [('train', 1), ('val', 1)])
1121
1122
    shutil.rmtree(runner.work_dir)

1123
    hook.wandb.init.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
1124
1125
1126
1127
    hook.wandb.log.assert_called_with({
        'learning_rate': 0.02,
        'momentum': 0.95
    },
1128
1129
                                      step=6,
                                      commit=True)
1130
    hook.wandb.join.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
1131
1132


fcakyon's avatar
fcakyon committed
1133
1134
1135
1136
1137
def test_neptune_hook():
    sys.modules['neptune'] = MagicMock()
    sys.modules['neptune.new'] = MagicMock()
    runner = _build_demo_runner()
    hook = NeptuneLoggerHook()
1138

fcakyon's avatar
fcakyon committed
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
    loader = DataLoader(torch.ones((5, 2)))

    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)])
    shutil.rmtree(runner.work_dir)

    hook.neptune.init.assert_called_with()
    hook.run['momentum'].log.assert_called_with(0.95, step=6)
    hook.run.stop.assert_called_with()


1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
def test_dvclive_hook(tmp_path):
    sys.modules['dvclive'] = MagicMock()
    runner = _build_demo_runner()

    (tmp_path / 'dvclive').mkdir()
    hook = DvcliveLoggerHook(str(tmp_path / 'dvclive'))
    loader = DataLoader(torch.ones((5, 2)))

    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)])
    shutil.rmtree(runner.work_dir)

    hook.dvclive.init.assert_called_with(str(tmp_path / 'dvclive'))
    hook.dvclive.log.assert_called_with('momentum', 0.95, step=6)
    hook.dvclive.log.assert_any_call('learning_rate', 0.02, step=6)


1167
1168
1169
1170
def _build_demo_runner_without_hook(runner_type='EpochBasedRunner',
                                    max_epochs=1,
                                    max_iters=None,
                                    multi_optimziers=False):
1171
1172
1173
1174
1175
1176

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.linear = nn.Linear(2, 1)
1177
            self.conv = nn.Conv2d(3, 3, 3)
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189

        def forward(self, x):
            return self.linear(x)

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

    model = Model()

1190
1191
1192
1193
1194
1195
1196
1197
1198
    if multi_optimziers:
        optimizer = {
            'model1':
            torch.optim.SGD(model.linear.parameters(), lr=0.02, momentum=0.95),
            'model2':
            torch.optim.SGD(model.conv.parameters(), lr=0.01, momentum=0.9),
        }
    else:
        optimizer = torch.optim.SGD(model.parameters(), lr=0.02, momentum=0.95)
Wenwei Zhang's avatar
Wenwei Zhang committed
1199

1200
    tmp_dir = tempfile.mkdtemp()
1201
1202
1203
1204
1205
1206
1207
1208
1209
    runner = build_runner(
        dict(type=runner_type),
        default_args=dict(
            model=model,
            work_dir=tmp_dir,
            optimizer=optimizer,
            logger=logging.getLogger(),
            max_epochs=max_epochs,
            max_iters=max_iters))
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
    return runner


def _build_demo_runner(runner_type='EpochBasedRunner',
                       max_epochs=1,
                       max_iters=None,
                       multi_optimziers=False):

    log_config = dict(
        interval=1, hooks=[
            dict(type='TextLoggerHook'),
        ])

    runner = _build_demo_runner_without_hook(runner_type, max_epochs,
                                             max_iters, multi_optimziers)

1226
    runner.register_checkpoint_hook(dict(interval=1))
Wenwei Zhang's avatar
Wenwei Zhang committed
1227
1228
    runner.register_logger_hooks(log_config)
    return runner
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267


def test_runner_with_revise_keys():

    import os

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(3, 3, 1)

    class PrefixModel(nn.Module):

        def __init__(self):
            super().__init__()
            self.backbone = Model()

    pmodel = PrefixModel()
    model = Model()
    checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')

    # add prefix
    torch.save(model.state_dict(), checkpoint_path)
    runner = _build_demo_runner(runner_type='EpochBasedRunner')
    runner.model = pmodel
    state_dict = runner.load_checkpoint(
        checkpoint_path, revise_keys=[(r'^', 'backbone.')])
    for key in pmodel.backbone.state_dict().keys():
        assert torch.equal(pmodel.backbone.state_dict()[key], state_dict[key])
    # strip prefix
    torch.save(pmodel.state_dict(), checkpoint_path)
    runner.model = model
    state_dict = runner.load_checkpoint(
        checkpoint_path, revise_keys=[(r'^backbone\.', '')])
    for key in state_dict.keys():
        key_stripped = re.sub(r'^backbone\.', '', key)
        assert torch.equal(model.state_dict()[key_stripped], state_dict[key])
    os.remove(checkpoint_path)
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284


def test_get_triggered_stages():

    class ToyHook(Hook):
        # test normal stage
        def before_run():
            pass

        # test the method mapped to multi stages.
        def after_epoch():
            pass

    hook = ToyHook()
    # stages output have order, so here is list instead of set.
    expected_stages = ['before_run', 'after_train_epoch', 'after_val_epoch']
    assert hook.get_triggered_stages() == expected_stages
Ma Zerun's avatar
Ma Zerun committed
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488


def test_gradient_cumulative_optimizer_hook():

    class ToyModel(nn.Module):

        def __init__(self, with_norm=False):
            super().__init__()
            self.fp16_enabled = False
            self.fc = nn.Linear(3, 2)
            nn.init.constant_(self.fc.weight, 1.)
            nn.init.constant_(self.fc.bias, 1.)
            self.with_norm = with_norm
            if with_norm:
                self.norm = nn.BatchNorm1d(2)

        def forward(self, x):
            x = self.fc(x)
            if self.with_norm:
                x = self.norm(x)
            return x

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x).mean(), num_samples=x.shape[0])

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x).mean(), num_samples=x.shape[0])

    def build_toy_runner(config=dict(type='EpochBasedRunner', max_epochs=3)):
        model = ToyModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=0.02)
        tmp_dir = tempfile.mkdtemp()

        runner = build_runner(
            config,
            default_args=dict(
                model=model,
                work_dir=tmp_dir,
                optimizer=optimizer,
                logger=logging.getLogger(),
                meta=dict()))
        return runner

    with pytest.raises(AssertionError):
        # cumulative_iters only accepts int
        GradientCumulativeOptimizerHook(cumulative_iters='str')

    with pytest.raises(AssertionError):
        # cumulative_iters only accepts positive number
        GradientCumulativeOptimizerHook(cumulative_iters=-1)

    # test epoch based runner
    data = torch.rand((6, 3))
    # optimize with cumulative_iters
    loader_1 = DataLoader(data, batch_size=1)
    runner_1 = build_toy_runner()
    optimizer_hook = GradientCumulativeOptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    runner_1.register_hook(optimizer_hook)
    runner_1.run([loader_1], [('train', 1)])

    # optimize without cumulative_iters
    loader_2 = DataLoader(data, batch_size=3)
    runner_2 = build_toy_runner()
    optimizer_hook = OptimizerHook(grad_clip=dict(max_norm=0.2))
    runner_2.register_hook(optimizer_hook)
    runner_2.run([loader_2], [('train', 1)])

    # test optimizer works well
    assert (runner_1.model.fc.weight < 1).all()
    assert (runner_1.model.fc.bias < 1).all()
    # test optimizer with cumulative_iters gets the same results
    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    shutil.rmtree(runner_1.work_dir)
    shutil.rmtree(runner_2.work_dir)

    # test iter based runner
    data = torch.rand((8, 3))
    # optimize with cumulative_iters
    loader_1 = DataLoader(data, batch_size=1)
    runner_1 = build_toy_runner(dict(type='IterBasedRunner', max_iters=8))
    optimizer_hook = GradientCumulativeOptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    runner_1.register_hook(optimizer_hook)
    runner_1.run([loader_1], [('train', 1)])

    # optimize without cumulative_iters
    loader_2_divisible = DataLoader(data[:6], batch_size=3)
    loader_2_remainder = DataLoader(data[6:], batch_size=2)
    runner_2 = build_toy_runner(dict(type='IterBasedRunner', max_iters=3))
    optimizer_hook = OptimizerHook(grad_clip=dict(max_norm=0.2))
    runner_2.register_hook(optimizer_hook)
    runner_2.run([loader_2_divisible, loader_2_remainder], [('train', 2),
                                                            ('train', 1)])

    # test optimizer works well
    assert (runner_1.model.fc.weight < 1).all()
    assert (runner_1.model.fc.bias < 1).all()
    # test optimizer with cumulative_iters gets the same results
    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    shutil.rmtree(runner_1.work_dir)
    shutil.rmtree(runner_2.work_dir)

    # test has_batch_norm
    model = ToyModel(with_norm=True)
    optimizer_hook = GradientCumulativeOptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    assert optimizer_hook.has_batch_norm(model)


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_gradient_cumulative_fp16_optimizer_hook():

    class ToyModel(nn.Module):

        def __init__(self):
            super().__init__()
            self.fp16_enabled = False
            self.fc = nn.Linear(3, 2)
            nn.init.constant_(self.fc.weight, 1.)
            nn.init.constant_(self.fc.bias, 1.)

        @auto_fp16(apply_to=('x', ))
        def forward(self, x):
            x = self.fc(x)
            return x

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x).mean(), num_samples=x.shape[0])

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x).mean(), num_samples=x.shape[0])

    def build_toy_runner(config=dict(type='EpochBasedRunner', max_epochs=3)):
        model = ToyModel().cuda()
        optimizer = torch.optim.SGD(model.parameters(), lr=0.02)
        tmp_dir = tempfile.mkdtemp()

        runner = build_runner(
            config,
            default_args=dict(
                model=model,
                work_dir=tmp_dir,
                optimizer=optimizer,
                logger=logging.getLogger(),
                meta=dict()))
        return runner

    # test epoch based runner
    data = torch.rand((6, 3)).cuda()
    # optimize with cumulative_iters
    loader_1 = DataLoader(data, batch_size=1)
    runner_1 = build_toy_runner()
    optimizer_hook = GradientCumulativeFp16OptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    runner_1.register_hook(optimizer_hook)
    runner_1.run([loader_1], [('train', 1)])

    # optimize without cumulative_iters
    loader_2 = DataLoader(data, batch_size=3)
    runner_2 = build_toy_runner()
    optimizer_hook = Fp16OptimizerHook(grad_clip=dict(max_norm=0.2))
    runner_2.register_hook(optimizer_hook)
    runner_2.run([loader_2], [('train', 1)])

    # test optimizer works well
    assert (runner_1.model.fc.weight < 1).all()
    assert (runner_1.model.fc.bias < 1).all()
    # test optimizer with cumulative_iters gets the same results
    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    shutil.rmtree(runner_1.work_dir)
    shutil.rmtree(runner_2.work_dir)

    # test iter based runner
    data = torch.rand((8, 3)).cuda()
    # optimize with cumulative_iters
    loader_1 = DataLoader(data, batch_size=1)
    runner_1 = build_toy_runner(dict(type='IterBasedRunner', max_iters=8))
    optimizer_hook = GradientCumulativeFp16OptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    runner_1.register_hook(optimizer_hook)
    runner_1.run([loader_1], [('train', 1)])

    # optimize without cumulative_iters
    loader_2_divisible = DataLoader(data[:6], batch_size=3)
    loader_2_remainder = DataLoader(data[6:], batch_size=2)
    runner_2 = build_toy_runner(dict(type='IterBasedRunner', max_iters=3))
    optimizer_hook = Fp16OptimizerHook(grad_clip=dict(max_norm=0.2))
    runner_2.register_hook(optimizer_hook)
    runner_2.run([loader_2_divisible, loader_2_remainder], [('train', 2),
                                                            ('train', 1)])

    # test optimizer works well
    assert (runner_1.model.fc.weight < 1).all()
    assert (runner_1.model.fc.bias < 1).all()
    # test optimizer with cumulative_iters gets the same results
    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    shutil.rmtree(runner_1.work_dir)
    shutil.rmtree(runner_2.work_dir)