test_hooks.py 61.2 KB
Newer Older
1
# Copyright (c) OpenMMLab. All rights reserved.
Kai Chen's avatar
Kai Chen committed
2
"""Tests the hooks with runners.
Wenwei Zhang's avatar
Wenwei Zhang committed
3
4

CommandLine:
5
    pytest tests/test_runner/test_hooks.py
Wenwei Zhang's avatar
Wenwei Zhang committed
6
7
    xdoctest tests/test_hooks.py zero
"""
8
import logging
Jiangmiao Pang's avatar
Jiangmiao Pang committed
9
import os.path as osp
10
import platform
11
import random
12
import re
13
import shutil
Jiangmiao Pang's avatar
Jiangmiao Pang committed
14
import sys
15
import tempfile
16
from unittest.mock import MagicMock, Mock, call, patch
Jiangmiao Pang's avatar
Jiangmiao Pang committed
17

18
19
20
import pytest
import torch
import torch.nn as nn
shilong's avatar
shilong committed
21
from torch.nn.init import constant_
22
23
from torch.utils.data import DataLoader

24
from mmcv.fileio.file_client import PetrelBackend
25
from mmcv.runner import (CheckpointHook, DvcliveLoggerHook, EMAHook,
Ma Zerun's avatar
Ma Zerun committed
26
27
28
29
                         Fp16OptimizerHook,
                         GradientCumulativeFp16OptimizerHook,
                         GradientCumulativeOptimizerHook, IterTimerHook,
                         MlflowLoggerHook, NeptuneLoggerHook, OptimizerHook,
30
                         PaviLoggerHook, WandbLoggerHook, build_runner)
Ma Zerun's avatar
Ma Zerun committed
31
from mmcv.runner.fp16_utils import auto_fp16
32
from mmcv.runner.hooks.hook import HOOKS, Hook
33
from mmcv.runner.hooks.lr_updater import (CosineRestartLrUpdaterHook,
34
                                          CyclicLrUpdaterHook,
35
                                          FlatCosineAnnealingLrUpdaterHook,
36
37
                                          OneCycleLrUpdaterHook,
                                          StepLrUpdaterHook)
38
from mmcv.utils import TORCH_VERSION
Jiangmiao Pang's avatar
Jiangmiao Pang committed
39

40
41
sys.modules['petrel_client'] = MagicMock()
sys.modules['petrel_client.client'] = MagicMock()
Jiangmiao Pang's avatar
Jiangmiao Pang committed
42

43

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
def test_optimizerhook():

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv1 = nn.Conv2d(
                in_channels=1,
                out_channels=2,
                kernel_size=3,
                stride=1,
                padding=1,
                dilation=1)
            self.conv2 = nn.Conv2d(
                in_channels=2,
                out_channels=2,
                kernel_size=3,
                stride=1,
                padding=1,
                dilation=1)
            self.conv3 = nn.Conv2d(
                in_channels=1,
                out_channels=2,
                kernel_size=3,
                stride=1,
                padding=1,
                dilation=1)

        def forward(self, x):
            x1 = self.conv1(x)
            x2 = self.conv2(x1)
            return x1, x2

    model = Model()
    x = torch.rand(1, 1, 3, 3)

    dummy_runner = Mock()
    dummy_runner.optimizer.zero_grad = Mock(return_value=None)
    dummy_runner.optimizer.step = Mock(return_value=None)
    dummy_runner.model = model
    dummy_runner.outputs = dict()

    dummy_runner.outputs['num_samples'] = 0

    class DummyLogger():

        def __init__(self):
            self.msg = ''

        def log(self, msg=None, **kwargs):
            self.msg += msg

    dummy_runner.logger = DummyLogger()
    optimizer_hook = OptimizerHook(
        dict(max_norm=2), detect_anomalous_params=True)

    dummy_runner.outputs['loss'] = model(x)[0].sum()
    optimizer_hook.after_train_iter(dummy_runner)
    # assert the parameters of conv2 and conv3 are not in the
    # computational graph which is with x1.sum() as root.
    assert 'conv2.weight' in dummy_runner.logger.msg
    assert 'conv2.bias' in dummy_runner.logger.msg
    assert 'conv3.weight' in dummy_runner.logger.msg
    assert 'conv3.bias' in dummy_runner.logger.msg
    assert 'conv1.weight' not in dummy_runner.logger.msg
    assert 'conv1.bias' not in dummy_runner.logger.msg

    dummy_runner.outputs['loss'] = model(x)[1].sum()
    dummy_runner.logger.msg = ''
    optimizer_hook.after_train_iter(dummy_runner)
    # assert the parameters of conv3 are not in the computational graph
    assert 'conv3.weight' in dummy_runner.logger.msg
    assert 'conv3.bias' in dummy_runner.logger.msg
    assert 'conv2.weight' not in dummy_runner.logger.msg
    assert 'conv2.bias' not in dummy_runner.logger.msg
    assert 'conv1.weight' not in dummy_runner.logger.msg
    assert 'conv1.bias' not in dummy_runner.logger.msg


123
def test_checkpoint_hook(tmp_path):
124
125
126
127
128
129
130
131
132
133
134
135
136
    """xdoctest -m tests/test_runner/test_hooks.py test_checkpoint_hook."""

    # test epoch based runner
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner('EpochBasedRunner', max_epochs=1)
    runner.meta = dict()
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(checkpointhook)
    runner.run([loader], [('train', 1)])
    assert runner.meta['hook_msgs']['last_ckpt'] == osp.join(
        runner.work_dir, 'epoch_1.pth')
    shutil.rmtree(runner.work_dir)

137
138
139
140
141
    # test petrel oss when the type of runner is `EpochBasedRunner`
    runner = _build_demo_runner('EpochBasedRunner', max_epochs=4)
    runner.meta = dict()
    out_dir = 's3://user/data'
    with patch.object(PetrelBackend, 'put') as mock_put, \
142
143
            patch.object(PetrelBackend, 'remove') as mock_remove, \
            patch.object(PetrelBackend, 'isfile') as mock_isfile:
144
145
146
147
148
149
        checkpointhook = CheckpointHook(
            interval=1, out_dir=out_dir, by_epoch=True, max_keep_ckpts=2)
        runner.register_hook(checkpointhook)
        runner.run([loader], [('train', 1)])
        basename = osp.basename(runner.work_dir.rstrip(osp.sep))
        assert runner.meta['hook_msgs']['last_ckpt'] == \
150
               '/'.join([out_dir, basename, 'epoch_4.pth'])
151
152
153
154
155
    mock_put.assert_called()
    mock_remove.assert_called()
    mock_isfile.assert_called()
    shutil.rmtree(runner.work_dir)

156
157
158
159
160
161
162
163
164
165
166
    # test iter based runner
    runner = _build_demo_runner(
        'IterBasedRunner', max_iters=1, max_epochs=None)
    runner.meta = dict()
    checkpointhook = CheckpointHook(interval=1, by_epoch=False)
    runner.register_hook(checkpointhook)
    runner.run([loader], [('train', 1)])
    assert runner.meta['hook_msgs']['last_ckpt'] == osp.join(
        runner.work_dir, 'iter_1.pth')
    shutil.rmtree(runner.work_dir)

167
168
169
170
171
172
    # test petrel oss when the type of runner is `IterBasedRunner`
    runner = _build_demo_runner(
        'IterBasedRunner', max_iters=4, max_epochs=None)
    runner.meta = dict()
    out_dir = 's3://user/data'
    with patch.object(PetrelBackend, 'put') as mock_put, \
173
174
            patch.object(PetrelBackend, 'remove') as mock_remove, \
            patch.object(PetrelBackend, 'isfile') as mock_isfile:
175
176
177
178
179
180
        checkpointhook = CheckpointHook(
            interval=1, out_dir=out_dir, by_epoch=False, max_keep_ckpts=2)
        runner.register_hook(checkpointhook)
        runner.run([loader], [('train', 1)])
        basename = osp.basename(runner.work_dir.rstrip(osp.sep))
        assert runner.meta['hook_msgs']['last_ckpt'] == \
181
               '/'.join([out_dir, basename, 'iter_4.pth'])
182
183
184
185
186
    mock_put.assert_called()
    mock_remove.assert_called()
    mock_isfile.assert_called()
    shutil.rmtree(runner.work_dir)

187

shilong's avatar
shilong committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
def test_ema_hook():
    """xdoctest -m tests/test_hooks.py test_ema_hook."""

    class DemoModel(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(
                in_channels=1,
                out_channels=2,
                kernel_size=1,
                padding=1,
                bias=True)
            self._init_weight()

        def _init_weight(self):
            constant_(self.conv.weight, 0)
            constant_(self.conv.bias, 0)

        def forward(self, x):
            return self.conv(x).sum()

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

    loader = DataLoader(torch.ones((1, 1, 1, 1)))
    runner = _build_demo_runner()
    demo_model = DemoModel()
    runner.model = demo_model
    emahook = EMAHook(momentum=0.1, interval=2, warm_up=100, resume_from=None)
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(emahook, priority='HIGHEST')
    runner.register_hook(checkpointhook)
224
    runner.run([loader, loader], [('train', 1), ('val', 1)])
shilong's avatar
shilong committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
    checkpoint = torch.load(f'{runner.work_dir}/epoch_1.pth')
    contain_ema_buffer = False
    for name, value in checkpoint['state_dict'].items():
        if 'ema' in name:
            contain_ema_buffer = True
            assert value.sum() == 0
            value.fill_(1)
        else:
            assert value.sum() == 0
    assert contain_ema_buffer
    torch.save(checkpoint, f'{runner.work_dir}/epoch_1.pth')
    work_dir = runner.work_dir
    resume_ema_hook = EMAHook(
        momentum=0.5, warm_up=0, resume_from=f'{work_dir}/epoch_1.pth')
239
    runner = _build_demo_runner(max_epochs=2)
shilong's avatar
shilong committed
240
241
242
243
    runner.model = demo_model
    runner.register_hook(resume_ema_hook, priority='HIGHEST')
    checkpointhook = CheckpointHook(interval=1, by_epoch=True)
    runner.register_hook(checkpointhook)
244
    runner.run([loader, loader], [('train', 1), ('val', 1)])
shilong's avatar
shilong committed
245
246
247
248
249
250
251
252
253
254
255
256
257
    checkpoint = torch.load(f'{runner.work_dir}/epoch_2.pth')
    contain_ema_buffer = False
    for name, value in checkpoint['state_dict'].items():
        if 'ema' in name:
            contain_ema_buffer = True
            assert value.sum() == 2
        else:
            assert value.sum() == 1
    assert contain_ema_buffer
    shutil.rmtree(runner.work_dir)
    shutil.rmtree(work_dir)


258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
def test_custom_hook():

    @HOOKS.register_module()
    class ToyHook(Hook):

        def __init__(self, info, *args, **kwargs):
            super().__init__()
            self.info = info

    runner = _build_demo_runner_without_hook('EpochBasedRunner', max_epochs=1)
    # test if custom_hooks is None
    runner.register_custom_hooks(None)
    assert len(runner.hooks) == 0
    # test if custom_hooks is dict list
    custom_hooks_cfg = [
        dict(type='ToyHook', priority=51, info=51),
        dict(type='ToyHook', priority=49, info=49)
    ]
    runner.register_custom_hooks(custom_hooks_cfg)
    assert [hook.info for hook in runner.hooks] == [49, 51]
    # test if custom_hooks is object and without priority
    runner.register_custom_hooks(ToyHook(info='default'))
    assert len(runner.hooks) == 3 and runner.hooks[1].info == 'default'
    shutil.rmtree(runner.work_dir)

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    runner = _build_demo_runner_without_hook('EpochBasedRunner', max_epochs=1)
    # test custom_hooks with string priority setting
    priority_ranks = [
        'HIGHEST', 'VERY_HIGH', 'HIGH', 'ABOVE_NORMAL', 'NORMAL',
        'BELOW_NORMAL', 'LOW', 'VERY_LOW', 'LOWEST'
    ]
    random_priority_ranks = priority_ranks.copy()
    random.shuffle(random_priority_ranks)
    custom_hooks_cfg = [
        dict(type='ToyHook', priority=rank, info=rank)
        for rank in random_priority_ranks
    ]
    runner.register_custom_hooks(custom_hooks_cfg)
    assert [hook.info for hook in runner.hooks] == priority_ranks
    shutil.rmtree(runner.work_dir)

299
300
301
302
    runner = _build_demo_runner_without_hook('EpochBasedRunner', max_epochs=1)
    # test register_training_hooks order
    custom_hooks_cfg = [
        dict(type='ToyHook', priority=1, info='custom 1'),
303
        dict(type='ToyHook', priority='NORMAL', info='custom normal'),
304
305
306
307
308
309
310
311
312
313
        dict(type='ToyHook', priority=89, info='custom 89')
    ]
    runner.register_training_hooks(
        lr_config=ToyHook('lr'),
        optimizer_config=ToyHook('optimizer'),
        checkpoint_config=ToyHook('checkpoint'),
        log_config=dict(interval=1, hooks=[dict(type='ToyHook', info='log')]),
        momentum_config=ToyHook('momentum'),
        timer_config=ToyHook('timer'),
        custom_hooks_config=custom_hooks_cfg)
314
315
    # If custom hooks have same priority with default hooks, custom hooks
    # will be triggered after default hooks.
316
    hooks_order = [
317
318
        'custom 1', 'lr', 'momentum', 'optimizer', 'checkpoint',
        'custom normal', 'timer', 'custom 89', 'log'
319
320
321
322
323
    ]
    assert [hook.info for hook in runner.hooks] == hooks_order
    shutil.rmtree(runner.work_dir)


Jiangmiao Pang's avatar
Jiangmiao Pang committed
324
325
326
def test_pavi_hook():
    sys.modules['pavi'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
327
328
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner()
329
    runner.meta = dict(config_dict=dict(lr=0.02, gpu_ids=range(1)))
330
    hook = PaviLoggerHook(add_graph=False, add_last_ckpt=True)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
331
    runner.register_hook(hook)
332
    runner.run([loader, loader], [('train', 1), ('val', 1)])
333
    shutil.rmtree(runner.work_dir)
Jiangmiao Pang's avatar
Jiangmiao Pang committed
334
335

    assert hasattr(hook, 'writer')
Wenwei Zhang's avatar
Wenwei Zhang committed
336
337
338
    hook.writer.add_scalars.assert_called_with('val', {
        'learning_rate': 0.02,
        'momentum': 0.95
339
    }, 1)
340
    # in Windows environment, the latest checkpoint is copied from epoch_1.pth
341
342
343
344
    if platform.system() == 'Windows':
        snapshot_file_path = osp.join(runner.work_dir, 'latest.pth')
    else:
        snapshot_file_path = osp.join(runner.work_dir, 'epoch_1.pth')
Jiangmiao Pang's avatar
Jiangmiao Pang committed
345
    hook.writer.add_snapshot_file.assert_called_with(
346
        tag=runner.work_dir.split('/')[-1],
347
        snapshot_file_path=snapshot_file_path,
348
        iteration=1)
349
350


Wang Xinjiang's avatar
Wang Xinjiang committed
351
352
353
354
def test_sync_buffers_hook():
    loader = DataLoader(torch.ones((5, 2)))
    runner = _build_demo_runner()
    runner.register_hook_from_cfg(dict(type='SyncBuffersHook'))
355
    runner.run([loader, loader], [('train', 1), ('val', 1)])
Wang Xinjiang's avatar
Wang Xinjiang committed
356
357
358
    shutil.rmtree(runner.work_dir)


Mashiro's avatar
Mashiro committed
359
360
361
362
@pytest.mark.parametrize('multi_optimizers, max_iters, gamma, cyclic_times',
                         [(True, 8, 1, 1), (False, 8, 0.5, 2)])
def test_momentum_runner_hook(multi_optimizers, max_iters, gamma,
                              cyclic_times):
Kai Chen's avatar
Kai Chen committed
363
    """xdoctest -m tests/test_hooks.py test_momentum_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
364
365
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
366
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
Wenwei Zhang's avatar
Wenwei Zhang committed
367
368

    # add momentum scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
369
370
    hook_cfg = dict(
        type='CyclicMomentumUpdaterHook',
Wenwei Zhang's avatar
Wenwei Zhang committed
371
372
        by_epoch=False,
        target_ratio=(0.85 / 0.95, 1),
Mashiro's avatar
Mashiro committed
373
374
375
        cyclic_times=cyclic_times,
        step_ratio_up=0.4,
        gamma=gamma)
Wang Xinjiang's avatar
Wang Xinjiang committed
376
    runner.register_hook_from_cfg(hook_cfg)
Wenwei Zhang's avatar
Wenwei Zhang committed
377
378

    # add momentum LR scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
379
380
    hook_cfg = dict(
        type='CyclicLrUpdaterHook',
Wenwei Zhang's avatar
Wenwei Zhang committed
381
382
383
384
        by_epoch=False,
        target_ratio=(10, 1),
        cyclic_times=1,
        step_ratio_up=0.4)
Wang Xinjiang's avatar
Wang Xinjiang committed
385
386
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
Wenwei Zhang's avatar
Wenwei Zhang committed
387
388

    # add pavi hook
389
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
390
    runner.register_hook(hook)
391
    runner.run([loader], [('train', 1)])
392
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
393
394
395

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
Mashiro's avatar
Mashiro committed
396
    if multi_optimizers:
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.01999999999999999,
                    'learning_rate/model2': 0.009999999999999995,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.2,
                    'learning_rate/model2': 0.1,
                    'momentum/model1': 0.85,
                    'momentum/model2': 0.8052631578947369,
                }, 5),
            call(
                'train', {
                    'learning_rate/model1': 0.155,
                    'learning_rate/model2': 0.0775,
                    'momentum/model1': 0.875,
                    'momentum/model2': 0.8289473684210527,
                }, 7)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.01999999999999999,
                'momentum': 0.95
            }, 1),
            call('train', {
Mashiro's avatar
Mashiro committed
427
                'learning_rate': 0.11,
428
                'momentum': 0.85
Mashiro's avatar
Mashiro committed
429
            }, 3),
430
            call('train', {
Mashiro's avatar
Mashiro committed
431
432
433
434
435
436
437
                'learning_rate': 0.1879422863405995,
                'momentum': 0.95
            }, 6),
            call('train', {
                'learning_rate': 0.11000000000000001,
                'momentum': 0.9
            }, 8),
438
        ]
Wenwei Zhang's avatar
Wenwei Zhang committed
439
440
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

441
442
    # test constant momentum warmup
    sys.modules['pavi'] = MagicMock()
443
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        warmup='constant',
        warmup_iters=5,
        warmup_ratio=0.5,
        step=[10],
    )
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))

    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    assert hasattr(hook, 'writer')
463
    if multi_optimizers:
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.9,
                    'momentum/model2': 1.8,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.9,
                    'momentum/model2': 1.8,
                }, 5),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 10),
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.9
            }, 1),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.9
            }, 5),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 10),
        ]

    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

    # test linear momentum warmup
    sys.modules['pavi'] = MagicMock()
507
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        warmup='linear',
        warmup_iters=5,
        warmup_ratio=0.5,
        step=[10],
    )
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))

    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    assert hasattr(hook, 'writer')
527
    if multi_optimizers:
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.9,
                    'momentum/model2': 1.8,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.3571428571428572,
                    'momentum/model2': 1.2857142857142858,
                }, 3),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 10),
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.9
            }, 1),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.3571428571428572
            }, 3),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 10),
        ]

    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

    # test exponentially momentum warmup
    sys.modules['pavi'] = MagicMock()
571
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590

    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        warmup='exp',
        warmup_iters=5,
        warmup_ratio=0.5,
        step=[10],
    )
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))

    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    assert hasattr(hook, 'writer')
591
    if multi_optimizers:
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.9,
                    'momentum/model2': 1.8,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 1.4399307381848783,
                    'momentum/model2': 1.3641449098593583,
                }, 3),
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 10),
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.9
            }, 1),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 1.4399307381848783
            }, 3),
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 10),
        ]

    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

Wenwei Zhang's avatar
Wenwei Zhang committed
633

634
635
@pytest.mark.parametrize('multi_optimizers', (True, False))
def test_cosine_runner_hook(multi_optimizers):
Kai Chen's avatar
Kai Chen committed
636
    """xdoctest -m tests/test_hooks.py test_cosine_runner_hook."""
Wenwei Zhang's avatar
Wenwei Zhang committed
637
638
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
639
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
Wenwei Zhang's avatar
Wenwei Zhang committed
640
641

    # add momentum scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
642
643
    hook_cfg = dict(
        type='CosineAnnealingMomentumUpdaterHook',
644
645
646
647
        min_momentum_ratio=0.99 / 0.95,
        by_epoch=False,
        warmup_iters=2,
        warmup_ratio=0.9 / 0.95)
Wang Xinjiang's avatar
Wang Xinjiang committed
648
    runner.register_hook_from_cfg(hook_cfg)
Wenwei Zhang's avatar
Wenwei Zhang committed
649
650

    # add momentum LR scheduler
Wang Xinjiang's avatar
Wang Xinjiang committed
651
652
653
654
655
656
657
658
    hook_cfg = dict(
        type='CosineAnnealingLrUpdaterHook',
        by_epoch=False,
        min_lr_ratio=0,
        warmup_iters=2,
        warmup_ratio=0.9)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
659
    runner.register_hook(IterTimerHook())
Wenwei Zhang's avatar
Wenwei Zhang committed
660
    # add pavi hook
661
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
662
    runner.register_hook(hook)
663
    runner.run([loader], [('train', 1)])
664
    shutil.rmtree(runner.work_dir)
Wenwei Zhang's avatar
Wenwei Zhang committed
665
666
667

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
668
    if multi_optimizers:
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.97,
                    'momentum/model2': 0.9189473684210527,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0004894348370484647,
                    'learning_rate/model2': 0.00024471741852423234,
                    'momentum/model1': 0.9890211303259032,
                    'momentum/model2': 0.9369673866245399,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.97
            }, 6),
            call(
                'train', {
                    'learning_rate': 0.0004894348370484647,
                    'momentum': 0.9890211303259032
                }, 10)
        ]
Wenwei Zhang's avatar
Wenwei Zhang committed
708
709
710
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


711
@pytest.mark.parametrize('multi_optimizers, by_epoch', [(False, False),
712
713
714
                                                        (True, False),
                                                        (False, True),
                                                        (True, True)])
715
def test_flat_cosine_runner_hook(multi_optimizers, by_epoch):
716
717
718
719
720
    """xdoctest -m tests/test_hooks.py test_flat_cosine_runner_hook."""
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    max_epochs = 10 if by_epoch else 1
    runner = _build_demo_runner(
721
        multi_optimizers=multi_optimizers, max_epochs=max_epochs)
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746

    with pytest.raises(ValueError):
        # start_percent: expected float between 0 and 1
        FlatCosineAnnealingLrUpdaterHook(start_percent=-0.1, min_lr_ratio=0)

    # add LR scheduler
    hook_cfg = dict(
        type='FlatCosineAnnealingLrUpdaterHook',
        by_epoch=by_epoch,
        min_lr_ratio=0,
        warmup='linear',
        warmup_iters=10 if by_epoch else 2,
        warmup_ratio=0.9,
        start_percent=0.5)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    runner.register_hook(IterTimerHook())
    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
747
    if multi_optimizers:
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
        if by_epoch:
            calls = [
                call(
                    'train', {
                        'learning_rate/model1': 0.018000000000000002,
                        'learning_rate/model2': 0.009000000000000001,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9,
                    }, 1),
                call(
                    'train', {
                        'learning_rate/model1': 0.02,
                        'learning_rate/model2': 0.01,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9,
                    }, 11),
                call(
                    'train', {
                        'learning_rate/model1': 0.018090169943749474,
                        'learning_rate/model2': 0.009045084971874737,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9,
                    }, 61),
                call(
                    'train', {
                        'learning_rate/model1': 0.0019098300562505265,
                        'learning_rate/model2': 0.0009549150281252633,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9,
                    }, 100)
            ]
        else:
            calls = [
                call(
                    'train', {
                        'learning_rate/model1': 0.018000000000000002,
                        'learning_rate/model2': 0.009000000000000001,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9
                    }, 1),
                call(
                    'train', {
                        'learning_rate/model1': 0.02,
                        'learning_rate/model2': 0.01,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9
                    }, 6),
                call(
                    'train', {
                        'learning_rate/model1': 0.018090169943749474,
                        'learning_rate/model2': 0.009045084971874737,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9
                    }, 7),
                call(
                    'train', {
                        'learning_rate/model1': 0.0019098300562505265,
                        'learning_rate/model2': 0.0009549150281252633,
                        'momentum/model1': 0.95,
                        'momentum/model2': 0.9
                    }, 10)
            ]
    else:
        if by_epoch:
            calls = [
                call('train', {
                    'learning_rate': 0.018000000000000002,
                    'momentum': 0.95
                }, 1),
                call('train', {
                    'learning_rate': 0.02,
                    'momentum': 0.95
                }, 11),
                call('train', {
                    'learning_rate': 0.018090169943749474,
                    'momentum': 0.95
                }, 61),
                call('train', {
                    'learning_rate': 0.0019098300562505265,
                    'momentum': 0.95
                }, 100)
            ]
        else:
            calls = [
                call('train', {
                    'learning_rate': 0.018000000000000002,
                    'momentum': 0.95
                }, 1),
                call('train', {
                    'learning_rate': 0.02,
                    'momentum': 0.95
                }, 6),
                call('train', {
                    'learning_rate': 0.018090169943749474,
                    'momentum': 0.95
                }, 7),
                call('train', {
                    'learning_rate': 0.0019098300562505265,
                    'momentum': 0.95
                }, 10)
            ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


852
@pytest.mark.parametrize('multi_optimizers, max_iters', [(True, 10), (True, 2),
853
854
                                                         (False, 10),
                                                         (False, 2)])
855
def test_one_cycle_runner_hook(multi_optimizers, max_iters):
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
    """Test OneCycleLrUpdaterHook and OneCycleMomentumUpdaterHook."""
    with pytest.raises(AssertionError):
        # by_epoch should be False
        OneCycleLrUpdaterHook(max_lr=0.1, by_epoch=True)

    with pytest.raises(ValueError):
        # expected float between 0 and 1
        OneCycleLrUpdaterHook(max_lr=0.1, pct_start=-0.1)

    with pytest.raises(ValueError):
        # anneal_strategy should be either 'cos' or 'linear'
        OneCycleLrUpdaterHook(max_lr=0.1, anneal_strategy='sin')

    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
871
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
872
873
874
875
876
877
878
879
880
881
882

    # add momentum scheduler
    hook_cfg = dict(
        type='OneCycleMomentumUpdaterHook',
        base_momentum=0.85,
        max_momentum=0.95,
        pct_start=0.5,
        anneal_strategy='cos',
        three_phase=False)
    runner.register_hook_from_cfg(hook_cfg)

883
    # add LR scheduler
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
    hook_cfg = dict(
        type='OneCycleLrUpdaterHook',
        max_lr=0.01,
        pct_start=0.5,
        anneal_strategy='cos',
        div_factor=25,
        final_div_factor=1e4,
        three_phase=False)
    runner.register_hook_from_cfg(hook_cfg)
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    runner.register_hook(IterTimerHook())
    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
903
    if multi_optimizers:
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.0003999999999999993,
                    'learning_rate/model2': 0.0003999999999999993,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.95,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.00904508879153485,
                    'learning_rate/model2': 0.00904508879153485,
                    'momentum/model1': 0.8595491502812526,
                    'momentum/model2': 0.8595491502812526,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 4e-08,
                    'learning_rate/model2': 4e-08,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.95,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.0003999999999999993,
                'momentum': 0.95
            }, 1),
            call(
                'train', {
                    'learning_rate': 0.00904508879153485,
                    'momentum': 0.8595491502812526
                }, 6),
            call('train', {
                'learning_rate': 4e-08,
                'momentum': 0.95
            }, 10)
        ]
943
944
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
    # Test OneCycleLrUpdaterHook
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner(
        runner_type='IterBasedRunner', max_epochs=None, max_iters=max_iters)

    args = dict(
        max_lr=0.01,
        total_steps=5,
        pct_start=0.5,
        anneal_strategy='linear',
        div_factor=25,
        final_div_factor=1e4,
    )
    hook = OneCycleLrUpdaterHook(**args)
    runner.register_hook(hook)
    if max_iters == 10:
        # test total_steps < max_iters
        with pytest.raises(ValueError):
            runner.run([loader], [('train', 1)])
    else:
        # test total_steps > max_iters
        runner.run([loader], [('train', 1)])
        lr_last = runner.current_lr()
        t = torch.tensor([0.0], requires_grad=True)
        optim = torch.optim.SGD([t], lr=0.01)
        lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optim, **args)
        lr_target = []
        for _ in range(max_iters):
            optim.step()
            lr_target.append(optim.param_groups[0]['lr'])
            lr_scheduler.step()
        assert lr_target[-1] == lr_last[0]

979

980
981
@pytest.mark.parametrize('multi_optimizers', (True, False))
def test_cosine_restart_lr_update_hook(multi_optimizers):
Harry's avatar
Harry committed
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
    """Test CosineRestartLrUpdaterHook."""
    with pytest.raises(AssertionError):
        # either `min_lr` or `min_lr_ratio` should be specified
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5, 0.5],
            min_lr=0.1,
            min_lr_ratio=0)

    with pytest.raises(AssertionError):
        # periods and restart_weights should have the same length
        CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[2, 10],
            restart_weights=[0.5],
            min_lr_ratio=0)

    with pytest.raises(ValueError):
        # the last cumulative_periods 7 (out of [5, 7]) should >= 10
        sys.modules['pavi'] = MagicMock()
        loader = DataLoader(torch.ones((10, 2)))
        runner = _build_demo_runner()

        # add cosine restart LR scheduler
        hook = CosineRestartLrUpdaterHook(
            by_epoch=False,
            periods=[5, 2],  # cumulative_periods [5, 7 (5 + 2)]
            restart_weights=[0.5, 0.5],
            min_lr=0.0001)
        runner.register_hook(hook)
        runner.register_hook(IterTimerHook())

        # add pavi hook
        hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
        runner.register_hook(hook)
1018
        runner.run([loader], [('train', 1)])
Harry's avatar
Harry committed
1019
1020
1021
1022
        shutil.rmtree(runner.work_dir)

    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
1023
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
Harry's avatar
Harry committed
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036

    # add cosine restart LR scheduler
    hook = CosineRestartLrUpdaterHook(
        by_epoch=False,
        periods=[5, 5],
        restart_weights=[0.5, 0.5],
        min_lr_ratio=0)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
1037
    runner.run([loader], [('train', 1)])
Harry's avatar
Harry committed
1038
1039
1040
1041
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
1042
    if multi_optimizers:
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0009549150281252633,
                    'learning_rate/model2': 0.00047745751406263163,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 10)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
                'momentum': 0.95
            }, 6),
            call('train', {
                'learning_rate': 0.0009549150281252633,
                'momentum': 0.95
            }, 10)
        ]
Harry's avatar
Harry committed
1081
1082
1083
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


1084
1085
@pytest.mark.parametrize('multi_optimizers', (True, False))
def test_step_runner_hook(multi_optimizers):
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
    """Test StepLrUpdaterHook."""
    with pytest.raises(TypeError):
        # `step` should be specified
        StepLrUpdaterHook()
    with pytest.raises(AssertionError):
        # if `step` is int, should be positive
        StepLrUpdaterHook(-10)
    with pytest.raises(AssertionError):
        # if `step` is list of int, should all be positive
        StepLrUpdaterHook([10, 16, -20])

    # test StepLrUpdaterHook with int `step` value
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((30, 2)))
1100
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
1101

1102
1103
1104
1105
1106
1107
1108
1109
1110
    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        step=5,
        gamma=0.5,
        min_momentum=0.05)
    runner.register_hook_from_cfg(hook_cfg)

1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
    # add step LR scheduler
    hook = StepLrUpdaterHook(by_epoch=False, step=5, gamma=0.5, min_lr=1e-3)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
1124
    if multi_optimizers:
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.01,
                    'learning_rate/model2': 0.005,
1137
1138
                    'momentum/model1': 0.475,
                    'momentum/model2': 0.45
1139
1140
1141
1142
1143
                }, 6),
            call(
                'train', {
                    'learning_rate/model1': 0.0025,
                    'learning_rate/model2': 0.00125,
1144
1145
                    'momentum/model1': 0.11875,
                    'momentum/model2': 0.1125
1146
1147
1148
1149
1150
                }, 16),
            call(
                'train', {
                    'learning_rate/model1': 0.00125,
                    'learning_rate/model2': 0.001,
1151
1152
                    'momentum/model1': 0.059375,
                    'momentum/model2': 0.05625
1153
1154
1155
1156
1157
                }, 21),
            call(
                'train', {
                    'learning_rate/model1': 0.001,
                    'learning_rate/model2': 0.001,
1158
1159
                    'momentum/model1': 0.05,
                    'momentum/model2': 0.05
1160
1161
1162
1163
1164
                }, 26),
            call(
                'train', {
                    'learning_rate/model1': 0.001,
                    'learning_rate/model2': 0.001,
1165
1166
                    'momentum/model1': 0.05,
                    'momentum/model2': 0.05
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
                }, 30)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.01,
1177
                'momentum': 0.475
1178
1179
1180
            }, 6),
            call('train', {
                'learning_rate': 0.0025,
1181
                'momentum': 0.11875
1182
1183
1184
            }, 16),
            call('train', {
                'learning_rate': 0.00125,
1185
                'momentum': 0.059375
1186
1187
1188
            }, 21),
            call('train', {
                'learning_rate': 0.001,
1189
                'momentum': 0.05
1190
1191
1192
            }, 26),
            call('train', {
                'learning_rate': 0.001,
1193
                'momentum': 0.05
1194
1195
1196
1197
1198
1199
1200
            }, 30)
        ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)

    # test StepLrUpdaterHook with list[int] `step` value
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
1201
    runner = _build_demo_runner(multi_optimizers=multi_optimizers)
1202

1203
1204
1205
1206
1207
1208
1209
1210
    # add momentum scheduler
    hook_cfg = dict(
        type='StepMomentumUpdaterHook',
        by_epoch=False,
        step=[4, 6, 8],
        gamma=0.1)
    runner.register_hook_from_cfg(hook_cfg)

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
    # add step LR scheduler
    hook = StepLrUpdaterHook(by_epoch=False, step=[4, 6, 8], gamma=0.1)
    runner.register_hook(hook)
    runner.register_hook(IterTimerHook())

    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    # TODO: use a more elegant way to check values
    assert hasattr(hook, 'writer')
1224
    if multi_optimizers:
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.002,
                    'learning_rate/model2': 0.001,
1237
1238
                    'momentum/model1': 9.5e-2,
                    'momentum/model2': 9.000000000000001e-2
1239
1240
1241
1242
1243
                }, 5),
            call(
                'train', {
                    'learning_rate/model1': 2.0000000000000004e-4,
                    'learning_rate/model2': 1.0000000000000002e-4,
1244
1245
                    'momentum/model1': 9.500000000000001e-3,
                    'momentum/model2': 9.000000000000003e-3
1246
1247
1248
1249
1250
                }, 7),
            call(
                'train', {
                    'learning_rate/model1': 2.0000000000000005e-05,
                    'learning_rate/model2': 1.0000000000000003e-05,
1251
1252
                    'momentum/model1': 9.500000000000002e-4,
                    'momentum/model2': 9.000000000000002e-4
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
                }, 9)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
                'learning_rate': 0.002,
1263
                'momentum': 0.095
1264
            }, 5),
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
            call(
                'train', {
                    'learning_rate': 2.0000000000000004e-4,
                    'momentum': 9.500000000000001e-3
                }, 7),
            call(
                'train', {
                    'learning_rate': 2.0000000000000005e-05,
                    'momentum': 9.500000000000002e-4
                }, 9)
1275
1276
1277
1278
        ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


Mashiro's avatar
Mashiro committed
1279
1280
1281
1282
@pytest.mark.parametrize('multi_optimizers, max_iters, gamma, cyclic_times',
                         [(True, 8, 1, 1), (False, 8, 0.5, 2)])
def test_cyclic_lr_update_hook(multi_optimizers, max_iters, gamma,
                               cyclic_times):
1283
1284
1285
1286
1287
1288
    """Test CyclicLrUpdateHook."""
    with pytest.raises(AssertionError):
        # by_epoch should be False
        CyclicLrUpdaterHook(by_epoch=True)

    with pytest.raises(AssertionError):
Mashiro's avatar
Mashiro committed
1289
        # target_ratio must be either float or tuple/list of two floats
1290
1291
1292
        CyclicLrUpdaterHook(by_epoch=False, target_ratio=(10.0, 0.1, 0.2))

    with pytest.raises(AssertionError):
Mashiro's avatar
Mashiro committed
1293
        # step_ratio_up must be in range [0,1)
1294
1295
1296
1297
1298
1299
        CyclicLrUpdaterHook(by_epoch=False, step_ratio_up=1.4)

    with pytest.raises(ValueError):
        # anneal_strategy must be one of "cos" or "linear"
        CyclicLrUpdaterHook(by_epoch=False, anneal_strategy='sin')

Mashiro's avatar
Mashiro committed
1300
1301
1302
1303
    with pytest.raises(AssertionError):
        # gamma must be in range (0, 1]
        CyclicLrUpdaterHook(by_epoch=False, gamma=0)

1304
1305
1306
1307
1308
1309
    sys.modules['pavi'] = MagicMock()
    loader = DataLoader(torch.ones((10, 2)))
    runner = _build_demo_runner(
        runner_type='IterBasedRunner',
        max_epochs=None,
        max_iters=max_iters,
1310
        multi_optimizers=multi_optimizers)
1311
1312

    # add cyclic LR scheduler
Mashiro's avatar
Mashiro committed
1313
    schedule_hook = CyclicLrUpdaterHook(
1314
1315
        by_epoch=False,
        target_ratio=(10.0, 1.0),
Mashiro's avatar
Mashiro committed
1316
        cyclic_times=cyclic_times,
1317
        step_ratio_up=0.5,
Mashiro's avatar
Mashiro committed
1318
1319
1320
        anneal_strategy='linear',
        gamma=gamma)
    runner.register_hook(schedule_hook)
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
    runner.register_hook_from_cfg(dict(type='IterTimerHook'))
    runner.register_hook(IterTimerHook())
    # add pavi hook
    hook = PaviLoggerHook(interval=1, add_graph=False, add_last_ckpt=True)
    runner.register_hook(hook)
    runner.run([loader], [('train', 1)])
    shutil.rmtree(runner.work_dir)

    assert hasattr(hook, 'writer')
    if multi_optimizers:
        calls = [
            call(
                'train', {
                    'learning_rate/model1': 0.02,
                    'learning_rate/model2': 0.01,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 1),
            call(
                'train', {
                    'learning_rate/model1': 0.155,
                    'learning_rate/model2': 0.0775,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 4),
            call(
                'train', {
                    'learning_rate/model1': 0.155,
                    'learning_rate/model2': 0.0775,
                    'momentum/model1': 0.95,
                    'momentum/model2': 0.9,
                }, 6)
        ]
    else:
        calls = [
            call('train', {
                'learning_rate': 0.02,
                'momentum': 0.95
            }, 1),
            call('train', {
Mashiro's avatar
Mashiro committed
1361
                'learning_rate': 0.11,
1362
1363
1364
                'momentum': 0.95
            }, 4),
            call('train', {
Mashiro's avatar
Mashiro committed
1365
                'learning_rate': 0.065,
1366
1367
                'momentum': 0.95
            }, 6),
Mashiro's avatar
Mashiro committed
1368
1369
1370
1371
            call('train', {
                'learning_rate': 0.11,
                'momentum': 0.95
            }, 7),
1372
1373
1374
1375
        ]
    hook.writer.add_scalars.assert_has_calls(calls, any_order=True)


1376
1377
1378
1379
1380
@pytest.mark.parametrize('log_model', (True, False))
def test_mlflow_hook(log_model):
    sys.modules['mlflow'] = MagicMock()
    sys.modules['mlflow.pytorch'] = MagicMock()

Wenwei Zhang's avatar
Wenwei Zhang committed
1381
1382
    runner = _build_demo_runner()
    loader = DataLoader(torch.ones((5, 2)))
1383

1384
    hook = MlflowLoggerHook(exp_name='test', log_model=log_model)
1385
    runner.register_hook(hook)
1386
    runner.run([loader, loader], [('train', 1), ('val', 1)])
1387
    shutil.rmtree(runner.work_dir)
1388
1389

    hook.mlflow.set_experiment.assert_called_with('test')
Wenwei Zhang's avatar
Wenwei Zhang committed
1390
1391
1392
1393
    hook.mlflow.log_metrics.assert_called_with(
        {
            'learning_rate': 0.02,
            'momentum': 0.95
1394
        }, step=6)
1395
1396
    if log_model:
        hook.mlflow_pytorch.log_model.assert_called_with(
1397
1398
1399
            runner.model,
            'models',
            pip_requirements=[f'torch=={TORCH_VERSION}'])
1400
1401
1402
1403
1404
1405
    else:
        assert not hook.mlflow_pytorch.log_model.called


def test_wandb_hook():
    sys.modules['wandb'] = MagicMock()
Wenwei Zhang's avatar
Wenwei Zhang committed
1406
    runner = _build_demo_runner()
1407
    hook = WandbLoggerHook(log_artifact=True)
Wenwei Zhang's avatar
Wenwei Zhang committed
1408
    loader = DataLoader(torch.ones((5, 2)))
1409
1410

    runner.register_hook(hook)
1411
    runner.run([loader, loader], [('train', 1), ('val', 1)])
1412

1413
1414
    shutil.rmtree(runner.work_dir)

1415
    hook.wandb.init.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
1416
1417
1418
1419
    hook.wandb.log.assert_called_with({
        'learning_rate': 0.02,
        'momentum': 0.95
    },
1420
1421
                                      step=6,
                                      commit=True)
1422
    hook.wandb.log_artifact.assert_called()
1423
    hook.wandb.join.assert_called_with()
Wenwei Zhang's avatar
Wenwei Zhang committed
1424
1425


fcakyon's avatar
fcakyon committed
1426
1427
1428
1429
1430
def test_neptune_hook():
    sys.modules['neptune'] = MagicMock()
    sys.modules['neptune.new'] = MagicMock()
    runner = _build_demo_runner()
    hook = NeptuneLoggerHook()
1431

fcakyon's avatar
fcakyon committed
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
    loader = DataLoader(torch.ones((5, 2)))

    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)])
    shutil.rmtree(runner.work_dir)

    hook.neptune.init.assert_called_with()
    hook.run['momentum'].log.assert_called_with(0.95, step=6)
    hook.run.stop.assert_called_with()


1443
def test_dvclive_hook():
1444
1445
1446
    sys.modules['dvclive'] = MagicMock()
    runner = _build_demo_runner()

1447
1448
    hook = DvcliveLoggerHook()
    dvclive_mock = hook.dvclive
1449
1450
1451
1452
1453
1454
    loader = DataLoader(torch.ones((5, 2)))

    runner.register_hook(hook)
    runner.run([loader, loader], [('train', 1), ('val', 1)])
    shutil.rmtree(runner.work_dir)

1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
    dvclive_mock.set_step.assert_called_with(6)
    dvclive_mock.log.assert_called_with('momentum', 0.95)


def test_dvclive_hook_model_file(tmp_path):
    sys.modules['dvclive'] = MagicMock()
    runner = _build_demo_runner()

    hook = DvcliveLoggerHook(model_file=osp.join(runner.work_dir, 'model.pth'))
    runner.register_hook(hook)

    loader = torch.utils.data.DataLoader(torch.ones((5, 2)))
    loader = DataLoader(torch.ones((5, 2)))

    runner.run([loader, loader], [('train', 1), ('val', 1)])

    assert osp.exists(osp.join(runner.work_dir, 'model.pth'))

    shutil.rmtree(runner.work_dir)
1474
1475


1476
1477
1478
def _build_demo_runner_without_hook(runner_type='EpochBasedRunner',
                                    max_epochs=1,
                                    max_iters=None,
1479
                                    multi_optimizers=False):
1480
1481
1482
1483
1484
1485

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.linear = nn.Linear(2, 1)
1486
            self.conv = nn.Conv2d(3, 3, 3)
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498

        def forward(self, x):
            return self.linear(x)

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x))

    model = Model()

1499
    if multi_optimizers:
1500
1501
1502
1503
1504
1505
1506
1507
        optimizer = {
            'model1':
            torch.optim.SGD(model.linear.parameters(), lr=0.02, momentum=0.95),
            'model2':
            torch.optim.SGD(model.conv.parameters(), lr=0.01, momentum=0.9),
        }
    else:
        optimizer = torch.optim.SGD(model.parameters(), lr=0.02, momentum=0.95)
Wenwei Zhang's avatar
Wenwei Zhang committed
1508

1509
    tmp_dir = tempfile.mkdtemp()
1510
1511
1512
1513
1514
1515
1516
1517
1518
    runner = build_runner(
        dict(type=runner_type),
        default_args=dict(
            model=model,
            work_dir=tmp_dir,
            optimizer=optimizer,
            logger=logging.getLogger(),
            max_epochs=max_epochs,
            max_iters=max_iters))
1519
1520
1521
1522
1523
1524
    return runner


def _build_demo_runner(runner_type='EpochBasedRunner',
                       max_epochs=1,
                       max_iters=None,
1525
                       multi_optimizers=False):
1526
1527
1528
1529
1530
1531
    log_config = dict(
        interval=1, hooks=[
            dict(type='TextLoggerHook'),
        ])

    runner = _build_demo_runner_without_hook(runner_type, max_epochs,
1532
                                             max_iters, multi_optimizers)
1533

1534
    runner.register_checkpoint_hook(dict(interval=1))
Wenwei Zhang's avatar
Wenwei Zhang committed
1535
1536
    runner.register_logger_hooks(log_config)
    return runner
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574


def test_runner_with_revise_keys():
    import os

    class Model(nn.Module):

        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(3, 3, 1)

    class PrefixModel(nn.Module):

        def __init__(self):
            super().__init__()
            self.backbone = Model()

    pmodel = PrefixModel()
    model = Model()
    checkpoint_path = os.path.join(tempfile.gettempdir(), 'checkpoint.pth')

    # add prefix
    torch.save(model.state_dict(), checkpoint_path)
    runner = _build_demo_runner(runner_type='EpochBasedRunner')
    runner.model = pmodel
    state_dict = runner.load_checkpoint(
        checkpoint_path, revise_keys=[(r'^', 'backbone.')])
    for key in pmodel.backbone.state_dict().keys():
        assert torch.equal(pmodel.backbone.state_dict()[key], state_dict[key])
    # strip prefix
    torch.save(pmodel.state_dict(), checkpoint_path)
    runner.model = model
    state_dict = runner.load_checkpoint(
        checkpoint_path, revise_keys=[(r'^backbone\.', '')])
    for key in state_dict.keys():
        key_stripped = re.sub(r'^backbone\.', '', key)
        assert torch.equal(model.state_dict()[key_stripped], state_dict[key])
    os.remove(checkpoint_path)
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591


def test_get_triggered_stages():

    class ToyHook(Hook):
        # test normal stage
        def before_run():
            pass

        # test the method mapped to multi stages.
        def after_epoch():
            pass

    hook = ToyHook()
    # stages output have order, so here is list instead of set.
    expected_stages = ['before_run', 'after_train_epoch', 'after_val_epoch']
    assert hook.get_triggered_stages() == expected_stages
Ma Zerun's avatar
Ma Zerun committed
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795


def test_gradient_cumulative_optimizer_hook():

    class ToyModel(nn.Module):

        def __init__(self, with_norm=False):
            super().__init__()
            self.fp16_enabled = False
            self.fc = nn.Linear(3, 2)
            nn.init.constant_(self.fc.weight, 1.)
            nn.init.constant_(self.fc.bias, 1.)
            self.with_norm = with_norm
            if with_norm:
                self.norm = nn.BatchNorm1d(2)

        def forward(self, x):
            x = self.fc(x)
            if self.with_norm:
                x = self.norm(x)
            return x

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x).mean(), num_samples=x.shape[0])

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x).mean(), num_samples=x.shape[0])

    def build_toy_runner(config=dict(type='EpochBasedRunner', max_epochs=3)):
        model = ToyModel()
        optimizer = torch.optim.SGD(model.parameters(), lr=0.02)
        tmp_dir = tempfile.mkdtemp()

        runner = build_runner(
            config,
            default_args=dict(
                model=model,
                work_dir=tmp_dir,
                optimizer=optimizer,
                logger=logging.getLogger(),
                meta=dict()))
        return runner

    with pytest.raises(AssertionError):
        # cumulative_iters only accepts int
        GradientCumulativeOptimizerHook(cumulative_iters='str')

    with pytest.raises(AssertionError):
        # cumulative_iters only accepts positive number
        GradientCumulativeOptimizerHook(cumulative_iters=-1)

    # test epoch based runner
    data = torch.rand((6, 3))
    # optimize with cumulative_iters
    loader_1 = DataLoader(data, batch_size=1)
    runner_1 = build_toy_runner()
    optimizer_hook = GradientCumulativeOptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    runner_1.register_hook(optimizer_hook)
    runner_1.run([loader_1], [('train', 1)])

    # optimize without cumulative_iters
    loader_2 = DataLoader(data, batch_size=3)
    runner_2 = build_toy_runner()
    optimizer_hook = OptimizerHook(grad_clip=dict(max_norm=0.2))
    runner_2.register_hook(optimizer_hook)
    runner_2.run([loader_2], [('train', 1)])

    # test optimizer works well
    assert (runner_1.model.fc.weight < 1).all()
    assert (runner_1.model.fc.bias < 1).all()
    # test optimizer with cumulative_iters gets the same results
    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    shutil.rmtree(runner_1.work_dir)
    shutil.rmtree(runner_2.work_dir)

    # test iter based runner
    data = torch.rand((8, 3))
    # optimize with cumulative_iters
    loader_1 = DataLoader(data, batch_size=1)
    runner_1 = build_toy_runner(dict(type='IterBasedRunner', max_iters=8))
    optimizer_hook = GradientCumulativeOptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    runner_1.register_hook(optimizer_hook)
    runner_1.run([loader_1], [('train', 1)])

    # optimize without cumulative_iters
    loader_2_divisible = DataLoader(data[:6], batch_size=3)
    loader_2_remainder = DataLoader(data[6:], batch_size=2)
    runner_2 = build_toy_runner(dict(type='IterBasedRunner', max_iters=3))
    optimizer_hook = OptimizerHook(grad_clip=dict(max_norm=0.2))
    runner_2.register_hook(optimizer_hook)
    runner_2.run([loader_2_divisible, loader_2_remainder], [('train', 2),
                                                            ('train', 1)])

    # test optimizer works well
    assert (runner_1.model.fc.weight < 1).all()
    assert (runner_1.model.fc.bias < 1).all()
    # test optimizer with cumulative_iters gets the same results
    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    shutil.rmtree(runner_1.work_dir)
    shutil.rmtree(runner_2.work_dir)

    # test has_batch_norm
    model = ToyModel(with_norm=True)
    optimizer_hook = GradientCumulativeOptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    assert optimizer_hook.has_batch_norm(model)


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_gradient_cumulative_fp16_optimizer_hook():

    class ToyModel(nn.Module):

        def __init__(self):
            super().__init__()
            self.fp16_enabled = False
            self.fc = nn.Linear(3, 2)
            nn.init.constant_(self.fc.weight, 1.)
            nn.init.constant_(self.fc.bias, 1.)

        @auto_fp16(apply_to=('x', ))
        def forward(self, x):
            x = self.fc(x)
            return x

        def train_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x).mean(), num_samples=x.shape[0])

        def val_step(self, x, optimizer, **kwargs):
            return dict(loss=self(x).mean(), num_samples=x.shape[0])

    def build_toy_runner(config=dict(type='EpochBasedRunner', max_epochs=3)):
        model = ToyModel().cuda()
        optimizer = torch.optim.SGD(model.parameters(), lr=0.02)
        tmp_dir = tempfile.mkdtemp()

        runner = build_runner(
            config,
            default_args=dict(
                model=model,
                work_dir=tmp_dir,
                optimizer=optimizer,
                logger=logging.getLogger(),
                meta=dict()))
        return runner

    # test epoch based runner
    data = torch.rand((6, 3)).cuda()
    # optimize with cumulative_iters
    loader_1 = DataLoader(data, batch_size=1)
    runner_1 = build_toy_runner()
    optimizer_hook = GradientCumulativeFp16OptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    runner_1.register_hook(optimizer_hook)
    runner_1.run([loader_1], [('train', 1)])

    # optimize without cumulative_iters
    loader_2 = DataLoader(data, batch_size=3)
    runner_2 = build_toy_runner()
    optimizer_hook = Fp16OptimizerHook(grad_clip=dict(max_norm=0.2))
    runner_2.register_hook(optimizer_hook)
    runner_2.run([loader_2], [('train', 1)])

    # test optimizer works well
    assert (runner_1.model.fc.weight < 1).all()
    assert (runner_1.model.fc.bias < 1).all()
    # test optimizer with cumulative_iters gets the same results
    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    shutil.rmtree(runner_1.work_dir)
    shutil.rmtree(runner_2.work_dir)

    # test iter based runner
    data = torch.rand((8, 3)).cuda()
    # optimize with cumulative_iters
    loader_1 = DataLoader(data, batch_size=1)
    runner_1 = build_toy_runner(dict(type='IterBasedRunner', max_iters=8))
    optimizer_hook = GradientCumulativeFp16OptimizerHook(
        grad_clip=dict(max_norm=0.2), cumulative_iters=3)
    runner_1.register_hook(optimizer_hook)
    runner_1.run([loader_1], [('train', 1)])

    # optimize without cumulative_iters
    loader_2_divisible = DataLoader(data[:6], batch_size=3)
    loader_2_remainder = DataLoader(data[6:], batch_size=2)
    runner_2 = build_toy_runner(dict(type='IterBasedRunner', max_iters=3))
    optimizer_hook = Fp16OptimizerHook(grad_clip=dict(max_norm=0.2))
    runner_2.register_hook(optimizer_hook)
    runner_2.run([loader_2_divisible, loader_2_remainder], [('train', 2),
                                                            ('train', 1)])

    # test optimizer works well
    assert (runner_1.model.fc.weight < 1).all()
    assert (runner_1.model.fc.bias < 1).all()
    # test optimizer with cumulative_iters gets the same results
    assert torch.allclose(runner_1.model.fc.weight, runner_2.model.fc.weight)
    assert torch.allclose(runner_1.model.fc.bias, runner_2.model.fc.bias)
    shutil.rmtree(runner_1.work_dir)
    shutil.rmtree(runner_2.work_dir)