test_hooks.py 11.5 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
"""Tests the hooks with runners.
Wenwei Zhang's avatar
Wenwei Zhang committed
2
3
4
5
6

CommandLine:
    pytest tests/test_hooks.py
    xdoctest tests/test_hooks.py zero
"""
7
import logging
Jiangmiao Pang's avatar
Jiangmiao Pang committed
8
import os.path as osp
9
import shutil
Jiangmiao Pang's avatar
Jiangmiao Pang committed
10
import sys
11
import tempfile
Wenwei Zhang's avatar
Wenwei Zhang committed
12
from unittest.mock import MagicMock, call
Jiangmiao Pang's avatar
Jiangmiao Pang committed
13

14
15
16
import pytest
import torch
import torch.nn as nn
shilong's avatar
shilong committed
17
from torch.nn.init import constant_
18
19
from torch.utils.data import DataLoader

shilong's avatar
shilong committed
20
21
22
from mmcv.runner import (CheckpointHook, EMAHook, EpochBasedRunner,
                         IterTimerHook, MlflowLoggerHook, PaviLoggerHook,
                         WandbLoggerHook)
Wang Xinjiang's avatar
Wang Xinjiang committed
23
from mmcv.runner.hooks.lr_updater import CosineRestartLrUpdaterHook
Jiangmiao Pang's avatar
Jiangmiao Pang committed
24
25


shilong's avatar
shilong committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
def test_ema_hook():
    """xdoctest -m tests/test_hooks.py test_ema_hook."""

    class DemoModel(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(
                in_channels=1,
                out_channels=2,
                kernel_size=1,
                padding=1,
                bias=True)
            self._init_weight()

        def _init_weight(self):
            constant_(self.conv.weight, 0)
            constant_(self.conv.bias, 0)

        def forward(self, x):
            return self.conv(x).sum()

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

    loader = DataLoader(torch.ones((1, 1, 1, 1)))
    runner = _build_demo_runner()
    demo_model = DemoModel()
    runner.model = demo_model
    emahook = EMAHook(momentum=0.1, interval=2, warm_up=100, resume_from=None)
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(emahook, priority='HIGHEST')
    runner.register_hook(checkpointhook)
    runner.run([loader, loader], [('train', 1), ('val', 1)], 1)
    checkpoint = torch.load(f'{runner.work_dir}/epoch_1.pth')
    contain_ema_buffer = False
    for name, value in checkpoint['state_dict'].items():
        if 'ema' in name:
            contain_ema_buffer = True
            assert value.sum() == 0
            value.fill_(1)
        else:
            assert value.sum() == 0
    assert contain_ema_buffer
    torch.save(checkpoint, f'{runner.work_dir}/epoch_1.pth')
    work_dir = runner.work_dir
    resume_ema_hook = EMAHook(
        momentum=0.5, warm_up=0, resume_from=f'{work_dir}/epoch_1.pth')
    runner = _build_demo_runner()
    runner.model = demo_model
    runner.register_hook(resume_ema_hook, priority='HIGHEST')
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(checkpointhook)
    runner.run([loader, loader], [('train', 1), ('val', 1)], 2)
    checkpoint = torch.load(f'{runner.work_dir}/epoch_2.pth')
    contain_ema_buffer = False
    for name, value in checkpoint['state_dict'].items():
        if 'ema' in name:
            contain_ema_buffer = True
            assert value.sum() == 2
        else:
            assert value.sum() == 1
    assert contain_ema_buffer
    shutil.rmtree(runner.work_dir)
    shutil.rmtree(work_dir)


Jiangmiao Pang's avatar
Jiangmiao Pang committed
96
97
98
def test_pavi_hook():
    sys.modules['pavi'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
99
100
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner()
101
    hook = PaviLoggerHook(add_graph=False, add_last_ckpt=True)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
102
103
    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)], 1)
104
    shutil.rmtree(runner.work_dir)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
105
106

    assert hasattr(hook, 'writer')
Wenwei Zhang's avatar
Wenwei Zhang committed
107
108
109
110
    hook.writer.add_scalars.assert_called_with('val', {
        'learning_rate': 0.02,
        'momentum': 0.95
    }, 5)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
111
    hook.writer.add_snapshot_file.assert_called_with(
112
        tag=runner.work_dir.split('/')[-1],
Wenwei Zhang's avatar
Wenwei Zhang committed
113
        snapshot_file_path=osp.join(runner.work_dir, 'latest.pth'),
Jiangmiao Pang's avatar
Jiangmiao Pang committed
114
        iteration=5)
115
116


Wang Xinjiang's avatar
Wang Xinjiang committed
117
118
119
120
121
122
123
124
def test_sync_buffers_hook():
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner()
    runner.register_hook_from_cfg(dict(type='SyncBuffersHook'))
    runner.run([loader, loader], [('train', 1), ('val', 1)], 1)
    shutil.rmtree(runner.work_dir)


Wenwei Zhang's avatar
Wenwei Zhang committed
125
def test_momentum_runner_hook():
Kai Chen's avatar
Kai Chen committed
126
    """xdoctest -m tests/test_hooks.py test_momentum_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
127
128
129
130
131
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner()

    # add momentum scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
132
133
    hook_cfg = dict(
        type='CyclicMomentumUpdaterHook',
Wenwei Zhang's avatar
Wenwei Zhang committed
134
135
136
137
        by_epoch=False,
        target_ratio=(0.85 / 0.95, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
Wang Xinjiang's avatar
Wang Xinjiang committed
138
    runner.register_hook_from_cfg(hook_cfg)
Wenwei Zhang's avatar
Wenwei Zhang committed
139
140

    # add momentum LR scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
141
142
    hook_cfg = dict(
        type='CyclicLrUpdaterHook',
Wenwei Zhang's avatar
Wenwei Zhang committed
143
144
145
146
        by_epoch=False,
        target_ratio=(10, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
Wang Xinjiang's avatar
Wang Xinjiang committed
147
148
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
Wenwei Zhang's avatar
Wenwei Zhang committed
149
150

    # add pavi hook
151
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
152
153
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)], 1)
154
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    calls = [
        call('train', {
            'learning_rate': 0.01999999999999999,
            'momentum': 0.95
        }, 0),
        call('train', {
            'learning_rate': 0.2,
            'momentum': 0.85
        }, 4),
        call('train', {
            'learning_rate': 0.155,
            'momentum': 0.875
        }, 6),
    ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


def test_cosine_runner_hook():
Kai Chen's avatar
Kai Chen committed
176
    """xdoctest -m tests/test_hooks.py test_cosine_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
177
178
179
180
181
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner()

    # add momentum scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
182
183
184

    hook_cfg = dict(
        type='CosineAnnealingMomentumUpdaterHook',
185
186
187
188
        min_momentum_ratio=0.99 / 0.95,
        by_epoch=False,
        warmup_iters=2,
        warmup_ratio=0.9 / 0.95)
Wang Xinjiang's avatar
Wang Xinjiang committed
189
    runner.register_hook_from_cfg(hook_cfg)
Wenwei Zhang's avatar
Wenwei Zhang committed
190
191

    # add momentum LR scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
192
193
194
195
196
197
198
199
    hook_cfg = dict(
        type='CosineAnnealingLrUpdaterHook',
        by_epoch=False,
        min_lr_ratio=0,
        warmup_iters=2,
        warmup_ratio=0.9)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
200
    runner.register_hook(IterTimerHook())
Wenwei Zhang's avatar
Wenwei Zhang committed
201
    # add pavi hook
202
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
203
204
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)], 1)
205
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    calls = [
        call('train', {
            'learning_rate': 0.02,
            'momentum': 0.95
        }, 0),
        call('train', {
            'learning_rate': 0.01,
            'momentum': 0.97
        }, 5),
        call('train', {
            'learning_rate': 0.0004894348370484647,
            'momentum': 0.9890211303259032
        }, 9)
    ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


Harry's avatar
Harry committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
def test_cosine_restart_lr_update_hook():
    """Test CosineRestartLrUpdaterHook."""
    with pytest.raises(AssertionError):
        # either `min_lr` or `min_lr_ratio` should be specified
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5, 0.5],
            min_lr=0.1,
            min_lr_ratio=0)

    with pytest.raises(AssertionError):
        # periods and restart_weights should have the same length
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5],
            min_lr_ratio=0)

    with pytest.raises(ValueError):
        # the last cumulative_periods 7 (out of [5, 7]) should >= 10
        sys.modules['pavi'] = MagicMock()
        loader = DataLoader(torch.ones((10, 2)))
        runner = _build_demo_runner()

        # add cosine restart LR scheduler
        hook = CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[5, 2],  # cumulative_periods [5, 7 (5 + 2)]
            restart_weights=[0.5, 0.5],
            min_lr=0.0001)
        runner.register_hook(hook)
        runner.register_hook(IterTimerHook())

        # add pavi hook
        hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
        runner.register_hook(hook)
        runner.run([loader], [('train', 1)], 1)
        shutil.rmtree(runner.work_dir)

    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner()

    # add cosine restart LR scheduler
    hook = CosineRestartLrUpdaterHook(
        by_epoch=False,
        periods=[5, 5],
        restart_weights=[0.5, 0.5],
        min_lr_ratio=0)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)], 1)
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    calls = [
        call('train', {
            'learning_rate': 0.01,
            'momentum': 0.95
        }, 0),
        call('train', {
            'learning_rate': 0.0,
            'momentum': 0.95
        }, 5),
        call('train', {
            'learning_rate': 0.0009549150281252633,
            'momentum': 0.95
        }, 9)
    ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


304
305
306
307
308
@pytest.mark.parametrize('log_model', (True, False))
def test_mlflow_hook(log_model):
    sys.modules['mlflow'] = MagicMock()
    sys.modules['mlflow.pytorch'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
309
310
    runner = _build_demo_runner()
    loader = DataLoader(torch.ones((5, 2)))
311

312
    hook = MlflowLoggerHook(exp_name='test', log_model=log_model)
313
314
    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)], 1)
315
    shutil.rmtree(runner.work_dir)
316
317

    hook.mlflow.set_experiment.assert_called_with('test')
Wenwei Zhang's avatar
Wenwei Zhang committed
318
319
320
321
322
    hook.mlflow.log_metrics.assert_called_with(
        {
            'learning_rate': 0.02,
            'momentum': 0.95
        }, step=5)
323
324
325
326
327
328
329
330
331
    if log_model:
        hook.mlflow_pytorch.log_model.assert_called_with(
            runner.model, 'models')
    else:
        assert not hook.mlflow_pytorch.log_model.called


def test_wandb_hook():
    sys.modules['wandb'] = MagicMock()
Wenwei Zhang's avatar
Wenwei Zhang committed
332
    runner = _build_demo_runner()
333
    hook = WandbLoggerHook()
Wenwei Zhang's avatar
Wenwei Zhang committed
334
    loader = DataLoader(torch.ones((5, 2)))
335
336
337

    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)], 1)
338
339
    shutil.rmtree(runner.work_dir)

340
    hook.wandb.init.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
341
342
343
344
345
    hook.wandb.log.assert_called_with({
        'learning_rate': 0.02,
        'momentum': 0.95
    },
                                      step=5)
346
    hook.wandb.join.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
347
348
349


def _build_demo_runner():
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.linear = nn.Linear(2, 1)

        def forward(self, x):
            return self.linear(x)

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

    model = Model()

Wenwei Zhang's avatar
Wenwei Zhang committed
368
369
370
371
372
373
374
    optimizer = torch.optim.SGD(model.parameters(), lr=0.02, momentum=0.95)

    log_config = dict(
        interval=1, hooks=[
            dict(type='TextLoggerHook'),
        ])

375
    tmp_dir = tempfile.mkdtemp()
376
    runner = EpochBasedRunner(
Wenwei Zhang's avatar
Wenwei Zhang committed
377
        model=model,
378
379
380
        work_dir=tmp_dir,
        optimizer=optimizer,
        logger=logging.getLogger())
Wenwei Zhang's avatar
Wenwei Zhang committed
381
382
383

    runner.register_logger_hooks(log_config)
    return runner