test_hooks.py 8.75 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
"""Tests the hooks with runners.
Wenwei Zhang's avatar
Wenwei Zhang committed
2
3
4
5
6

CommandLine:
    pytest tests/test_hooks.py
    xdoctest tests/test_hooks.py zero
"""
7
import logging
Jiangmiao Pang's avatar
Jiangmiao Pang committed
8
import os.path as osp
9
import shutil
Jiangmiao Pang's avatar
Jiangmiao Pang committed
10
import sys
11
import tempfile
Wenwei Zhang's avatar
Wenwei Zhang committed
12
from unittest.mock import MagicMock, call
Jiangmiao Pang's avatar
Jiangmiao Pang committed
13

14
15
16
17
18
import pytest
import torch
import torch.nn as nn
from torch.utils.data import DataLoader

19
20
from mmcv.runner import (EpochBasedRunner, IterTimerHook, MlflowLoggerHook,
                         PaviLoggerHook, WandbLoggerHook)
Wang Xinjiang's avatar
Wang Xinjiang committed
21
from mmcv.runner.hooks.lr_updater import CosineRestartLrUpdaterHook
Jiangmiao Pang's avatar
Jiangmiao Pang committed
22
23
24
25
26


def test_pavi_hook():
    sys.modules['pavi'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
27
28
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner()
29
    hook = PaviLoggerHook(add_graph=False, add_last_ckpt=True)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
30
31
    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)], 1)
32
    shutil.rmtree(runner.work_dir)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
33
34

    assert hasattr(hook, 'writer')
Wenwei Zhang's avatar
Wenwei Zhang committed
35
36
37
38
    hook.writer.add_scalars.assert_called_with('val', {
        'learning_rate': 0.02,
        'momentum': 0.95
    }, 5)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
39
    hook.writer.add_snapshot_file.assert_called_with(
40
        tag=runner.work_dir.split('/')[-1],
Wenwei Zhang's avatar
Wenwei Zhang committed
41
        snapshot_file_path=osp.join(runner.work_dir, 'latest.pth'),
Jiangmiao Pang's avatar
Jiangmiao Pang committed
42
        iteration=5)
43
44


Wenwei Zhang's avatar
Wenwei Zhang committed
45
def test_momentum_runner_hook():
Kai Chen's avatar
Kai Chen committed
46
    """xdoctest -m tests/test_hooks.py test_momentum_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
47
48
49
50
51
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner()

    # add momentum scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
52
53
    hook_cfg = dict(
        type='CyclicMomentumUpdaterHook',
Wenwei Zhang's avatar
Wenwei Zhang committed
54
55
56
57
        by_epoch=False,
        target_ratio=(0.85 / 0.95, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
Wang Xinjiang's avatar
Wang Xinjiang committed
58
    runner.register_hook_from_cfg(hook_cfg)
Wenwei Zhang's avatar
Wenwei Zhang committed
59
60

    # add momentum LR scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
61
62
    hook_cfg = dict(
        type='CyclicLrUpdaterHook',
Wenwei Zhang's avatar
Wenwei Zhang committed
63
64
65
66
        by_epoch=False,
        target_ratio=(10, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
Wang Xinjiang's avatar
Wang Xinjiang committed
67
68
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
Wenwei Zhang's avatar
Wenwei Zhang committed
69
70

    # add pavi hook
71
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
72
73
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)], 1)
74
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    calls = [
        call('train', {
            'learning_rate': 0.01999999999999999,
            'momentum': 0.95
        }, 0),
        call('train', {
            'learning_rate': 0.2,
            'momentum': 0.85
        }, 4),
        call('train', {
            'learning_rate': 0.155,
            'momentum': 0.875
        }, 6),
    ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


def test_cosine_runner_hook():
Kai Chen's avatar
Kai Chen committed
96
    """xdoctest -m tests/test_hooks.py test_cosine_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
97
98
99
100
101
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner()

    # add momentum scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
102
103
104

    hook_cfg = dict(
        type='CosineAnnealingMomentumUpdaterHook',
105
106
107
108
        min_momentum_ratio=0.99 / 0.95,
        by_epoch=False,
        warmup_iters=2,
        warmup_ratio=0.9 / 0.95)
Wang Xinjiang's avatar
Wang Xinjiang committed
109
    runner.register_hook_from_cfg(hook_cfg)
Wenwei Zhang's avatar
Wenwei Zhang committed
110
111

    # add momentum LR scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
112
113
114
115
116
117
118
119
    hook_cfg = dict(
        type='CosineAnnealingLrUpdaterHook',
        by_epoch=False,
        min_lr_ratio=0,
        warmup_iters=2,
        warmup_ratio=0.9)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
120
    runner.register_hook(IterTimerHook())
Wenwei Zhang's avatar
Wenwei Zhang committed
121
    # add pavi hook
122
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
123
124
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)], 1)
125
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    calls = [
        call('train', {
            'learning_rate': 0.02,
            'momentum': 0.95
        }, 0),
        call('train', {
            'learning_rate': 0.01,
            'momentum': 0.97
        }, 5),
        call('train', {
            'learning_rate': 0.0004894348370484647,
            'momentum': 0.9890211303259032
        }, 9)
    ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


Harry's avatar
Harry committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
def test_cosine_restart_lr_update_hook():
    """Test CosineRestartLrUpdaterHook."""
    with pytest.raises(AssertionError):
        # either `min_lr` or `min_lr_ratio` should be specified
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5, 0.5],
            min_lr=0.1,
            min_lr_ratio=0)

    with pytest.raises(AssertionError):
        # periods and restart_weights should have the same length
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5],
            min_lr_ratio=0)

    with pytest.raises(ValueError):
        # the last cumulative_periods 7 (out of [5, 7]) should >= 10
        sys.modules['pavi'] = MagicMock()
        loader = DataLoader(torch.ones((10, 2)))
        runner = _build_demo_runner()

        # add cosine restart LR scheduler
        hook = CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[5, 2],  # cumulative_periods [5, 7 (5 + 2)]
            restart_weights=[0.5, 0.5],
            min_lr=0.0001)
        runner.register_hook(hook)
        runner.register_hook(IterTimerHook())

        # add pavi hook
        hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
        runner.register_hook(hook)
        runner.run([loader], [('train', 1)], 1)
        shutil.rmtree(runner.work_dir)

    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner()

    # add cosine restart LR scheduler
    hook = CosineRestartLrUpdaterHook(
        by_epoch=False,
        periods=[5, 5],
        restart_weights=[0.5, 0.5],
        min_lr_ratio=0)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)], 1)
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    calls = [
        call('train', {
            'learning_rate': 0.01,
            'momentum': 0.95
        }, 0),
        call('train', {
            'learning_rate': 0.0,
            'momentum': 0.95
        }, 5),
        call('train', {
            'learning_rate': 0.0009549150281252633,
            'momentum': 0.95
        }, 9)
    ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


224
225
226
227
228
@pytest.mark.parametrize('log_model', (True, False))
def test_mlflow_hook(log_model):
    sys.modules['mlflow'] = MagicMock()
    sys.modules['mlflow.pytorch'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
229
230
    runner = _build_demo_runner()
    loader = DataLoader(torch.ones((5, 2)))
231

232
    hook = MlflowLoggerHook(exp_name='test', log_model=log_model)
233
234
    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)], 1)
235
    shutil.rmtree(runner.work_dir)
236
237

    hook.mlflow.set_experiment.assert_called_with('test')
Wenwei Zhang's avatar
Wenwei Zhang committed
238
239
240
241
242
    hook.mlflow.log_metrics.assert_called_with(
        {
            'learning_rate': 0.02,
            'momentum': 0.95
        }, step=5)
243
244
245
246
247
248
249
250
251
    if log_model:
        hook.mlflow_pytorch.log_model.assert_called_with(
            runner.model, 'models')
    else:
        assert not hook.mlflow_pytorch.log_model.called


def test_wandb_hook():
    sys.modules['wandb'] = MagicMock()
Wenwei Zhang's avatar
Wenwei Zhang committed
252
    runner = _build_demo_runner()
253
    hook = WandbLoggerHook()
Wenwei Zhang's avatar
Wenwei Zhang committed
254
    loader = DataLoader(torch.ones((5, 2)))
255
256
257

    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)], 1)
258
259
    shutil.rmtree(runner.work_dir)

260
    hook.wandb.init.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
261
262
263
264
265
    hook.wandb.log.assert_called_with({
        'learning_rate': 0.02,
        'momentum': 0.95
    },
                                      step=5)
266
    hook.wandb.join.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
267
268
269


def _build_demo_runner():
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.linear = nn.Linear(2, 1)

        def forward(self, x):
            return self.linear(x)

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

    model = Model()

Wenwei Zhang's avatar
Wenwei Zhang committed
288
289
290
291
292
293
294
    optimizer = torch.optim.SGD(model.parameters(), lr=0.02, momentum=0.95)

    log_config = dict(
        interval=1, hooks=[
            dict(type='TextLoggerHook'),
        ])

295
    tmp_dir = tempfile.mkdtemp()
296
    runner = EpochBasedRunner(
Wenwei Zhang's avatar
Wenwei Zhang committed
297
        model=model,
298
299
300
        work_dir=tmp_dir,
        optimizer=optimizer,
        logger=logging.getLogger())
Wenwei Zhang's avatar
Wenwei Zhang committed
301
302
303

    runner.register_logger_hooks(log_config)
    return runner