test_hooks.py 61.1 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
"""Tests the hooks with runners.
Wenwei Zhang's avatar
Wenwei Zhang committed
2
3

CommandLine:
4
    pytest tests/test_runner/test_hooks.py
Wenwei Zhang's avatar
Wenwei Zhang committed
5
6
    xdoctest tests/test_hooks.py zero
"""
7
import logging
Jiangmiao Pang's avatar
Jiangmiao Pang committed
8
import os.path as osp
9
import platform
10
import random
11
import re
12
import shutil
Jiangmiao Pang's avatar
Jiangmiao Pang committed
13
import sys
14
import tempfile
15
from unittest.mock import MagicMock, Mock, call, patch
Jiangmiao Pang's avatar
Jiangmiao Pang committed
16

17
18
19
import pytest
import torch
import torch.nn as nn
shilong's avatar
shilong committed
20
from torch.nn.init import constant_
21
22
from torch.utils.data import DataLoader

23
from mmcv.fileio.file_client import PetrelBackend
24
from mmcv.runner import (CheckpointHook, DvcliveLoggerHook, EMAHook,
Ma Zerun's avatar
Ma Zerun committed
25
26
27
28
                         Fp16OptimizerHook,
                         GradientCumulativeFp16OptimizerHook,
                         GradientCumulativeOptimizerHook, IterTimerHook,
                         MlflowLoggerHook, NeptuneLoggerHook, OptimizerHook,
29
                         PaviLoggerHook, WandbLoggerHook, build_runner)
Ma Zerun's avatar
Ma Zerun committed
30
from mmcv.runner.fp16_utils import auto_fp16
31
from mmcv.runner.hooks.hook import HOOKS, Hook
32
from mmcv.runner.hooks.lr_updater import (CosineRestartLrUpdaterHook,
33
                                          CyclicLrUpdaterHook,
34
                                          FlatCosineAnnealingLrUpdaterHook,
35
36
                                          OneCycleLrUpdaterHook,
                                          StepLrUpdaterHook)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
37

38
39
sys.modules['petrel_client'] = MagicMock()
sys.modules['petrel_client.client'] = MagicMock()
Jiangmiao Pang's avatar
Jiangmiao Pang committed
40

41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
def test_optimizerhook():

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv1 = nn.Conv2d(
                in_channels=1,
                out_channels=2,
                kernel_size=3,
                stride=1,
                padding=1,
                dilation=1)
            self.conv2 = nn.Conv2d(
                in_channels=2,
                out_channels=2,
                kernel_size=3,
                stride=1,
                padding=1,
                dilation=1)
            self.conv3 = nn.Conv2d(
                in_channels=1,
                out_channels=2,
                kernel_size=3,
                stride=1,
                padding=1,
                dilation=1)

        def forward(self, x):
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            return x1, x2

    model = Model()
    x = torch.rand(1, 1, 3, 3)

    dummy_runner = Mock()
    dummy_runner.optimizer.zero_grad = Mock(return_value=None)
    dummy_runner.optimizer.step = Mock(return_value=None)
    dummy_runner.model = model
    dummy_runner.outputs = dict()

    dummy_runner.outputs['num_samples'] = 0

    class DummyLogger():

        def __init__(self):
            self.msg = ''

        def log(self, msg=None, **kwargs):
            self.msg += msg

    dummy_runner.logger = DummyLogger()
    optimizer_hook = OptimizerHook(
        dict(max_norm=2), detect_anomalous_params=True)

    dummy_runner.outputs['loss'] = model(x)[0].sum()
    optimizer_hook.after_train_iter(dummy_runner)
    # assert the parameters of conv2 and conv3 are not in the
    # computational graph which is with x1.sum() as root.
    assert 'conv2.weight' in dummy_runner.logger.msg
    assert 'conv2.bias' in dummy_runner.logger.msg
    assert 'conv3.weight' in dummy_runner.logger.msg
    assert 'conv3.bias' in dummy_runner.logger.msg
    assert 'conv1.weight' not in dummy_runner.logger.msg
    assert 'conv1.bias' not in dummy_runner.logger.msg

    dummy_runner.outputs['loss'] = model(x)[1].sum()
    dummy_runner.logger.msg = ''
    optimizer_hook.after_train_iter(dummy_runner)
    # assert the parameters of conv3 are not in the computational graph
    assert 'conv3.weight' in dummy_runner.logger.msg
    assert 'conv3.bias' in dummy_runner.logger.msg
    assert 'conv2.weight' not in dummy_runner.logger.msg
    assert 'conv2.bias' not in dummy_runner.logger.msg
    assert 'conv1.weight' not in dummy_runner.logger.msg
    assert 'conv1.bias' not in dummy_runner.logger.msg


121
def test_checkpoint_hook(tmp_path):
122
123
124
125
126
127
128
129
130
131
132
133
134
    """xdoctest -m tests/test_runner/test_hooks.py test_checkpoint_hook."""

    # test epoch based runner
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner('EpochBasedRunner', max_epochs=1)
    runner.meta = dict()
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(checkpointhook)
    runner.run([loader], [('train', 1)])
    assert runner.meta['hook_msgs']['last_ckpt'] == osp.join(
        runner.work_dir, 'epoch_1.pth')
    shutil.rmtree(runner.work_dir)

135
136
137
138
139
    # test petrel oss when the type of runner is `EpochBasedRunner`
    runner = _build_demo_runner('EpochBasedRunner', max_epochs=4)
    runner.meta = dict()
    out_dir = 's3://user/data'
    with patch.object(PetrelBackend, 'put') as mock_put, \
140
141
            patch.object(PetrelBackend, 'remove') as mock_remove, \
            patch.object(PetrelBackend, 'isfile') as mock_isfile:
142
143
144
145
146
147
        checkpointhook = CheckpointHook(
            interval=1, out_dir=out_dir, by_epoch=True, max_keep_ckpts=2)
        runner.register_hook(checkpointhook)
        runner.run([loader], [('train', 1)])
        basename = osp.basename(runner.work_dir.rstrip(osp.sep))
        assert runner.meta['hook_msgs']['last_ckpt'] == \
148
               '/'.join([out_dir, basename, 'epoch_4.pth'])
149
150
151
152
153
    mock_put.assert_called()
    mock_remove.assert_called()
    mock_isfile.assert_called()
    shutil.rmtree(runner.work_dir)

154
155
156
157
158
159
160
161
162
163
164
    # test iter based runner
    runner = _build_demo_runner(
        'IterBasedRunner', max_iters=1, max_epochs=None)
    runner.meta = dict()
    checkpointhook = CheckpointHook(interval=1, by_epoch=False)
    runner.register_hook(checkpointhook)
    runner.run([loader], [('train', 1)])
    assert runner.meta['hook_msgs']['last_ckpt'] == osp.join(
        runner.work_dir, 'iter_1.pth')
    shutil.rmtree(runner.work_dir)

165
166
167
168
169
170
    # test petrel oss when the type of runner is `IterBasedRunner`
    runner = _build_demo_runner(
        'IterBasedRunner', max_iters=4, max_epochs=None)
    runner.meta = dict()
    out_dir = 's3://user/data'
    with patch.object(PetrelBackend, 'put') as mock_put, \
171
172
            patch.object(PetrelBackend, 'remove') as mock_remove, \
            patch.object(PetrelBackend, 'isfile') as mock_isfile:
173
174
175
176
177
178
        checkpointhook = CheckpointHook(
            interval=1, out_dir=out_dir, by_epoch=False, max_keep_ckpts=2)
        runner.register_hook(checkpointhook)
        runner.run([loader], [('train', 1)])
        basename = osp.basename(runner.work_dir.rstrip(osp.sep))
        assert runner.meta['hook_msgs']['last_ckpt'] == \
179
               '/'.join([out_dir, basename, 'iter_4.pth'])
180
181
182
183
184
    mock_put.assert_called()
    mock_remove.assert_called()
    mock_isfile.assert_called()
    shutil.rmtree(runner.work_dir)

185

shilong's avatar
shilong committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
def test_ema_hook():
    """xdoctest -m tests/test_hooks.py test_ema_hook."""

    class DemoModel(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(
                in_channels=1,
                out_channels=2,
                kernel_size=1,
                padding=1,
                bias=True)
            self._init_weight()

        def _init_weight(self):
            constant_(self.conv.weight, 0)
            constant_(self.conv.bias, 0)

        def forward(self, x):
            return self.conv(x).sum()

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

    loader = DataLoader(torch.ones((1, 1, 1, 1)))
    runner = _build_demo_runner()
    demo_model = DemoModel()
    runner.model = demo_model
    emahook = EMAHook(momentum=0.1, interval=2, warm_up=100, resume_from=None)
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(emahook, priority='HIGHEST')
    runner.register_hook(checkpointhook)
222
    runner.run([loader, loader], [('train', 1), ('val', 1)])
shilong's avatar
shilong committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    checkpoint = torch.load(f'{runner.work_dir}/epoch_1.pth')
    contain_ema_buffer = False
    for name, value in checkpoint['state_dict'].items():
        if 'ema' in name:
            contain_ema_buffer = True
            assert value.sum() == 0
            value.fill_(1)
        else:
            assert value.sum() == 0
    assert contain_ema_buffer
    torch.save(checkpoint, f'{runner.work_dir}/epoch_1.pth')
    work_dir = runner.work_dir
    resume_ema_hook = EMAHook(
        momentum=0.5, warm_up=0, resume_from=f'{work_dir}/epoch_1.pth')
237
    runner = _build_demo_runner(max_epochs=2)
shilong's avatar
shilong committed
238
239
240
241
    runner.model = demo_model
    runner.register_hook(resume_ema_hook, priority='HIGHEST')
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(checkpointhook)
242
    runner.run([loader, loader], [('train', 1), ('val', 1)])
shilong's avatar
shilong committed
243
244
245
246
247
248
249
250
251
252
253
254
255
    checkpoint = torch.load(f'{runner.work_dir}/epoch_2.pth')
    contain_ema_buffer = False
    for name, value in checkpoint['state_dict'].items():
        if 'ema' in name:
            contain_ema_buffer = True
            assert value.sum() == 2
        else:
            assert value.sum() == 1
    assert contain_ema_buffer
    shutil.rmtree(runner.work_dir)
    shutil.rmtree(work_dir)


256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
def test_custom_hook():

    @HOOKS.register_module()
    class ToyHook(Hook):

        def __init__(self, info, *args, **kwargs):
            super().__init__()
            self.info = info

    runner = _build_demo_runner_without_hook('EpochBasedRunner', max_epochs=1)
    # test if custom_hooks is None
    runner.register_custom_hooks(None)
    assert len(runner.hooks) == 0
    # test if custom_hooks is dict list
    custom_hooks_cfg = [
        dict(type='ToyHook', priority=51, info=51),
        dict(type='ToyHook', priority=49, info=49)
    ]
    runner.register_custom_hooks(custom_hooks_cfg)
    assert [hook.info for hook in runner.hooks] == [49, 51]
    # test if custom_hooks is object and without priority
    runner.register_custom_hooks(ToyHook(info='default'))
    assert len(runner.hooks) == 3 and runner.hooks[1].info == 'default'
    shutil.rmtree(runner.work_dir)

281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    runner = _build_demo_runner_without_hook('EpochBasedRunner', max_epochs=1)
    # test custom_hooks with string priority setting
    priority_ranks = [
        'HIGHEST', 'VERY_HIGH', 'HIGH', 'ABOVE_NORMAL', 'NORMAL',
        'BELOW_NORMAL', 'LOW', 'VERY_LOW', 'LOWEST'
    ]
    random_priority_ranks = priority_ranks.copy()
    random.shuffle(random_priority_ranks)
    custom_hooks_cfg = [
        dict(type='ToyHook', priority=rank, info=rank)
        for rank in random_priority_ranks
    ]
    runner.register_custom_hooks(custom_hooks_cfg)
    assert [hook.info for hook in runner.hooks] == priority_ranks
    shutil.rmtree(runner.work_dir)

297
298
299
300
    runner = _build_demo_runner_without_hook('EpochBasedRunner', max_epochs=1)
    # test register_training_hooks order
    custom_hooks_cfg = [
        dict(type='ToyHook', priority=1, info='custom 1'),
301
        dict(type='ToyHook', priority='NORMAL', info='custom normal'),
302
303
304
305
306
307
308
309
310
311
        dict(type='ToyHook', priority=89, info='custom 89')
    ]
    runner.register_training_hooks(
        lr_config=ToyHook('lr'),
        optimizer_config=ToyHook('optimizer'),
        checkpoint_config=ToyHook('checkpoint'),
        log_config=dict(interval=1, hooks=[dict(type='ToyHook', info='log')]),
        momentum_config=ToyHook('momentum'),
        timer_config=ToyHook('timer'),
        custom_hooks_config=custom_hooks_cfg)
312
313
    # If custom hooks have same priority with default hooks, custom hooks
    # will be triggered after default hooks.
314
    hooks_order = [
315
316
        'custom 1', 'lr', 'momentum', 'optimizer', 'checkpoint',
        'custom normal', 'timer', 'custom 89', 'log'
317
318
319
320
321
    ]
    assert [hook.info for hook in runner.hooks] == hooks_order
    shutil.rmtree(runner.work_dir)


Jiangmiao Pang's avatar
Jiangmiao Pang committed
322
323
324
def test_pavi_hook():
    sys.modules['pavi'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
325
326
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner()
327
    runner.meta = dict(config_dict=dict(lr=0.02, gpu_ids=range(1)))
328
    hook = PaviLoggerHook(add_graph=False, add_last_ckpt=True)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
329
    runner.register_hook(hook)
330
    runner.run([loader, loader], [('train', 1), ('val', 1)])
331
    shutil.rmtree(runner.work_dir)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
332
333

    assert hasattr(hook, 'writer')
Wenwei Zhang's avatar
Wenwei Zhang committed
334
335
336
    hook.writer.add_scalars.assert_called_with('val', {
        'learning_rate': 0.02,
        'momentum': 0.95
337
    }, 1)
338
    # in Windows environment, the latest checkpoint is copied from epoch_1.pth
339
340
341
342
    if platform.system() == 'Windows':
        snapshot_file_path = osp.join(runner.work_dir, 'latest.pth')
    else:
        snapshot_file_path = osp.join(runner.work_dir, 'epoch_1.pth')
Jiangmiao Pang's avatar
Jiangmiao Pang committed
343
    hook.writer.add_snapshot_file.assert_called_with(
344
        tag=runner.work_dir.split('/')[-1],
345
        snapshot_file_path=snapshot_file_path,
346
        iteration=1)
347
348


Wang Xinjiang's avatar
Wang Xinjiang committed
349
350
351
352
def test_sync_buffers_hook():
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner()
    runner.register_hook_from_cfg(dict(type='SyncBuffersHook'))
353
    runner.run([loader, loader], [('train', 1), ('val', 1)])
Wang Xinjiang's avatar
Wang Xinjiang committed
354
355
356
    shutil.rmtree(runner.work_dir)


Mashiro's avatar
Mashiro committed
357
358
359
360
@pytest.mark.parametrize('multi_optimizers, max_iters, gamma, cyclic_times',
                         [(True, 8, 1, 1), (False, 8, 0.5, 2)])
def test_momentum_runner_hook(multi_optimizers, max_iters, gamma,
                              cyclic_times):
Kai Chen's avatar
Kai Chen committed
361
    """xdoctest -m tests/test_hooks.py test_momentum_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
362
363
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
Mashiro's avatar
Mashiro committed
364
    runner = _build_demo_runner(multi_optimziers=multi_optimizers)
Wenwei Zhang's avatar
Wenwei Zhang committed
365
366

    # add momentum scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
367
368
    hook_cfg = dict(
        type='CyclicMomentumUpdaterHook',
Wenwei Zhang's avatar
Wenwei Zhang committed
369
370
        by_epoch=False,
        target_ratio=(0.85 / 0.95, 1),
Mashiro's avatar
Mashiro committed
371
372
373
        cyclic_times=cyclic_times,
        step_ratio_up=0.4,
        gamma=gamma)
Wang Xinjiang's avatar
Wang Xinjiang committed
374
    runner.register_hook_from_cfg(hook_cfg)
Wenwei Zhang's avatar
Wenwei Zhang committed
375
376

    # add momentum LR scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
377
378
    hook_cfg = dict(
        type='CyclicLrUpdaterHook',
Wenwei Zhang's avatar
Wenwei Zhang committed
379
380
381
382
        by_epoch=False,
        target_ratio=(10, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
Wang Xinjiang's avatar
Wang Xinjiang committed
383
384
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
Wenwei Zhang's avatar
Wenwei Zhang committed
385
386

    # add pavi hook
387
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
388
    runner.register_hook(hook)
389
    runner.run([loader], [('train', 1)])
390
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
391
392
393

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
Mashiro's avatar
Mashiro committed
394
    if multi_optimizers:
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.01999999999999999,
                    'learning_rate/model2': 0.009999999999999995,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.2,
                    'learning_rate/model2': 0.1,
                    'momentum/model1': 0.85,
                    'momentum/model2': 0.8052631578947369,
                }, 5),
            call(
                'train', {
                    'learning_rate/model1': 0.155,
                    'learning_rate/model2': 0.0775,
                    'momentum/model1': 0.875,
                    'momentum/model2': 0.8289473684210527,
                }, 7)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.01999999999999999,
                'momentum': 0.95
            }, 1),
            call('train', {
Mashiro's avatar
Mashiro committed
425
                'learning_rate': 0.11,
426
                'momentum': 0.85
Mashiro's avatar
Mashiro committed
427
            }, 3),
428
            call('train', {
Mashiro's avatar
Mashiro committed
429
430
431
432
433
434
435
                'learning_rate': 0.1879422863405995,
                'momentum': 0.95
            }, 6),
            call('train', {
                'learning_rate': 0.11000000000000001,
                'momentum': 0.9
            }, 8),
436
        ]
Wenwei Zhang's avatar
Wenwei Zhang committed
437
438
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
    # test constant momentum warmup
    sys.modules['pavi'] = MagicMock()
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)

    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        warmup='constant',
        warmup_iters=5,
        warmup_ratio=0.5,
        step=[10],
    )
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))

    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    assert hasattr(hook, 'writer')
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.9,
                    'momentum/model2': 1.8,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.9,
                    'momentum/model2': 1.8,
                }, 5),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 10),
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.9
            }, 1),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.9
            }, 5),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 10),
        ]

    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

    # test linear momentum warmup
    sys.modules['pavi'] = MagicMock()
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)

    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        warmup='linear',
        warmup_iters=5,
        warmup_ratio=0.5,
        step=[10],
    )
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))

    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    assert hasattr(hook, 'writer')
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.9,
                    'momentum/model2': 1.8,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.3571428571428572,
                    'momentum/model2': 1.2857142857142858,
                }, 3),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 10),
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.9
            }, 1),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.3571428571428572
            }, 3),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 10),
        ]

    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

    # test exponentially momentum warmup
    sys.modules['pavi'] = MagicMock()
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)

    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        warmup='exp',
        warmup_iters=5,
        warmup_ratio=0.5,
        step=[10],
    )
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))

    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    assert hasattr(hook, 'writer')
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.9,
                    'momentum/model2': 1.8,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.4399307381848783,
                    'momentum/model2': 1.3641449098593583,
                }, 3),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 10),
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.9
            }, 1),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.4399307381848783
            }, 3),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 10),
        ]

    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

Wenwei Zhang's avatar
Wenwei Zhang committed
631

632
633
@pytest.mark.parametrize('multi_optimziers', (True, False))
def test_cosine_runner_hook(multi_optimziers):
Kai Chen's avatar
Kai Chen committed
634
    """xdoctest -m tests/test_hooks.py test_cosine_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
635
636
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
637
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)
Wenwei Zhang's avatar
Wenwei Zhang committed
638
639

    # add momentum scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
640
641
    hook_cfg = dict(
        type='CosineAnnealingMomentumUpdaterHook',
642
643
644
645
        min_momentum_ratio=0.99 / 0.95,
        by_epoch=False,
        warmup_iters=2,
        warmup_ratio=0.9 / 0.95)
Wang Xinjiang's avatar
Wang Xinjiang committed
646
    runner.register_hook_from_cfg(hook_cfg)
Wenwei Zhang's avatar
Wenwei Zhang committed
647
648

    # add momentum LR scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
649
650
651
652
653
654
655
656
    hook_cfg = dict(
        type='CosineAnnealingLrUpdaterHook',
        by_epoch=False,
        min_lr_ratio=0,
        warmup_iters=2,
        warmup_ratio=0.9)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
657
    runner.register_hook(IterTimerHook())
Wenwei Zhang's avatar
Wenwei Zhang committed
658
    # add pavi hook
659
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
660
    runner.register_hook(hook)
661
    runner.run([loader], [('train', 1)])
662
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
663
664
665

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.97,
                    'momentum/model2': 0.9189473684210527,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0004894348370484647,
                    'learning_rate/model2': 0.00024471741852423234,
                    'momentum/model1': 0.9890211303259032,
                    'momentum/model2': 0.9369673866245399,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.97
            }, 6),
            call(
                'train', {
                    'learning_rate': 0.0004894348370484647,
                    'momentum': 0.9890211303259032
                }, 10)
        ]
Wenwei Zhang's avatar
Wenwei Zhang committed
706
707
708
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
@pytest.mark.parametrize('multi_optimziers, by_epoch', [(False, False),
                                                        (True, False),
                                                        (False, True),
                                                        (True, True)])
def test_flat_cosine_runner_hook(multi_optimziers, by_epoch):
    """xdoctest -m tests/test_hooks.py test_flat_cosine_runner_hook."""
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    max_epochs = 10 if by_epoch else 1
    runner = _build_demo_runner(
        multi_optimziers=multi_optimziers, max_epochs=max_epochs)

    with pytest.raises(ValueError):
        # start_percent: expected float between 0 and 1
        FlatCosineAnnealingLrUpdaterHook(start_percent=-0.1, min_lr_ratio=0)

    # add LR scheduler
    hook_cfg = dict(
        type='FlatCosineAnnealingLrUpdaterHook',
        by_epoch=by_epoch,
        min_lr_ratio=0,
        warmup='linear',
        warmup_iters=10 if by_epoch else 2,
        warmup_ratio=0.9,
        start_percent=0.5)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    runner.register_hook(IterTimerHook())
    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    if multi_optimziers:
        if by_epoch:
            calls = [
                call(
                    'train', {
                        'learning_rate/model1': 0.018000000000000002,
                        'learning_rate/model2': 0.009000000000000001,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9,
                    }, 1),
                call(
                    'train', {
                        'learning_rate/model1': 0.02,
                        'learning_rate/model2': 0.01,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9,
                    }, 11),
                call(
                    'train', {
                        'learning_rate/model1': 0.018090169943749474,
                        'learning_rate/model2': 0.009045084971874737,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9,
                    }, 61),
                call(
                    'train', {
                        'learning_rate/model1': 0.0019098300562505265,
                        'learning_rate/model2': 0.0009549150281252633,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9,
                    }, 100)
            ]
        else:
            calls = [
                call(
                    'train', {
                        'learning_rate/model1': 0.018000000000000002,
                        'learning_rate/model2': 0.009000000000000001,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9
                    }, 1),
                call(
                    'train', {
                        'learning_rate/model1': 0.02,
                        'learning_rate/model2': 0.01,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9
                    }, 6),
                call(
                    'train', {
                        'learning_rate/model1': 0.018090169943749474,
                        'learning_rate/model2': 0.009045084971874737,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9
                    }, 7),
                call(
                    'train', {
                        'learning_rate/model1': 0.0019098300562505265,
                        'learning_rate/model2': 0.0009549150281252633,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9
                    }, 10)
            ]
    else:
        if by_epoch:
            calls = [
                call('train', {
                    'learning_rate': 0.018000000000000002,
                    'momentum': 0.95
                }, 1),
                call('train', {
                    'learning_rate': 0.02,
                    'momentum': 0.95
                }, 11),
                call('train', {
                    'learning_rate': 0.018090169943749474,
                    'momentum': 0.95
                }, 61),
                call('train', {
                    'learning_rate': 0.0019098300562505265,
                    'momentum': 0.95
                }, 100)
            ]
        else:
            calls = [
                call('train', {
                    'learning_rate': 0.018000000000000002,
                    'momentum': 0.95
                }, 1),
                call('train', {
                    'learning_rate': 0.02,
                    'momentum': 0.95
                }, 6),
                call('train', {
                    'learning_rate': 0.018090169943749474,
                    'momentum': 0.95
                }, 7),
                call('train', {
                    'learning_rate': 0.0019098300562505265,
                    'momentum': 0.95
                }, 10)
            ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


850
851
852
853
@pytest.mark.parametrize('multi_optimziers, max_iters', [(True, 10), (True, 2),
                                                         (False, 10),
                                                         (False, 2)])
def test_one_cycle_runner_hook(multi_optimziers, max_iters):
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
    """Test OneCycleLrUpdaterHook and OneCycleMomentumUpdaterHook."""
    with pytest.raises(AssertionError):
        # by_epoch should be False
        OneCycleLrUpdaterHook(max_lr=0.1, by_epoch=True)

    with pytest.raises(ValueError):
        # expected float between 0 and 1
        OneCycleLrUpdaterHook(max_lr=0.1, pct_start=-0.1)

    with pytest.raises(ValueError):
        # anneal_strategy should be either 'cos' or 'linear'
        OneCycleLrUpdaterHook(max_lr=0.1, anneal_strategy='sin')

    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
869
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)
870
871
872
873
874
875
876
877
878
879
880

    # add momentum scheduler
    hook_cfg = dict(
        type='OneCycleMomentumUpdaterHook',
        base_momentum=0.85,
        max_momentum=0.95,
        pct_start=0.5,
        anneal_strategy='cos',
        three_phase=False)
    runner.register_hook_from_cfg(hook_cfg)

881
    # add LR scheduler
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
    hook_cfg = dict(
        type='OneCycleLrUpdaterHook',
        max_lr=0.01,
        pct_start=0.5,
        anneal_strategy='cos',
        div_factor=25,
        final_div_factor=1e4,
        three_phase=False)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    runner.register_hook(IterTimerHook())
    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.0003999999999999993,
                    'learning_rate/model2': 0.0003999999999999993,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.95,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.00904508879153485,
                    'learning_rate/model2': 0.00904508879153485,
                    'momentum/model1': 0.8595491502812526,
                    'momentum/model2': 0.8595491502812526,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 4e-08,
                    'learning_rate/model2': 4e-08,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.95,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.0003999999999999993,
                'momentum': 0.95
            }, 1),
            call(
                'train', {
                    'learning_rate': 0.00904508879153485,
                    'momentum': 0.8595491502812526
                }, 6),
            call('train', {
                'learning_rate': 4e-08,
                'momentum': 0.95
            }, 10)
        ]
941
942
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
    # Test OneCycleLrUpdaterHook
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner(
        runner_type='IterBasedRunner', max_epochs=None, max_iters=max_iters)

    args = dict(
        max_lr=0.01,
        total_steps=5,
        pct_start=0.5,
        anneal_strategy='linear',
        div_factor=25,
        final_div_factor=1e4,
    )
    hook = OneCycleLrUpdaterHook(**args)
    runner.register_hook(hook)
    if max_iters == 10:
        # test total_steps < max_iters
        with pytest.raises(ValueError):
            runner.run([loader], [('train', 1)])
    else:
        # test total_steps > max_iters
        runner.run([loader], [('train', 1)])
        lr_last = runner.current_lr()
        t = torch.tensor([0.0], requires_grad=True)
        optim = torch.optim.SGD([t], lr=0.01)
        lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optim, **args)
        lr_target = []
        for _ in range(max_iters):
            optim.step()
            lr_target.append(optim.param_groups[0]['lr'])
            lr_scheduler.step()
        assert lr_target[-1] == lr_last[0]

977

978
979
@pytest.mark.parametrize('multi_optimziers', (True, False))
def test_cosine_restart_lr_update_hook(multi_optimziers):
Harry's avatar
Harry committed
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
    """Test CosineRestartLrUpdaterHook."""
    with pytest.raises(AssertionError):
        # either `min_lr` or `min_lr_ratio` should be specified
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5, 0.5],
            min_lr=0.1,
            min_lr_ratio=0)

    with pytest.raises(AssertionError):
        # periods and restart_weights should have the same length
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5],
            min_lr_ratio=0)

    with pytest.raises(ValueError):
        # the last cumulative_periods 7 (out of [5, 7]) should >= 10
        sys.modules['pavi'] = MagicMock()
        loader = DataLoader(torch.ones((10, 2)))
        runner = _build_demo_runner()

        # add cosine restart LR scheduler
        hook = CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[5, 2],  # cumulative_periods [5, 7 (5 + 2)]
            restart_weights=[0.5, 0.5],
            min_lr=0.0001)
        runner.register_hook(hook)
        runner.register_hook(IterTimerHook())

        # add pavi hook
        hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
        runner.register_hook(hook)
1016
        runner.run([loader], [('train', 1)])
Harry's avatar
Harry committed
1017
1018
1019
1020
        shutil.rmtree(runner.work_dir)

    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
1021
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)
Harry's avatar
Harry committed
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034

    # add cosine restart LR scheduler
    hook = CosineRestartLrUpdaterHook(
        by_epoch=False,
        periods=[5, 5],
        restart_weights=[0.5, 0.5],
        min_lr_ratio=0)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
1035
    runner.run([loader], [('train', 1)])
Harry's avatar
Harry committed
1036
1037
1038
1039
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0009549150281252633,
                    'learning_rate/model2': 0.00047745751406263163,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.95
            }, 6),
            call('train', {
                'learning_rate': 0.0009549150281252633,
                'momentum': 0.95
            }, 10)
        ]
Harry's avatar
Harry committed
1079
1080
1081
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


1082
@pytest.mark.parametrize('multi_optimziers', (True, False))
1083
def test_step_runner_hook(multi_optimziers):
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
    """Test StepLrUpdaterHook."""
    with pytest.raises(TypeError):
        # `step` should be specified
        StepLrUpdaterHook()
    with pytest.raises(AssertionError):
        # if `step` is int, should be positive
        StepLrUpdaterHook(-10)
    with pytest.raises(AssertionError):
        # if `step` is list of int, should all be positive
        StepLrUpdaterHook([10, 16, -20])

    # test StepLrUpdaterHook with int `step` value
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((30, 2)))
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)

1100
1101
1102
1103
1104
1105
1106
1107
1108
    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        step=5,
        gamma=0.5,
        min_momentum=0.05)
    runner.register_hook_from_cfg(hook_cfg)

1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
    # add step LR scheduler
    hook = StepLrUpdaterHook(by_epoch=False, step=5, gamma=0.5, min_lr=1e-3)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
1135
1136
                    'momentum/model1': 0.475,
                    'momentum/model2': 0.45
1137
1138
1139
1140
1141
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0025,
                    'learning_rate/model2': 0.00125,
1142
1143
                    'momentum/model1': 0.11875,
                    'momentum/model2': 0.1125
1144
1145
1146
1147
1148
                }, 16),
            call(
                'train', {
                    'learning_rate/model1': 0.00125,
                    'learning_rate/model2': 0.001,
1149
1150
                    'momentum/model1': 0.059375,
                    'momentum/model2': 0.05625
1151
1152
1153
1154
1155
                }, 21),
            call(
                'train', {
                    'learning_rate/model1': 0.001,
                    'learning_rate/model2': 0.001,
1156
1157
                    'momentum/model1': 0.05,
                    'momentum/model2': 0.05
1158
1159
1160
1161
1162
                }, 26),
            call(
                'train', {
                    'learning_rate/model1': 0.001,
                    'learning_rate/model2': 0.001,
1163
1164
                    'momentum/model1': 0.05,
                    'momentum/model2': 0.05
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
                }, 30)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
1175
                'momentum': 0.475
1176
1177
1178
            }, 6),
            call('train', {
                'learning_rate': 0.0025,
1179
                'momentum': 0.11875
1180
1181
1182
            }, 16),
            call('train', {
                'learning_rate': 0.00125,
1183
                'momentum': 0.059375
1184
1185
1186
            }, 21),
            call('train', {
                'learning_rate': 0.001,
1187
                'momentum': 0.05
1188
1189
1190
            }, 26),
            call('train', {
                'learning_rate': 0.001,
1191
                'momentum': 0.05
1192
1193
1194
1195
1196
1197
1198
1199
1200
            }, 30)
        ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

    # test StepLrUpdaterHook with list[int] `step` value
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner(multi_optimziers=multi_optimziers)

1201
1202
1203
1204
1205
1206
1207
1208
    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        step=[4, 6, 8],
        gamma=0.1)
    runner.register_hook_from_cfg(hook_cfg)

1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
    # add step LR scheduler
    hook = StepLrUpdaterHook(by_epoch=False, step=[4, 6, 8], gamma=0.1)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    if multi_optimziers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.002,
                    'learning_rate/model2': 0.001,
1235
1236
                    'momentum/model1': 9.5e-2,
                    'momentum/model2': 9.000000000000001e-2
1237
1238
1239
1240
1241
                }, 5),
            call(
                'train', {
                    'learning_rate/model1': 2.0000000000000004e-4,
                    'learning_rate/model2': 1.0000000000000002e-4,
1242
1243
                    'momentum/model1': 9.500000000000001e-3,
                    'momentum/model2': 9.000000000000003e-3
1244
1245
1246
1247
1248
                }, 7),
            call(
                'train', {
                    'learning_rate/model1': 2.0000000000000005e-05,
                    'learning_rate/model2': 1.0000000000000003e-05,
1249
1250
                    'momentum/model1': 9.500000000000002e-4,
                    'momentum/model2': 9.000000000000002e-4
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
                }, 9)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.002,
1261
                'momentum': 0.095
1262
            }, 5),
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
            call(
                'train', {
                    'learning_rate': 2.0000000000000004e-4,
                    'momentum': 9.500000000000001e-3
                }, 7),
            call(
                'train', {
                    'learning_rate': 2.0000000000000005e-05,
                    'momentum': 9.500000000000002e-4
                }, 9)
1273
1274
1275
1276
        ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


Mashiro's avatar
Mashiro committed
1277
1278
1279
1280
@pytest.mark.parametrize('multi_optimizers, max_iters, gamma, cyclic_times',
                         [(True, 8, 1, 1), (False, 8, 0.5, 2)])
def test_cyclic_lr_update_hook(multi_optimizers, max_iters, gamma,
                               cyclic_times):
1281
1282
1283
1284
1285
1286
    """Test CyclicLrUpdateHook."""
    with pytest.raises(AssertionError):
        # by_epoch should be False
        CyclicLrUpdaterHook(by_epoch=True)

    with pytest.raises(AssertionError):
Mashiro's avatar
Mashiro committed
1287
        # target_ratio must be either float or tuple/list of two floats
1288
1289
1290
        CyclicLrUpdaterHook(by_epoch=False, target_ratio=(10.0, 0.1, 0.2))

    with pytest.raises(AssertionError):
Mashiro's avatar
Mashiro committed
1291
        # step_ratio_up must be in range [0,1)
1292
1293
1294
1295
1296
1297
        CyclicLrUpdaterHook(by_epoch=False, step_ratio_up=1.4)

    with pytest.raises(ValueError):
        # anneal_strategy must be one of "cos" or "linear"
        CyclicLrUpdaterHook(by_epoch=False, anneal_strategy='sin')

Mashiro's avatar
Mashiro committed
1298
1299
1300
1301
    with pytest.raises(AssertionError):
        # gamma must be in range (0, 1]
        CyclicLrUpdaterHook(by_epoch=False, gamma=0)

1302
1303
1304
1305
1306
1307
1308
1309
1310
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner(
        runner_type='IterBasedRunner',
        max_epochs=None,
        max_iters=max_iters,
        multi_optimziers=multi_optimizers)

    # add cyclic LR scheduler
Mashiro's avatar
Mashiro committed
1311
    schedule_hook = CyclicLrUpdaterHook(
1312
1313
        by_epoch=False,
        target_ratio=(10.0, 1.0),
Mashiro's avatar
Mashiro committed
1314
        cyclic_times=cyclic_times,
1315
        step_ratio_up=0.5,
Mashiro's avatar
Mashiro committed
1316
1317
1318
        anneal_strategy='linear',
        gamma=gamma)
    runner.register_hook(schedule_hook)
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    runner.register_hook(IterTimerHook())
    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    assert hasattr(hook, 'writer')
    if multi_optimizers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.155,
                    'learning_rate/model2': 0.0775,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 4),
            call(
                'train', {
                    'learning_rate/model1': 0.155,
                    'learning_rate/model2': 0.0775,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 6)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
Mashiro's avatar
Mashiro committed
1359
                'learning_rate': 0.11,
1360
1361
1362
                'momentum': 0.95
            }, 4),
            call('train', {
Mashiro's avatar
Mashiro committed
1363
                'learning_rate': 0.065,
1364
1365
                'momentum': 0.95
            }, 6),
Mashiro's avatar
Mashiro committed
1366
1367
1368
1369
            call('train', {
                'learning_rate': 0.11,
                'momentum': 0.95
            }, 7),
1370
1371
1372
1373
        ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


1374
1375
1376
1377
1378
@pytest.mark.parametrize('log_model', (True, False))
def test_mlflow_hook(log_model):
    sys.modules['mlflow'] = MagicMock()
    sys.modules['mlflow.pytorch'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
1379
1380
    runner = _build_demo_runner()
    loader = DataLoader(torch.ones((5, 2)))
1381

1382
    hook = MlflowLoggerHook(exp_name='test', log_model=log_model)
1383
    runner.register_hook(hook)
1384
    runner.run([loader, loader], [('train', 1), ('val', 1)])
1385
    shutil.rmtree(runner.work_dir)
1386
1387

    hook.mlflow.set_experiment.assert_called_with('test')
Wenwei Zhang's avatar
Wenwei Zhang committed
1388
1389
1390
1391
    hook.mlflow.log_metrics.assert_called_with(
        {
            'learning_rate': 0.02,
            'momentum': 0.95
1392
        }, step=6)
1393
1394
1395
1396
1397
1398
1399
1400
1401
    if log_model:
        hook.mlflow_pytorch.log_model.assert_called_with(
            runner.model, 'models')
    else:
        assert not hook.mlflow_pytorch.log_model.called


def test_wandb_hook():
    sys.modules['wandb'] = MagicMock()
Wenwei Zhang's avatar
Wenwei Zhang committed
1402
    runner = _build_demo_runner()
1403
    hook = WandbLoggerHook(log_artifact=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
1404
    loader = DataLoader(torch.ones((5, 2)))
1405
1406

    runner.register_hook(hook)
1407
    runner.run([loader, loader], [('train', 1), ('val', 1)])
1408

1409
1410
    shutil.rmtree(runner.work_dir)

1411
    hook.wandb.init.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
1412
1413
1414
1415
    hook.wandb.log.assert_called_with({
        'learning_rate': 0.02,
        'momentum': 0.95
    },
1416
1417
                                      step=6,
                                      commit=True)
1418
    hook.wandb.log_artifact.assert_called()
1419
    hook.wandb.join.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
1420
1421


fcakyon's avatar
fcakyon committed
1422
1423
1424
1425
1426
def test_neptune_hook():
    sys.modules['neptune'] = MagicMock()
    sys.modules['neptune.new'] = MagicMock()
    runner = _build_demo_runner()
    hook = NeptuneLoggerHook()
1427

fcakyon's avatar
fcakyon committed
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
    loader = DataLoader(torch.ones((5, 2)))

    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)])
    shutil.rmtree(runner.work_dir)

    hook.neptune.init.assert_called_with()
    hook.run['momentum'].log.assert_called_with(0.95, step=6)
    hook.run.stop.assert_called_with()


1439
def test_dvclive_hook():
1440
1441
1442
    sys.modules['dvclive'] = MagicMock()
    runner = _build_demo_runner()

1443
1444
    hook = DvcliveLoggerHook()
    dvclive_mock = hook.dvclive
1445
1446
1447
1448
1449
1450
    loader = DataLoader(torch.ones((5, 2)))

    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)])
    shutil.rmtree(runner.work_dir)

1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
    dvclive_mock.set_step.assert_called_with(6)
    dvclive_mock.log.assert_called_with('momentum', 0.95)


def test_dvclive_hook_model_file(tmp_path):
    sys.modules['dvclive'] = MagicMock()
    runner = _build_demo_runner()

    hook = DvcliveLoggerHook(model_file=osp.join(runner.work_dir, 'model.pth'))
    runner.register_hook(hook)

    loader = torch.utils.data.DataLoader(torch.ones((5, 2)))
    loader = DataLoader(torch.ones((5, 2)))

    runner.run([loader, loader], [('train', 1), ('val', 1)])

    assert osp.exists(osp.join(runner.work_dir, 'model.pth'))

    shutil.rmtree(runner.work_dir)
1470
1471


1472
1473
1474
1475
def _build_demo_runner_without_hook(runner_type='EpochBasedRunner',
                                    max_epochs=1,
                                    max_iters=None,
                                    multi_optimziers=False):
1476
1477
1478
1479
1480
1481

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.linear = nn.Linear(2, 1)
1482
            self.conv = nn.Conv2d(3, 3, 3)
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494

        def forward(self, x):
            return self.linear(x)

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

    model = Model()

1495
1496
1497
1498
1499
1500
1501
1502
1503
    if multi_optimziers:
        optimizer = {
            'model1':
            torch.optim.SGD(model.linear.parameters(), lr=0.02, momentum=0.95),
            'model2':
            torch.optim.SGD(model.conv.parameters(), lr=0.01, momentum=0.9),
        }
    else:
        optimizer = torch.optim.SGD(model.parameters(), lr=0.02, momentum=0.95)
Wenwei Zhang's avatar
Wenwei Zhang committed
1504

1505
    tmp_dir = tempfile.mkdtemp()
1506
1507
1508
1509
1510
1511
1512
1513
1514
    runner = build_runner(
        dict(type=runner_type),
        default_args=dict(
            model=model,
            work_dir=tmp_dir,
            optimizer=optimizer,
            logger=logging.getLogger(),
            max_epochs=max_epochs,
            max_iters=max_iters))
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
    return runner


def _build_demo_runner(runner_type='EpochBasedRunner',
                       max_epochs=1,
                       max_iters=None,
                       multi_optimziers=False):
    log_config = dict(
        interval=1, hooks=[
            dict(type='TextLoggerHook'),
        ])

    runner = _build_demo_runner_without_hook(runner_type, max_epochs,
                                             max_iters, multi_optimziers)

1530
    runner.register_checkpoint_hook(dict(interval=1))
Wenwei Zhang's avatar
Wenwei Zhang committed
1531
1532
    runner.register_logger_hooks(log_config)
    return runner
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570


def test_runner_with_revise_keys():
    import os

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(3, 3, 1)

    class PrefixModel(nn.Module):

        def __init__(self):
            super().__init__()
            self.backbone = Model()

    pmodel = PrefixModel()
    model = Model()
    checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')

    # add prefix
    torch.save(model.state_dict(), checkpoint_path)
    runner = _build_demo_runner(runner_type='EpochBasedRunner')
    runner.model = pmodel
    state_dict = runner.load_checkpoint(
        checkpoint_path, revise_keys=[(r'^', 'backbone.')])
    for key in pmodel.backbone.state_dict().keys():
        assert torch.equal(pmodel.backbone.state_dict()[key], state_dict[key])
    # strip prefix
    torch.save(pmodel.state_dict(), checkpoint_path)
    runner.model = model
    state_dict = runner.load_checkpoint(
        checkpoint_path, revise_keys=[(r'^backbone\.', '')])
    for key in state_dict.keys():
        key_stripped = re.sub(r'^backbone\.', '', key)
        assert torch.equal(model.state_dict()[key_stripped], state_dict[key])
    os.remove(checkpoint_path)
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587


def test_get_triggered_stages():

    class ToyHook(Hook):
        # test normal stage
        def before_run():
            pass

        # test the method mapped to multi stages.
        def after_epoch():
            pass

    hook = ToyHook()
    # stages output have order, so here is list instead of set.
    expected_stages = ['before_run', 'after_train_epoch', 'after_val_epoch']
    assert hook.get_triggered_stages() == expected_stages
Ma Zerun's avatar
Ma Zerun committed
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791


def test_gradient_cumulative_optimizer_hook():

    class ToyModel(nn.Module):

        def __init__(self, with_norm=False):
            super().__init__()
            self.fp16_enabled = False
            self.fc = nn.Linear(3, 2)
            nn.init.constant_(self.fc.weight, 1.)
            nn.init.constant_(self.fc.bias, 1.)
            self.with_norm = with_norm
            if with_norm:
                self.norm = nn.BatchNorm1d(2)

        def forward(self, x):
            x = self.fc(x)
            if self.with_norm:
                x = self.norm(x)
            return x

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x).mean(), num_samples=x.shape[0])

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x).mean(), num_samples=x.shape[0])

    def build_toy_runner(config=dict(type='EpochBasedRunner', max_epochs=3)):
        model = ToyModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=0.02)
        tmp_dir = tempfile.mkdtemp()

        runner = build_runner(
            config,
            default_args=dict(
                model=model,
                work_dir=tmp_dir,
                optimizer=optimizer,
                logger=logging.getLogger(),
                meta=dict()))
        return runner

    with pytest.raises(AssertionError):
        # cumulative_iters only accepts int
        GradientCumulativeOptimizerHook(cumulative_iters='str')

    with pytest.raises(AssertionError):
        # cumulative_iters only accepts positive number
        GradientCumulativeOptimizerHook(cumulative_iters=-1)

    # test epoch based runner
    data = torch.rand((6, 3))
    # optimize with cumulative_iters
    loader_1 = DataLoader(data, batch_size=1)
    runner_1 = build_toy_runner()
    optimizer_hook = GradientCumulativeOptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    runner_1.register_hook(optimizer_hook)
    runner_1.run([loader_1], [('train', 1)])

    # optimize without cumulative_iters
    loader_2 = DataLoader(data, batch_size=3)
    runner_2 = build_toy_runner()
    optimizer_hook = OptimizerHook(grad_clip=dict(max_norm=0.2))
    runner_2.register_hook(optimizer_hook)
    runner_2.run([loader_2], [('train', 1)])

    # test optimizer works well
    assert (runner_1.model.fc.weight < 1).all()
    assert (runner_1.model.fc.bias < 1).all()
    # test optimizer with cumulative_iters gets the same results
    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    shutil.rmtree(runner_1.work_dir)
    shutil.rmtree(runner_2.work_dir)

    # test iter based runner
    data = torch.rand((8, 3))
    # optimize with cumulative_iters
    loader_1 = DataLoader(data, batch_size=1)
    runner_1 = build_toy_runner(dict(type='IterBasedRunner', max_iters=8))
    optimizer_hook = GradientCumulativeOptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    runner_1.register_hook(optimizer_hook)
    runner_1.run([loader_1], [('train', 1)])

    # optimize without cumulative_iters
    loader_2_divisible = DataLoader(data[:6], batch_size=3)
    loader_2_remainder = DataLoader(data[6:], batch_size=2)
    runner_2 = build_toy_runner(dict(type='IterBasedRunner', max_iters=3))
    optimizer_hook = OptimizerHook(grad_clip=dict(max_norm=0.2))
    runner_2.register_hook(optimizer_hook)
    runner_2.run([loader_2_divisible, loader_2_remainder], [('train', 2),
                                                            ('train', 1)])

    # test optimizer works well
    assert (runner_1.model.fc.weight < 1).all()
    assert (runner_1.model.fc.bias < 1).all()
    # test optimizer with cumulative_iters gets the same results
    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    shutil.rmtree(runner_1.work_dir)
    shutil.rmtree(runner_2.work_dir)

    # test has_batch_norm
    model = ToyModel(with_norm=True)
    optimizer_hook = GradientCumulativeOptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    assert optimizer_hook.has_batch_norm(model)


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_gradient_cumulative_fp16_optimizer_hook():

    class ToyModel(nn.Module):

        def __init__(self):
            super().__init__()
            self.fp16_enabled = False
            self.fc = nn.Linear(3, 2)
            nn.init.constant_(self.fc.weight, 1.)
            nn.init.constant_(self.fc.bias, 1.)

        @auto_fp16(apply_to=('x', ))
        def forward(self, x):
            x = self.fc(x)
            return x

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x).mean(), num_samples=x.shape[0])

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x).mean(), num_samples=x.shape[0])

    def build_toy_runner(config=dict(type='EpochBasedRunner', max_epochs=3)):
        model = ToyModel().cuda()
        optimizer = torch.optim.SGD(model.parameters(), lr=0.02)
        tmp_dir = tempfile.mkdtemp()

        runner = build_runner(
            config,
            default_args=dict(
                model=model,
                work_dir=tmp_dir,
                optimizer=optimizer,
                logger=logging.getLogger(),
                meta=dict()))
        return runner

    # test epoch based runner
    data = torch.rand((6, 3)).cuda()
    # optimize with cumulative_iters
    loader_1 = DataLoader(data, batch_size=1)
    runner_1 = build_toy_runner()
    optimizer_hook = GradientCumulativeFp16OptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    runner_1.register_hook(optimizer_hook)
    runner_1.run([loader_1], [('train', 1)])

    # optimize without cumulative_iters
    loader_2 = DataLoader(data, batch_size=3)
    runner_2 = build_toy_runner()
    optimizer_hook = Fp16OptimizerHook(grad_clip=dict(max_norm=0.2))
    runner_2.register_hook(optimizer_hook)
    runner_2.run([loader_2], [('train', 1)])

    # test optimizer works well
    assert (runner_1.model.fc.weight < 1).all()
    assert (runner_1.model.fc.bias < 1).all()
    # test optimizer with cumulative_iters gets the same results
    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    shutil.rmtree(runner_1.work_dir)
    shutil.rmtree(runner_2.work_dir)

    # test iter based runner
    data = torch.rand((8, 3)).cuda()
    # optimize with cumulative_iters
    loader_1 = DataLoader(data, batch_size=1)
    runner_1 = build_toy_runner(dict(type='IterBasedRunner', max_iters=8))
    optimizer_hook = GradientCumulativeFp16OptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    runner_1.register_hook(optimizer_hook)
    runner_1.run([loader_1], [('train', 1)])

    # optimize without cumulative_iters
    loader_2_divisible = DataLoader(data[:6], batch_size=3)
    loader_2_remainder = DataLoader(data[6:], batch_size=2)
    runner_2 = build_toy_runner(dict(type='IterBasedRunner', max_iters=3))
    optimizer_hook = Fp16OptimizerHook(grad_clip=dict(max_norm=0.2))
    runner_2.register_hook(optimizer_hook)
    runner_2.run([loader_2_divisible, loader_2_remainder], [('train', 2),
                                                            ('train', 1)])

    # test optimizer works well
    assert (runner_1.model.fc.weight < 1).all()
    assert (runner_1.model.fc.bias < 1).all()
    # test optimizer with cumulative_iters gets the same results
    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    shutil.rmtree(runner_1.work_dir)
    shutil.rmtree(runner_2.work_dir)