test_hooks.py 68.4 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
Kai Chen's avatar
Kai Chen committed
2
"""Tests the hooks with runners.
Wenwei Zhang's avatar
Wenwei Zhang committed
3
4

CommandLine:
5
    pytest tests/test_runner/test_hooks.py
Wenwei Zhang's avatar
Wenwei Zhang committed
6
7
    xdoctest tests/test_hooks.py zero
"""
8
import logging
Jiangmiao Pang's avatar
Jiangmiao Pang committed
9
import os.path as osp
10
import platform
11
import random
12
import re
13
import shutil
Jiangmiao Pang's avatar
Jiangmiao Pang committed
14
import sys
15
import tempfile
16
from unittest.mock import MagicMock, Mock, call, patch
Jiangmiao Pang's avatar
Jiangmiao Pang committed
17

18
19
20
import pytest
import torch
import torch.nn as nn
shilong's avatar
shilong committed
21
from torch.nn.init import constant_
22
23
from torch.utils.data import DataLoader

24
from mmcv.fileio.file_client import PetrelBackend
25
# yapf: disable
26
27
from mmcv.runner import (CheckpointHook, ClearMLLoggerHook, DvcliveLoggerHook,
                         EMAHook, Fp16OptimizerHook,
Ma Zerun's avatar
Ma Zerun committed
28
29
30
                         GradientCumulativeFp16OptimizerHook,
                         GradientCumulativeOptimizerHook, IterTimerHook,
                         MlflowLoggerHook, NeptuneLoggerHook, OptimizerHook,
31
32
33
                         PaviLoggerHook, SegmindLoggerHook, WandbLoggerHook,
                         build_runner)
# yapf: enable
Ma Zerun's avatar
Ma Zerun committed
34
from mmcv.runner.fp16_utils import auto_fp16
35
from mmcv.runner.hooks.hook import HOOKS, Hook
36
from mmcv.runner.hooks.lr_updater import (CosineRestartLrUpdaterHook,
37
                                          CyclicLrUpdaterHook,
38
                                          FlatCosineAnnealingLrUpdaterHook,
39
40
                                          OneCycleLrUpdaterHook,
                                          StepLrUpdaterHook)
41
from mmcv.utils import TORCH_VERSION
Jiangmiao Pang's avatar
Jiangmiao Pang committed
42

43
44
sys.modules['petrel_client'] = MagicMock()
sys.modules['petrel_client.client'] = MagicMock()
Jiangmiao Pang's avatar
Jiangmiao Pang committed
45

46

pc's avatar
pc committed
47
48
@pytest.mark.skipif(
    torch.__version__ == 'parrots', reason='not supported in parrots now')
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
def test_optimizerhook():

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv1 = nn.Conv2d(
                in_channels=1,
                out_channels=2,
                kernel_size=3,
                stride=1,
                padding=1,
                dilation=1)
            self.conv2 = nn.Conv2d(
                in_channels=2,
                out_channels=2,
                kernel_size=3,
                stride=1,
                padding=1,
                dilation=1)
            self.conv3 = nn.Conv2d(
                in_channels=1,
                out_channels=2,
                kernel_size=3,
                stride=1,
                padding=1,
                dilation=1)

        def forward(self, x):
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            return x1, x2

    model = Model()
    x = torch.rand(1, 1, 3, 3)

    dummy_runner = Mock()
    dummy_runner.optimizer.zero_grad = Mock(return_value=None)
    dummy_runner.optimizer.step = Mock(return_value=None)
    dummy_runner.model = model
    dummy_runner.outputs = dict()

    dummy_runner.outputs['num_samples'] = 0

    class DummyLogger():

        def __init__(self):
            self.msg = ''

        def log(self, msg=None, **kwargs):
            self.msg += msg

    dummy_runner.logger = DummyLogger()
    optimizer_hook = OptimizerHook(
        dict(max_norm=2), detect_anomalous_params=True)

    dummy_runner.outputs['loss'] = model(x)[0].sum()
    optimizer_hook.after_train_iter(dummy_runner)
    # assert the parameters of conv2 and conv3 are not in the
    # computational graph which is with x1.sum() as root.
    assert 'conv2.weight' in dummy_runner.logger.msg
    assert 'conv2.bias' in dummy_runner.logger.msg
    assert 'conv3.weight' in dummy_runner.logger.msg
    assert 'conv3.bias' in dummy_runner.logger.msg
    assert 'conv1.weight' not in dummy_runner.logger.msg
    assert 'conv1.bias' not in dummy_runner.logger.msg

    dummy_runner.outputs['loss'] = model(x)[1].sum()
    dummy_runner.logger.msg = ''
    optimizer_hook.after_train_iter(dummy_runner)
    # assert the parameters of conv3 are not in the computational graph
    assert 'conv3.weight' in dummy_runner.logger.msg
    assert 'conv3.bias' in dummy_runner.logger.msg
    assert 'conv2.weight' not in dummy_runner.logger.msg
    assert 'conv2.bias' not in dummy_runner.logger.msg
    assert 'conv1.weight' not in dummy_runner.logger.msg
    assert 'conv1.bias' not in dummy_runner.logger.msg


128
def test_checkpoint_hook(tmp_path):
129
130
131
132
133
134
135
136
137
138
139
140
141
    """xdoctest -m tests/test_runner/test_hooks.py test_checkpoint_hook."""

    # test epoch based runner
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner('EpochBasedRunner', max_epochs=1)
    runner.meta = dict()
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(checkpointhook)
    runner.run([loader], [('train', 1)])
    assert runner.meta['hook_msgs']['last_ckpt'] == osp.join(
        runner.work_dir, 'epoch_1.pth')
    shutil.rmtree(runner.work_dir)

142
143
144
145
146
    # test petrel oss when the type of runner is `EpochBasedRunner`
    runner = _build_demo_runner('EpochBasedRunner', max_epochs=4)
    runner.meta = dict()
    out_dir = 's3://user/data'
    with patch.object(PetrelBackend, 'put') as mock_put, \
147
148
            patch.object(PetrelBackend, 'remove') as mock_remove, \
            patch.object(PetrelBackend, 'isfile') as mock_isfile:
149
150
151
152
153
154
        checkpointhook = CheckpointHook(
            interval=1, out_dir=out_dir, by_epoch=True, max_keep_ckpts=2)
        runner.register_hook(checkpointhook)
        runner.run([loader], [('train', 1)])
        basename = osp.basename(runner.work_dir.rstrip(osp.sep))
        assert runner.meta['hook_msgs']['last_ckpt'] == \
155
            '/'.join([out_dir, basename, 'epoch_4.pth'])
156
157
158
159
160
    mock_put.assert_called()
    mock_remove.assert_called()
    mock_isfile.assert_called()
    shutil.rmtree(runner.work_dir)

161
162
163
164
165
166
167
168
169
170
171
    # test iter based runner
    runner = _build_demo_runner(
        'IterBasedRunner', max_iters=1, max_epochs=None)
    runner.meta = dict()
    checkpointhook = CheckpointHook(interval=1, by_epoch=False)
    runner.register_hook(checkpointhook)
    runner.run([loader], [('train', 1)])
    assert runner.meta['hook_msgs']['last_ckpt'] == osp.join(
        runner.work_dir, 'iter_1.pth')
    shutil.rmtree(runner.work_dir)

172
173
174
175
176
177
    # test petrel oss when the type of runner is `IterBasedRunner`
    runner = _build_demo_runner(
        'IterBasedRunner', max_iters=4, max_epochs=None)
    runner.meta = dict()
    out_dir = 's3://user/data'
    with patch.object(PetrelBackend, 'put') as mock_put, \
178
179
            patch.object(PetrelBackend, 'remove') as mock_remove, \
            patch.object(PetrelBackend, 'isfile') as mock_isfile:
180
181
182
183
184
185
        checkpointhook = CheckpointHook(
            interval=1, out_dir=out_dir, by_epoch=False, max_keep_ckpts=2)
        runner.register_hook(checkpointhook)
        runner.run([loader], [('train', 1)])
        basename = osp.basename(runner.work_dir.rstrip(osp.sep))
        assert runner.meta['hook_msgs']['last_ckpt'] == \
186
            '/'.join([out_dir, basename, 'iter_4.pth'])
187
188
189
190
191
    mock_put.assert_called()
    mock_remove.assert_called()
    mock_isfile.assert_called()
    shutil.rmtree(runner.work_dir)

192

shilong's avatar
shilong committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
def test_ema_hook():
    """xdoctest -m tests/test_hooks.py test_ema_hook."""

    class DemoModel(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(
                in_channels=1,
                out_channels=2,
                kernel_size=1,
                padding=1,
                bias=True)
            self._init_weight()

        def _init_weight(self):
            constant_(self.conv.weight, 0)
            constant_(self.conv.bias, 0)

        def forward(self, x):
            return self.conv(x).sum()

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

    loader = DataLoader(torch.ones((1, 1, 1, 1)))
    runner = _build_demo_runner()
    demo_model = DemoModel()
    runner.model = demo_model
    emahook = EMAHook(momentum=0.1, interval=2, warm_up=100, resume_from=None)
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(emahook, priority='HIGHEST')
    runner.register_hook(checkpointhook)
229
    runner.run([loader, loader], [('train', 1), ('val', 1)])
shilong's avatar
shilong committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    checkpoint = torch.load(f'{runner.work_dir}/epoch_1.pth')
    contain_ema_buffer = False
    for name, value in checkpoint['state_dict'].items():
        if 'ema' in name:
            contain_ema_buffer = True
            assert value.sum() == 0
            value.fill_(1)
        else:
            assert value.sum() == 0
    assert contain_ema_buffer
    torch.save(checkpoint, f'{runner.work_dir}/epoch_1.pth')
    work_dir = runner.work_dir
    resume_ema_hook = EMAHook(
        momentum=0.5, warm_up=0, resume_from=f'{work_dir}/epoch_1.pth')
244
    runner = _build_demo_runner(max_epochs=2)
shilong's avatar
shilong committed
245
246
247
248
    runner.model = demo_model
    runner.register_hook(resume_ema_hook, priority='HIGHEST')
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(checkpointhook)
249
    runner.run([loader, loader], [('train', 1), ('val', 1)])
shilong's avatar
shilong committed
250
251
252
253
254
255
256
257
258
259
260
261
262
    checkpoint = torch.load(f'{runner.work_dir}/epoch_2.pth')
    contain_ema_buffer = False
    for name, value in checkpoint['state_dict'].items():
        if 'ema' in name:
            contain_ema_buffer = True
            assert value.sum() == 2
        else:
            assert value.sum() == 1
    assert contain_ema_buffer
    shutil.rmtree(runner.work_dir)
    shutil.rmtree(work_dir)


263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
def test_custom_hook():

    @HOOKS.register_module()
    class ToyHook(Hook):

        def __init__(self, info, *args, **kwargs):
            super().__init__()
            self.info = info

    runner = _build_demo_runner_without_hook('EpochBasedRunner', max_epochs=1)
    # test if custom_hooks is None
    runner.register_custom_hooks(None)
    assert len(runner.hooks) == 0
    # test if custom_hooks is dict list
    custom_hooks_cfg = [
        dict(type='ToyHook', priority=51, info=51),
        dict(type='ToyHook', priority=49, info=49)
    ]
    runner.register_custom_hooks(custom_hooks_cfg)
    assert [hook.info for hook in runner.hooks] == [49, 51]
    # test if custom_hooks is object and without priority
    runner.register_custom_hooks(ToyHook(info='default'))
    assert len(runner.hooks) == 3 and runner.hooks[1].info == 'default'
    shutil.rmtree(runner.work_dir)

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    runner = _build_demo_runner_without_hook('EpochBasedRunner', max_epochs=1)
    # test custom_hooks with string priority setting
    priority_ranks = [
        'HIGHEST', 'VERY_HIGH', 'HIGH', 'ABOVE_NORMAL', 'NORMAL',
        'BELOW_NORMAL', 'LOW', 'VERY_LOW', 'LOWEST'
    ]
    random_priority_ranks = priority_ranks.copy()
    random.shuffle(random_priority_ranks)
    custom_hooks_cfg = [
        dict(type='ToyHook', priority=rank, info=rank)
        for rank in random_priority_ranks
    ]
    runner.register_custom_hooks(custom_hooks_cfg)
    assert [hook.info for hook in runner.hooks] == priority_ranks
    shutil.rmtree(runner.work_dir)

304
305
306
307
    runner = _build_demo_runner_without_hook('EpochBasedRunner', max_epochs=1)
    # test register_training_hooks order
    custom_hooks_cfg = [
        dict(type='ToyHook', priority=1, info='custom 1'),
308
        dict(type='ToyHook', priority='NORMAL', info='custom normal'),
309
310
311
312
313
314
315
316
317
318
        dict(type='ToyHook', priority=89, info='custom 89')
    ]
    runner.register_training_hooks(
        lr_config=ToyHook('lr'),
        optimizer_config=ToyHook('optimizer'),
        checkpoint_config=ToyHook('checkpoint'),
        log_config=dict(interval=1, hooks=[dict(type='ToyHook', info='log')]),
        momentum_config=ToyHook('momentum'),
        timer_config=ToyHook('timer'),
        custom_hooks_config=custom_hooks_cfg)
319
320
    # If custom hooks have same priority with default hooks, custom hooks
    # will be triggered after default hooks.
321
    hooks_order = [
322
323
        'custom 1', 'lr', 'momentum', 'optimizer', 'checkpoint',
        'custom normal', 'timer', 'custom 89', 'log'
324
325
326
327
328
    ]
    assert [hook.info for hook in runner.hooks] == hooks_order
    shutil.rmtree(runner.work_dir)


Jiangmiao Pang's avatar
Jiangmiao Pang committed
329
330
331
def test_pavi_hook():
    sys.modules['pavi'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
332
333
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner()
334
    runner.meta = dict(config_dict=dict(lr=0.02, gpu_ids=range(1)))
335
336
    hook = PaviLoggerHook(
        add_graph_kwargs=None, add_last_ckpt=False, add_ckpt_kwargs=None)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
337
    runner.register_hook(hook)
338
    runner.run([loader, loader], [('train', 1), ('val', 1)])
339
    shutil.rmtree(runner.work_dir)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
340
341

    assert hasattr(hook, 'writer')
Wenwei Zhang's avatar
Wenwei Zhang committed
342
343
344
    hook.writer.add_scalars.assert_called_with('val', {
        'learning_rate': 0.02,
        'momentum': 0.95
345
    }, 1)
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372


def test_pavi_hook_epoch_based():
    """Test setting start epoch and interval epoch."""
    sys.modules['pavi'] = MagicMock()

    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner(max_epochs=6)
    runner.meta = dict(config_dict=dict(lr=0.02, gpu_ids=range(1)))
    hook = PaviLoggerHook(
        add_graph_kwargs={
            'active': False,
            'start': 0,
            'interval': 1
        },
        add_last_ckpt=True,
        add_ckpt_kwargs={
            'active': True,
            'start': 1,
            'interval': 2
        })
    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)])
    shutil.rmtree(runner.work_dir)

    assert hasattr(hook, 'writer')

373
    # in Windows environment, the latest checkpoint is copied from epoch_1.pth
374
    if platform.system() == 'Windows':
375
        final_file_path = osp.join(runner.work_dir, 'latest.pth')
376
    else:
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
        final_file_path = osp.join(runner.work_dir, 'epoch_6.pth')
    calls = [
        call(
            tag=runner.work_dir.split('/')[-1],
            snapshot_file_path=osp.join(runner.work_dir, 'epoch_1.pth'),
            iteration=1),
        call(
            tag=runner.work_dir.split('/')[-1],
            snapshot_file_path=osp.join(runner.work_dir, 'epoch_3.pth'),
            iteration=3),
        call(
            tag=runner.work_dir.split('/')[-1],
            snapshot_file_path=osp.join(runner.work_dir, 'epoch_5.pth'),
            iteration=5),
        call(
            tag=runner.work_dir.split('/')[-1],
            snapshot_file_path=osp.join(runner.work_dir, final_file_path),
            iteration=6),
    ]
    hook.writer.add_snapshot_file.assert_has_calls(calls, any_order=False)


def test_pavi_hook_iter_based():
    """Test setting start epoch and interval epoch."""
    sys.modules['pavi'] = MagicMock()

    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner(
        'IterBasedRunner', max_iters=15, max_epochs=None)
    runner.meta = dict()
    hook = PaviLoggerHook(
        by_epoch=False,
        add_graph_kwargs={
            'active': False,
            'start': 0,
            'interval': 1
        },
        add_last_ckpt=True,
        add_ckpt_kwargs={
            'active': True,
            'start': 0,
            'interval': 4
        })

    runner.register_hook(CheckpointHook(interval=4, by_epoch=False))
    runner.register_hook(hook)

    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    assert hasattr(hook, 'writer')

    # in Windows environment, the latest checkpoint is copied from epoch_1.pth
    if platform.system() == 'Windows':
        final_file_path = osp.join(runner.work_dir, 'latest.pth')
    else:
        final_file_path = osp.join(runner.work_dir, 'iter_15.pth')
    calls = [
        call(
            tag=runner.work_dir.split('/')[-1],
            snapshot_file_path=osp.join(runner.work_dir, 'iter_4.pth'),
            iteration=4),
        call(
            tag=runner.work_dir.split('/')[-1],
            snapshot_file_path=osp.join(runner.work_dir, 'iter_8.pth'),
            iteration=8),
        call(
            tag=runner.work_dir.split('/')[-1],
            snapshot_file_path=osp.join(runner.work_dir, 'iter_12.pth'),
            iteration=12),
        call(
            tag=runner.work_dir.split('/')[-1],
            snapshot_file_path=osp.join(runner.work_dir, final_file_path),
            iteration=15),
    ]
    hook.writer.add_snapshot_file.assert_has_calls(calls, any_order=False)
453
454


Wang Xinjiang's avatar
Wang Xinjiang committed
455
456
457
458
def test_sync_buffers_hook():
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner()
    runner.register_hook_from_cfg(dict(type='SyncBuffersHook'))
459
    runner.run([loader, loader], [('train', 1), ('val', 1)])
Wang Xinjiang's avatar
Wang Xinjiang committed
460
461
462
    shutil.rmtree(runner.work_dir)


Mashiro's avatar
Mashiro committed
463
464
465
466
@pytest.mark.parametrize('multi_optimizers, max_iters, gamma, cyclic_times',
                         [(True, 8, 1, 1), (False, 8, 0.5, 2)])
def test_momentum_runner_hook(multi_optimizers, max_iters, gamma,
                              cyclic_times):
Kai Chen's avatar
Kai Chen committed
467
    """xdoctest -m tests/test_hooks.py test_momentum_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
468
469
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
470
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
Wenwei Zhang's avatar
Wenwei Zhang committed
471
472

    # add momentum scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
473
474
    hook_cfg = dict(
        type='CyclicMomentumUpdaterHook',
Wenwei Zhang's avatar
Wenwei Zhang committed
475
476
        by_epoch=False,
        target_ratio=(0.85 / 0.95, 1),
Mashiro's avatar
Mashiro committed
477
478
479
        cyclic_times=cyclic_times,
        step_ratio_up=0.4,
        gamma=gamma)
Wang Xinjiang's avatar
Wang Xinjiang committed
480
    runner.register_hook_from_cfg(hook_cfg)
Wenwei Zhang's avatar
Wenwei Zhang committed
481
482

    # add momentum LR scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
483
484
    hook_cfg = dict(
        type='CyclicLrUpdaterHook',
Wenwei Zhang's avatar
Wenwei Zhang committed
485
486
487
488
        by_epoch=False,
        target_ratio=(10, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
Wang Xinjiang's avatar
Wang Xinjiang committed
489
490
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
Wenwei Zhang's avatar
Wenwei Zhang committed
491
492

    # add pavi hook
493
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
494
    runner.register_hook(hook)
495
    runner.run([loader], [('train', 1)])
496
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
497
498
499

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
Mashiro's avatar
Mashiro committed
500
    if multi_optimizers:
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.01999999999999999,
                    'learning_rate/model2': 0.009999999999999995,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.2,
                    'learning_rate/model2': 0.1,
                    'momentum/model1': 0.85,
                    'momentum/model2': 0.8052631578947369,
                }, 5),
            call(
                'train', {
                    'learning_rate/model1': 0.155,
                    'learning_rate/model2': 0.0775,
                    'momentum/model1': 0.875,
                    'momentum/model2': 0.8289473684210527,
                }, 7)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.01999999999999999,
                'momentum': 0.95
            }, 1),
            call('train', {
Mashiro's avatar
Mashiro committed
531
                'learning_rate': 0.11,
532
                'momentum': 0.85
Mashiro's avatar
Mashiro committed
533
            }, 3),
534
            call('train', {
Mashiro's avatar
Mashiro committed
535
536
537
538
539
540
541
                'learning_rate': 0.1879422863405995,
                'momentum': 0.95
            }, 6),
            call('train', {
                'learning_rate': 0.11000000000000001,
                'momentum': 0.9
            }, 8),
542
        ]
Wenwei Zhang's avatar
Wenwei Zhang committed
543
544
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

545
546
    # test constant momentum warmup
    sys.modules['pavi'] = MagicMock()
547
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        warmup='constant',
        warmup_iters=5,
        warmup_ratio=0.5,
        step=[10],
    )
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))

    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    assert hasattr(hook, 'writer')
567
    if multi_optimizers:
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.9,
                    'momentum/model2': 1.8,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.9,
                    'momentum/model2': 1.8,
                }, 5),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 10),
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.9
            }, 1),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.9
            }, 5),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 10),
        ]

    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

    # test linear momentum warmup
    sys.modules['pavi'] = MagicMock()
611
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        warmup='linear',
        warmup_iters=5,
        warmup_ratio=0.5,
        step=[10],
    )
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))

    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    assert hasattr(hook, 'writer')
631
    if multi_optimizers:
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.9,
                    'momentum/model2': 1.8,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.3571428571428572,
                    'momentum/model2': 1.2857142857142858,
                }, 3),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 10),
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.9
            }, 1),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.3571428571428572
            }, 3),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 10),
        ]

    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

    # test exponentially momentum warmup
    sys.modules['pavi'] = MagicMock()
675
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694

    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        warmup='exp',
        warmup_iters=5,
        warmup_ratio=0.5,
        step=[10],
    )
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))

    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    assert hasattr(hook, 'writer')
695
    if multi_optimizers:
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.9,
                    'momentum/model2': 1.8,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.4399307381848783,
                    'momentum/model2': 1.3641449098593583,
                }, 3),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 10),
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.9
            }, 1),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.4399307381848783
            }, 3),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 10),
        ]

    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

Wenwei Zhang's avatar
Wenwei Zhang committed
737

738
739
@pytest.mark.parametrize('multi_optimizers', (True, False))
def test_cosine_runner_hook(multi_optimizers):
Kai Chen's avatar
Kai Chen committed
740
    """xdoctest -m tests/test_hooks.py test_cosine_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
741
742
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
743
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
Wenwei Zhang's avatar
Wenwei Zhang committed
744
745

    # add momentum scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
746
747
    hook_cfg = dict(
        type='CosineAnnealingMomentumUpdaterHook',
748
749
750
751
        min_momentum_ratio=0.99 / 0.95,
        by_epoch=False,
        warmup_iters=2,
        warmup_ratio=0.9 / 0.95)
Wang Xinjiang's avatar
Wang Xinjiang committed
752
    runner.register_hook_from_cfg(hook_cfg)
Wenwei Zhang's avatar
Wenwei Zhang committed
753
754

    # add momentum LR scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
755
756
757
758
759
760
761
762
    hook_cfg = dict(
        type='CosineAnnealingLrUpdaterHook',
        by_epoch=False,
        min_lr_ratio=0,
        warmup_iters=2,
        warmup_ratio=0.9)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
763
    runner.register_hook(IterTimerHook())
Wenwei Zhang's avatar
Wenwei Zhang committed
764
    # add pavi hook
765
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
766
    runner.register_hook(hook)
767
    runner.run([loader], [('train', 1)])
768
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
769
770
771

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
772
    if multi_optimizers:
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.97,
                    'momentum/model2': 0.9189473684210527,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0004894348370484647,
                    'learning_rate/model2': 0.00024471741852423234,
                    'momentum/model1': 0.9890211303259032,
                    'momentum/model2': 0.9369673866245399,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.97
            }, 6),
            call(
                'train', {
                    'learning_rate': 0.0004894348370484647,
                    'momentum': 0.9890211303259032
                }, 10)
        ]
Wenwei Zhang's avatar
Wenwei Zhang committed
812
813
814
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
@pytest.mark.parametrize('multi_optimizers', (True, False))
def test_linear_runner_hook(multi_optimizers):
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)

    # add momentum scheduler

    hook_cfg = dict(
        type='LinearAnnealingMomentumUpdaterHook',
        min_momentum_ratio=0.99 / 0.95,
        by_epoch=False,
        warmup_iters=2,
        warmup_ratio=0.9 / 0.95)
    runner.register_hook_from_cfg(hook_cfg)

    # add momentum LR scheduler
    hook_cfg = dict(
        type='LinearAnnealingLrUpdaterHook',
        by_epoch=False,
        min_lr_ratio=0,
        warmup_iters=2,
        warmup_ratio=0.9)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    runner.register_hook(IterTimerHook())
    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
    if multi_optimizers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.97,
                    'momentum/model2': 0.9189473684210527,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0019999999999999983,
                    'learning_rate/model2': 0.0009999999999999992,
                    'momentum/model1': 0.9860000000000001,
                    'momentum/model2': 0.9341052631578949,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.97
            }, 6),
            call(
                'train', {
                    'learning_rate': 0.0019999999999999983,
                    'momentum': 0.9860000000000001
                }, 10)
        ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


892
@pytest.mark.parametrize('multi_optimizers, by_epoch', [(False, False),
893
894
895
                                                        (True, False),
                                                        (False, True),
                                                        (True, True)])
896
def test_flat_cosine_runner_hook(multi_optimizers, by_epoch):
897
898
899
900
901
    """xdoctest -m tests/test_hooks.py test_flat_cosine_runner_hook."""
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    max_epochs = 10 if by_epoch else 1
    runner = _build_demo_runner(
902
        multi_optimizers=multi_optimizers, max_epochs=max_epochs)
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927

    with pytest.raises(ValueError):
        # start_percent: expected float between 0 and 1
        FlatCosineAnnealingLrUpdaterHook(start_percent=-0.1, min_lr_ratio=0)

    # add LR scheduler
    hook_cfg = dict(
        type='FlatCosineAnnealingLrUpdaterHook',
        by_epoch=by_epoch,
        min_lr_ratio=0,
        warmup='linear',
        warmup_iters=10 if by_epoch else 2,
        warmup_ratio=0.9,
        start_percent=0.5)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    runner.register_hook(IterTimerHook())
    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
928
    if multi_optimizers:
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
        if by_epoch:
            calls = [
                call(
                    'train', {
                        'learning_rate/model1': 0.018000000000000002,
                        'learning_rate/model2': 0.009000000000000001,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9,
                    }, 1),
                call(
                    'train', {
                        'learning_rate/model1': 0.02,
                        'learning_rate/model2': 0.01,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9,
                    }, 11),
                call(
                    'train', {
                        'learning_rate/model1': 0.018090169943749474,
                        'learning_rate/model2': 0.009045084971874737,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9,
                    }, 61),
                call(
                    'train', {
                        'learning_rate/model1': 0.0019098300562505265,
                        'learning_rate/model2': 0.0009549150281252633,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9,
                    }, 100)
            ]
        else:
            calls = [
                call(
                    'train', {
                        'learning_rate/model1': 0.018000000000000002,
                        'learning_rate/model2': 0.009000000000000001,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9
                    }, 1),
                call(
                    'train', {
                        'learning_rate/model1': 0.02,
                        'learning_rate/model2': 0.01,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9
                    }, 6),
                call(
                    'train', {
                        'learning_rate/model1': 0.018090169943749474,
                        'learning_rate/model2': 0.009045084971874737,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9
                    }, 7),
                call(
                    'train', {
                        'learning_rate/model1': 0.0019098300562505265,
                        'learning_rate/model2': 0.0009549150281252633,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9
                    }, 10)
            ]
    else:
        if by_epoch:
            calls = [
                call('train', {
                    'learning_rate': 0.018000000000000002,
                    'momentum': 0.95
                }, 1),
                call('train', {
                    'learning_rate': 0.02,
                    'momentum': 0.95
                }, 11),
                call('train', {
                    'learning_rate': 0.018090169943749474,
                    'momentum': 0.95
                }, 61),
                call('train', {
                    'learning_rate': 0.0019098300562505265,
                    'momentum': 0.95
                }, 100)
            ]
        else:
            calls = [
                call('train', {
                    'learning_rate': 0.018000000000000002,
                    'momentum': 0.95
                }, 1),
                call('train', {
                    'learning_rate': 0.02,
                    'momentum': 0.95
                }, 6),
                call('train', {
                    'learning_rate': 0.018090169943749474,
                    'momentum': 0.95
                }, 7),
                call('train', {
                    'learning_rate': 0.0019098300562505265,
                    'momentum': 0.95
                }, 10)
            ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


pc's avatar
pc committed
1033
1034
@pytest.mark.skipif(
    torch.__version__ == 'parrots', reason='not supported in parrots now')
1035
@pytest.mark.parametrize('multi_optimizers, max_iters', [(True, 10), (True, 2),
1036
1037
                                                         (False, 10),
                                                         (False, 2)])
1038
def test_one_cycle_runner_hook(multi_optimizers, max_iters):
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
    """Test OneCycleLrUpdaterHook and OneCycleMomentumUpdaterHook."""
    with pytest.raises(AssertionError):
        # by_epoch should be False
        OneCycleLrUpdaterHook(max_lr=0.1, by_epoch=True)

    with pytest.raises(ValueError):
        # expected float between 0 and 1
        OneCycleLrUpdaterHook(max_lr=0.1, pct_start=-0.1)

    with pytest.raises(ValueError):
        # anneal_strategy should be either 'cos' or 'linear'
        OneCycleLrUpdaterHook(max_lr=0.1, anneal_strategy='sin')

    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
1054
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065

    # add momentum scheduler
    hook_cfg = dict(
        type='OneCycleMomentumUpdaterHook',
        base_momentum=0.85,
        max_momentum=0.95,
        pct_start=0.5,
        anneal_strategy='cos',
        three_phase=False)
    runner.register_hook_from_cfg(hook_cfg)

1066
    # add LR scheduler
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
    hook_cfg = dict(
        type='OneCycleLrUpdaterHook',
        max_lr=0.01,
        pct_start=0.5,
        anneal_strategy='cos',
        div_factor=25,
        final_div_factor=1e4,
        three_phase=False)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    runner.register_hook(IterTimerHook())
    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
1086
    if multi_optimizers:
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.0003999999999999993,
                    'learning_rate/model2': 0.0003999999999999993,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.95,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.00904508879153485,
                    'learning_rate/model2': 0.00904508879153485,
                    'momentum/model1': 0.8595491502812526,
                    'momentum/model2': 0.8595491502812526,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 4e-08,
                    'learning_rate/model2': 4e-08,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.95,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.0003999999999999993,
                'momentum': 0.95
            }, 1),
            call(
                'train', {
                    'learning_rate': 0.00904508879153485,
                    'momentum': 0.8595491502812526
                }, 6),
            call('train', {
                'learning_rate': 4e-08,
                'momentum': 0.95
            }, 10)
        ]
1126
1127
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
    # Test OneCycleLrUpdaterHook
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner(
        runner_type='IterBasedRunner', max_epochs=None, max_iters=max_iters)

    args = dict(
        max_lr=0.01,
        total_steps=5,
        pct_start=0.5,
        anneal_strategy='linear',
        div_factor=25,
        final_div_factor=1e4,
    )
    hook = OneCycleLrUpdaterHook(**args)
    runner.register_hook(hook)
    if max_iters == 10:
        # test total_steps < max_iters
        with pytest.raises(ValueError):
            runner.run([loader], [('train', 1)])
    else:
        # test total_steps > max_iters
        runner.run([loader], [('train', 1)])
        lr_last = runner.current_lr()
        t = torch.tensor([0.0], requires_grad=True)
        optim = torch.optim.SGD([t], lr=0.01)
        lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optim, **args)
        lr_target = []
        for _ in range(max_iters):
            optim.step()
            lr_target.append(optim.param_groups[0]['lr'])
            lr_scheduler.step()
        assert lr_target[-1] == lr_last[0]

1162

1163
1164
@pytest.mark.parametrize('multi_optimizers', (True, False))
def test_cosine_restart_lr_update_hook(multi_optimizers):
Harry's avatar
Harry committed
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
    """Test CosineRestartLrUpdaterHook."""
    with pytest.raises(AssertionError):
        # either `min_lr` or `min_lr_ratio` should be specified
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5, 0.5],
            min_lr=0.1,
            min_lr_ratio=0)

    with pytest.raises(AssertionError):
        # periods and restart_weights should have the same length
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5],
            min_lr_ratio=0)

    with pytest.raises(ValueError):
        # the last cumulative_periods 7 (out of [5, 7]) should >= 10
        sys.modules['pavi'] = MagicMock()
        loader = DataLoader(torch.ones((10, 2)))
        runner = _build_demo_runner()

        # add cosine restart LR scheduler
        hook = CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[5, 2],  # cumulative_periods [5, 7 (5 + 2)]
            restart_weights=[0.5, 0.5],
            min_lr=0.0001)
        runner.register_hook(hook)
        runner.register_hook(IterTimerHook())

        # add pavi hook
        hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
        runner.register_hook(hook)
1201
        runner.run([loader], [('train', 1)])
Harry's avatar
Harry committed
1202
1203
1204
1205
        shutil.rmtree(runner.work_dir)

    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
1206
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
Harry's avatar
Harry committed
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219

    # add cosine restart LR scheduler
    hook = CosineRestartLrUpdaterHook(
        by_epoch=False,
        periods=[5, 5],
        restart_weights=[0.5, 0.5],
        min_lr_ratio=0)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
1220
    runner.run([loader], [('train', 1)])
Harry's avatar
Harry committed
1221
1222
1223
1224
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
1225
    if multi_optimizers:
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0009549150281252633,
                    'learning_rate/model2': 0.00047745751406263163,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.95
            }, 6),
            call('train', {
                'learning_rate': 0.0009549150281252633,
                'momentum': 0.95
            }, 10)
        ]
Harry's avatar
Harry committed
1264
1265
1266
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


1267
1268
@pytest.mark.parametrize('multi_optimizers', (True, False))
def test_step_runner_hook(multi_optimizers):
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
    """Test StepLrUpdaterHook."""
    with pytest.raises(TypeError):
        # `step` should be specified
        StepLrUpdaterHook()
    with pytest.raises(AssertionError):
        # if `step` is int, should be positive
        StepLrUpdaterHook(-10)
    with pytest.raises(AssertionError):
        # if `step` is list of int, should all be positive
        StepLrUpdaterHook([10, 16, -20])

    # test StepLrUpdaterHook with int `step` value
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((30, 2)))
1283
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
1284

1285
1286
1287
1288
1289
1290
1291
1292
1293
    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        step=5,
        gamma=0.5,
        min_momentum=0.05)
    runner.register_hook_from_cfg(hook_cfg)

1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
    # add step LR scheduler
    hook = StepLrUpdaterHook(by_epoch=False, step=5, gamma=0.5, min_lr=1e-3)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
1307
    if multi_optimizers:
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
1320
1321
                    'momentum/model1': 0.475,
                    'momentum/model2': 0.45
1322
1323
1324
1325
1326
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0025,
                    'learning_rate/model2': 0.00125,
1327
1328
                    'momentum/model1': 0.11875,
                    'momentum/model2': 0.1125
1329
1330
1331
1332
1333
                }, 16),
            call(
                'train', {
                    'learning_rate/model1': 0.00125,
                    'learning_rate/model2': 0.001,
1334
1335
                    'momentum/model1': 0.059375,
                    'momentum/model2': 0.05625
1336
1337
1338
1339
1340
                }, 21),
            call(
                'train', {
                    'learning_rate/model1': 0.001,
                    'learning_rate/model2': 0.001,
1341
1342
                    'momentum/model1': 0.05,
                    'momentum/model2': 0.05
1343
1344
1345
1346
1347
                }, 26),
            call(
                'train', {
                    'learning_rate/model1': 0.001,
                    'learning_rate/model2': 0.001,
1348
1349
                    'momentum/model1': 0.05,
                    'momentum/model2': 0.05
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
                }, 30)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
1360
                'momentum': 0.475
1361
1362
1363
            }, 6),
            call('train', {
                'learning_rate': 0.0025,
1364
                'momentum': 0.11875
1365
1366
1367
            }, 16),
            call('train', {
                'learning_rate': 0.00125,
1368
                'momentum': 0.059375
1369
1370
1371
            }, 21),
            call('train', {
                'learning_rate': 0.001,
1372
                'momentum': 0.05
1373
1374
1375
            }, 26),
            call('train', {
                'learning_rate': 0.001,
1376
                'momentum': 0.05
1377
1378
1379
1380
1381
1382
1383
            }, 30)
        ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

    # test StepLrUpdaterHook with list[int] `step` value
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
1384
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
1385

1386
1387
1388
1389
1390
1391
1392
1393
    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        step=[4, 6, 8],
        gamma=0.1)
    runner.register_hook_from_cfg(hook_cfg)

1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
    # add step LR scheduler
    hook = StepLrUpdaterHook(by_epoch=False, step=[4, 6, 8], gamma=0.1)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
1407
    if multi_optimizers:
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.002,
                    'learning_rate/model2': 0.001,
1420
1421
                    'momentum/model1': 9.5e-2,
                    'momentum/model2': 9.000000000000001e-2
1422
1423
1424
1425
1426
                }, 5),
            call(
                'train', {
                    'learning_rate/model1': 2.0000000000000004e-4,
                    'learning_rate/model2': 1.0000000000000002e-4,
1427
1428
                    'momentum/model1': 9.500000000000001e-3,
                    'momentum/model2': 9.000000000000003e-3
1429
1430
1431
1432
1433
                }, 7),
            call(
                'train', {
                    'learning_rate/model1': 2.0000000000000005e-05,
                    'learning_rate/model2': 1.0000000000000003e-05,
1434
1435
                    'momentum/model1': 9.500000000000002e-4,
                    'momentum/model2': 9.000000000000002e-4
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
                }, 9)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.002,
1446
                'momentum': 0.095
1447
            }, 5),
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
            call(
                'train', {
                    'learning_rate': 2.0000000000000004e-4,
                    'momentum': 9.500000000000001e-3
                }, 7),
            call(
                'train', {
                    'learning_rate': 2.0000000000000005e-05,
                    'momentum': 9.500000000000002e-4
                }, 9)
1458
1459
1460
1461
        ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


Mashiro's avatar
Mashiro committed
1462
1463
1464
1465
@pytest.mark.parametrize('multi_optimizers, max_iters, gamma, cyclic_times',
                         [(True, 8, 1, 1), (False, 8, 0.5, 2)])
def test_cyclic_lr_update_hook(multi_optimizers, max_iters, gamma,
                               cyclic_times):
1466
1467
1468
1469
1470
1471
    """Test CyclicLrUpdateHook."""
    with pytest.raises(AssertionError):
        # by_epoch should be False
        CyclicLrUpdaterHook(by_epoch=True)

    with pytest.raises(AssertionError):
Mashiro's avatar
Mashiro committed
1472
        # target_ratio must be either float or tuple/list of two floats
1473
1474
1475
        CyclicLrUpdaterHook(by_epoch=False, target_ratio=(10.0, 0.1, 0.2))

    with pytest.raises(AssertionError):
Mashiro's avatar
Mashiro committed
1476
        # step_ratio_up must be in range [0,1)
1477
1478
1479
1480
1481
1482
        CyclicLrUpdaterHook(by_epoch=False, step_ratio_up=1.4)

    with pytest.raises(ValueError):
        # anneal_strategy must be one of "cos" or "linear"
        CyclicLrUpdaterHook(by_epoch=False, anneal_strategy='sin')

Mashiro's avatar
Mashiro committed
1483
1484
1485
1486
    with pytest.raises(AssertionError):
        # gamma must be in range (0, 1]
        CyclicLrUpdaterHook(by_epoch=False, gamma=0)

1487
1488
1489
1490
1491
1492
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner(
        runner_type='IterBasedRunner',
        max_epochs=None,
        max_iters=max_iters,
1493
        multi_optimizers=multi_optimizers)
1494
1495

    # add cyclic LR scheduler
Mashiro's avatar
Mashiro committed
1496
    schedule_hook = CyclicLrUpdaterHook(
1497
1498
        by_epoch=False,
        target_ratio=(10.0, 1.0),
Mashiro's avatar
Mashiro committed
1499
        cyclic_times=cyclic_times,
1500
        step_ratio_up=0.5,
Mashiro's avatar
Mashiro committed
1501
1502
1503
        anneal_strategy='linear',
        gamma=gamma)
    runner.register_hook(schedule_hook)
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    runner.register_hook(IterTimerHook())
    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    assert hasattr(hook, 'writer')
    if multi_optimizers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.155,
                    'learning_rate/model2': 0.0775,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 4),
            call(
                'train', {
                    'learning_rate/model1': 0.155,
                    'learning_rate/model2': 0.0775,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 6)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
Mashiro's avatar
Mashiro committed
1544
                'learning_rate': 0.11,
1545
1546
1547
                'momentum': 0.95
            }, 4),
            call('train', {
Mashiro's avatar
Mashiro committed
1548
                'learning_rate': 0.065,
1549
1550
                'momentum': 0.95
            }, 6),
Mashiro's avatar
Mashiro committed
1551
1552
1553
1554
            call('train', {
                'learning_rate': 0.11,
                'momentum': 0.95
            }, 7),
1555
1556
1557
1558
        ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


1559
1560
1561
1562
1563
@pytest.mark.parametrize('log_model', (True, False))
def test_mlflow_hook(log_model):
    sys.modules['mlflow'] = MagicMock()
    sys.modules['mlflow.pytorch'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
1564
1565
    runner = _build_demo_runner()
    loader = DataLoader(torch.ones((5, 2)))
1566

1567
    hook = MlflowLoggerHook(exp_name='test', log_model=log_model)
1568
    runner.register_hook(hook)
1569
    runner.run([loader, loader], [('train', 1), ('val', 1)])
1570
    shutil.rmtree(runner.work_dir)
1571
1572

    hook.mlflow.set_experiment.assert_called_with('test')
Wenwei Zhang's avatar
Wenwei Zhang committed
1573
1574
1575
1576
    hook.mlflow.log_metrics.assert_called_with(
        {
            'learning_rate': 0.02,
            'momentum': 0.95
1577
        }, step=6)
1578
1579
    if log_model:
        hook.mlflow_pytorch.log_model.assert_called_with(
1580
1581
1582
            runner.model,
            'models',
            pip_requirements=[f'torch=={TORCH_VERSION}'])
1583
1584
1585
1586
    else:
        assert not hook.mlflow_pytorch.log_model.called


1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
def test_segmind_hook():
    sys.modules['segmind'] = MagicMock()
    runner = _build_demo_runner()
    hook = SegmindLoggerHook()
    loader = DataLoader(torch.ones((5, 2)))

    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)])
    shutil.rmtree(runner.work_dir)

    hook.mlflow_log.assert_called_with(
        hook.log_metrics, {
            'learning_rate': 0.02,
            'momentum': 0.95
        },
        step=runner.epoch,
        epoch=runner.epoch)


1606
1607
def test_wandb_hook():
    sys.modules['wandb'] = MagicMock()
Wenwei Zhang's avatar
Wenwei Zhang committed
1608
    runner = _build_demo_runner()
1609
    hook = WandbLoggerHook(log_artifact=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
1610
    loader = DataLoader(torch.ones((5, 2)))
1611
1612

    runner.register_hook(hook)
1613
    runner.run([loader, loader], [('train', 1), ('val', 1)])
1614

1615
1616
    shutil.rmtree(runner.work_dir)

1617
    hook.wandb.init.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
1618
1619
1620
1621
    hook.wandb.log.assert_called_with({
        'learning_rate': 0.02,
        'momentum': 0.95
    },
1622
1623
                                      step=6,
                                      commit=True)
1624
    hook.wandb.log_artifact.assert_called()
1625
    hook.wandb.join.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
1626
1627


fcakyon's avatar
fcakyon committed
1628
1629
1630
1631
1632
def test_neptune_hook():
    sys.modules['neptune'] = MagicMock()
    sys.modules['neptune.new'] = MagicMock()
    runner = _build_demo_runner()
    hook = NeptuneLoggerHook()
1633

fcakyon's avatar
fcakyon committed
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
    loader = DataLoader(torch.ones((5, 2)))

    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)])
    shutil.rmtree(runner.work_dir)

    hook.neptune.init.assert_called_with()
    hook.run['momentum'].log.assert_called_with(0.95, step=6)
    hook.run.stop.assert_called_with()


1645
def test_dvclive_hook():
1646
1647
1648
    sys.modules['dvclive'] = MagicMock()
    runner = _build_demo_runner()

1649
1650
    hook = DvcliveLoggerHook()
    dvclive_mock = hook.dvclive
1651
1652
1653
1654
1655
1656
    loader = DataLoader(torch.ones((5, 2)))

    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)])
    shutil.rmtree(runner.work_dir)

1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
    dvclive_mock.set_step.assert_called_with(6)
    dvclive_mock.log.assert_called_with('momentum', 0.95)


def test_dvclive_hook_model_file(tmp_path):
    sys.modules['dvclive'] = MagicMock()
    runner = _build_demo_runner()

    hook = DvcliveLoggerHook(model_file=osp.join(runner.work_dir, 'model.pth'))
    runner.register_hook(hook)

    loader = torch.utils.data.DataLoader(torch.ones((5, 2)))
    loader = DataLoader(torch.ones((5, 2)))

    runner.run([loader, loader], [('train', 1), ('val', 1)])

    assert osp.exists(osp.join(runner.work_dir, 'model.pth'))

    shutil.rmtree(runner.work_dir)
1676
1677


1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
def test_clearml_hook():
    sys.modules['clearml'] = MagicMock()
    runner = _build_demo_runner()
    hook = ClearMLLoggerHook(init_kwargs={
        'project_name': 'proj',
        'task_name': 'task',
    })

    loader = DataLoader(torch.ones((5, 2)))

    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)])
    shutil.rmtree(runner.work_dir)

    hook.clearml.Task.init.assert_called_with(
        project_name='proj', task_name='task')
    hook.task.get_logger.assert_called_with()
    report_scalar_calls = [
        call('momentum', 'momentum', 0.95, 6),
        call('learning_rate', 'learning_rate', 0.02, 6),
    ]
    hook.task_logger.report_scalar.assert_has_calls(
        report_scalar_calls, any_order=True)


1703
1704
1705
def _build_demo_runner_without_hook(runner_type='EpochBasedRunner',
                                    max_epochs=1,
                                    max_iters=None,
1706
                                    multi_optimizers=False):
1707
1708
1709
1710
1711
1712

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.linear = nn.Linear(2, 1)
1713
            self.conv = nn.Conv2d(3, 3, 3)
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725

        def forward(self, x):
            return self.linear(x)

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

    model = Model()

1726
    if multi_optimizers:
1727
1728
1729
1730
1731
1732
1733
1734
        optimizer = {
            'model1':
            torch.optim.SGD(model.linear.parameters(), lr=0.02, momentum=0.95),
            'model2':
            torch.optim.SGD(model.conv.parameters(), lr=0.01, momentum=0.9),
        }
    else:
        optimizer = torch.optim.SGD(model.parameters(), lr=0.02, momentum=0.95)
Wenwei Zhang's avatar
Wenwei Zhang committed
1735

1736
    tmp_dir = tempfile.mkdtemp()
1737
1738
1739
1740
1741
1742
1743
1744
1745
    runner = build_runner(
        dict(type=runner_type),
        default_args=dict(
            model=model,
            work_dir=tmp_dir,
            optimizer=optimizer,
            logger=logging.getLogger(),
            max_epochs=max_epochs,
            max_iters=max_iters))
1746
1747
1748
1749
1750
1751
    return runner


def _build_demo_runner(runner_type='EpochBasedRunner',
                       max_epochs=1,
                       max_iters=None,
1752
                       multi_optimizers=False):
1753
1754
1755
1756
1757
1758
    log_config = dict(
        interval=1, hooks=[
            dict(type='TextLoggerHook'),
        ])

    runner = _build_demo_runner_without_hook(runner_type, max_epochs,
1759
                                             max_iters, multi_optimizers)
1760

1761
    runner.register_checkpoint_hook(dict(interval=1))
Wenwei Zhang's avatar
Wenwei Zhang committed
1762
1763
    runner.register_logger_hooks(log_config)
    return runner
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801


def test_runner_with_revise_keys():
    import os

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(3, 3, 1)

    class PrefixModel(nn.Module):

        def __init__(self):
            super().__init__()
            self.backbone = Model()

    pmodel = PrefixModel()
    model = Model()
    checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')

    # add prefix
    torch.save(model.state_dict(), checkpoint_path)
    runner = _build_demo_runner(runner_type='EpochBasedRunner')
    runner.model = pmodel
    state_dict = runner.load_checkpoint(
        checkpoint_path, revise_keys=[(r'^', 'backbone.')])
    for key in pmodel.backbone.state_dict().keys():
        assert torch.equal(pmodel.backbone.state_dict()[key], state_dict[key])
    # strip prefix
    torch.save(pmodel.state_dict(), checkpoint_path)
    runner.model = model
    state_dict = runner.load_checkpoint(
        checkpoint_path, revise_keys=[(r'^backbone\.', '')])
    for key in state_dict.keys():
        key_stripped = re.sub(r'^backbone\.', '', key)
        assert torch.equal(model.state_dict()[key_stripped], state_dict[key])
    os.remove(checkpoint_path)
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818


def test_get_triggered_stages():

    class ToyHook(Hook):
        # test normal stage
        def before_run():
            pass

        # test the method mapped to multi stages.
        def after_epoch():
            pass

    hook = ToyHook()
    # stages output have order, so here is list instead of set.
    expected_stages = ['before_run', 'after_train_epoch', 'after_val_epoch']
    assert hook.get_triggered_stages() == expected_stages
Ma Zerun's avatar
Ma Zerun committed
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022


def test_gradient_cumulative_optimizer_hook():

    class ToyModel(nn.Module):

        def __init__(self, with_norm=False):
            super().__init__()
            self.fp16_enabled = False
            self.fc = nn.Linear(3, 2)
            nn.init.constant_(self.fc.weight, 1.)
            nn.init.constant_(self.fc.bias, 1.)
            self.with_norm = with_norm
            if with_norm:
                self.norm = nn.BatchNorm1d(2)

        def forward(self, x):
            x = self.fc(x)
            if self.with_norm:
                x = self.norm(x)
            return x

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x).mean(), num_samples=x.shape[0])

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x).mean(), num_samples=x.shape[0])

    def build_toy_runner(config=dict(type='EpochBasedRunner', max_epochs=3)):
        model = ToyModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=0.02)
        tmp_dir = tempfile.mkdtemp()

        runner = build_runner(
            config,
            default_args=dict(
                model=model,
                work_dir=tmp_dir,
                optimizer=optimizer,
                logger=logging.getLogger(),
                meta=dict()))
        return runner

    with pytest.raises(AssertionError):
        # cumulative_iters only accepts int
        GradientCumulativeOptimizerHook(cumulative_iters='str')

    with pytest.raises(AssertionError):
        # cumulative_iters only accepts positive number
        GradientCumulativeOptimizerHook(cumulative_iters=-1)

    # test epoch based runner
    data = torch.rand((6, 3))
    # optimize with cumulative_iters
    loader_1 = DataLoader(data, batch_size=1)
    runner_1 = build_toy_runner()
    optimizer_hook = GradientCumulativeOptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    runner_1.register_hook(optimizer_hook)
    runner_1.run([loader_1], [('train', 1)])

    # optimize without cumulative_iters
    loader_2 = DataLoader(data, batch_size=3)
    runner_2 = build_toy_runner()
    optimizer_hook = OptimizerHook(grad_clip=dict(max_norm=0.2))
    runner_2.register_hook(optimizer_hook)
    runner_2.run([loader_2], [('train', 1)])

    # test optimizer works well
    assert (runner_1.model.fc.weight < 1).all()
    assert (runner_1.model.fc.bias < 1).all()
    # test optimizer with cumulative_iters gets the same results
    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    shutil.rmtree(runner_1.work_dir)
    shutil.rmtree(runner_2.work_dir)

    # test iter based runner
    data = torch.rand((8, 3))
    # optimize with cumulative_iters
    loader_1 = DataLoader(data, batch_size=1)
    runner_1 = build_toy_runner(dict(type='IterBasedRunner', max_iters=8))
    optimizer_hook = GradientCumulativeOptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    runner_1.register_hook(optimizer_hook)
    runner_1.run([loader_1], [('train', 1)])

    # optimize without cumulative_iters
    loader_2_divisible = DataLoader(data[:6], batch_size=3)
    loader_2_remainder = DataLoader(data[6:], batch_size=2)
    runner_2 = build_toy_runner(dict(type='IterBasedRunner', max_iters=3))
    optimizer_hook = OptimizerHook(grad_clip=dict(max_norm=0.2))
    runner_2.register_hook(optimizer_hook)
    runner_2.run([loader_2_divisible, loader_2_remainder], [('train', 2),
                                                            ('train', 1)])

    # test optimizer works well
    assert (runner_1.model.fc.weight < 1).all()
    assert (runner_1.model.fc.bias < 1).all()
    # test optimizer with cumulative_iters gets the same results
    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    shutil.rmtree(runner_1.work_dir)
    shutil.rmtree(runner_2.work_dir)

    # test has_batch_norm
    model = ToyModel(with_norm=True)
    optimizer_hook = GradientCumulativeOptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    assert optimizer_hook.has_batch_norm(model)


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_gradient_cumulative_fp16_optimizer_hook():

    class ToyModel(nn.Module):

        def __init__(self):
            super().__init__()
            self.fp16_enabled = False
            self.fc = nn.Linear(3, 2)
            nn.init.constant_(self.fc.weight, 1.)
            nn.init.constant_(self.fc.bias, 1.)

        @auto_fp16(apply_to=('x', ))
        def forward(self, x):
            x = self.fc(x)
            return x

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x).mean(), num_samples=x.shape[0])

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x).mean(), num_samples=x.shape[0])

    def build_toy_runner(config=dict(type='EpochBasedRunner', max_epochs=3)):
        model = ToyModel().cuda()
        optimizer = torch.optim.SGD(model.parameters(), lr=0.02)
        tmp_dir = tempfile.mkdtemp()

        runner = build_runner(
            config,
            default_args=dict(
                model=model,
                work_dir=tmp_dir,
                optimizer=optimizer,
                logger=logging.getLogger(),
                meta=dict()))
        return runner

    # test epoch based runner
    data = torch.rand((6, 3)).cuda()
    # optimize with cumulative_iters
    loader_1 = DataLoader(data, batch_size=1)
    runner_1 = build_toy_runner()
    optimizer_hook = GradientCumulativeFp16OptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    runner_1.register_hook(optimizer_hook)
    runner_1.run([loader_1], [('train', 1)])

    # optimize without cumulative_iters
    loader_2 = DataLoader(data, batch_size=3)
    runner_2 = build_toy_runner()
    optimizer_hook = Fp16OptimizerHook(grad_clip=dict(max_norm=0.2))
    runner_2.register_hook(optimizer_hook)
    runner_2.run([loader_2], [('train', 1)])

    # test optimizer works well
    assert (runner_1.model.fc.weight < 1).all()
    assert (runner_1.model.fc.bias < 1).all()
    # test optimizer with cumulative_iters gets the same results
    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    shutil.rmtree(runner_1.work_dir)
    shutil.rmtree(runner_2.work_dir)

    # test iter based runner
    data = torch.rand((8, 3)).cuda()
    # optimize with cumulative_iters
    loader_1 = DataLoader(data, batch_size=1)
    runner_1 = build_toy_runner(dict(type='IterBasedRunner', max_iters=8))
    optimizer_hook = GradientCumulativeFp16OptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    runner_1.register_hook(optimizer_hook)
    runner_1.run([loader_1], [('train', 1)])

    # optimize without cumulative_iters
    loader_2_divisible = DataLoader(data[:6], batch_size=3)
    loader_2_remainder = DataLoader(data[6:], batch_size=2)
    runner_2 = build_toy_runner(dict(type='IterBasedRunner', max_iters=3))
    optimizer_hook = Fp16OptimizerHook(grad_clip=dict(max_norm=0.2))
    runner_2.register_hook(optimizer_hook)
    runner_2.run([loader_2_divisible, loader_2_remainder], [('train', 2),
                                                            ('train', 1)])

    # test optimizer works well
    assert (runner_1.model.fc.weight < 1).all()
    assert (runner_1.model.fc.bias < 1).all()
    # test optimizer with cumulative_iters gets the same results
    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    shutil.rmtree(runner_1.work_dir)
    shutil.rmtree(runner_2.work_dir)