transformer.py 46 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
3
4

"""Transformer."""
import math
5
from contextlib import nullcontext
6
import torch
7
import torch.nn.functional as F
8

9
from megatron import get_timers, get_args, core
10
from .module import MegatronModule
11
from megatron.core import mpu, tensor_parallel
12
from megatron.model.enums import AttnMaskType, ModelType, LayerType, AttnType
13
from megatron.model import LayerNorm
14
15
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
16
from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu
17

18
19
20
21
22
23
24
25
26
27
try:
    from einops import rearrange
except ImportError:
    rearrange = None

try:
    from flash_attn.flash_attn_interface import flash_attn_unpadded_func
except ImportError:
    flash_attn_unpadded_func = None

28

29
30
31
32
33
34
35
36
37
38
""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
39
    Transformer takes input of size [s, b, h] and returns a
40
41
42
43
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

44
class DropPath(MegatronModule):
45
    """Drop paths (Stochastic Depth) per sample
46
47
48
    (when applied in main path of residual blocks).
    """

Vijay Korthikanti's avatar
Vijay Korthikanti committed
49
    def __init__(self, drop_prob=0.):
50
51
52
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

Vijay Korthikanti's avatar
Vijay Korthikanti committed
53
    def forward(self, hidden_state):
54
        if self.drop_prob == 0. or not self.training:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
55
            return hidden_state
56
57
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
58
59
        # hidden_state: [s, b, h]
        shape = (1,) + (hidden_state.shape[1],) + (1,) * (hidden_state.ndim - 2)
60
        random_tensor = keep_prob + \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
61
            torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device)
62
        random_tensor.floor_()  # binarize
Vijay Korthikanti's avatar
Vijay Korthikanti committed
63
        output = hidden_state.div(keep_prob) * random_tensor
64
65
        return output

66
67
68
69
70
71
72
73
74
75
76
def _args_to_kwargs():
    args = get_args()

    common_kwargs = {
        "params_dtype": args.params_dtype,
        "use_cpu_initialization": args.use_cpu_initialization,
        "perform_initialization": args.perform_initialization,
        "gradient_accumulation_fusion": args.gradient_accumulation_fusion,
        "sequence_parallel_enabled": args.sequence_parallel,
    }
    return common_kwargs
77

78
79
80
81
82
class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
83
    state back into h hidden dimension.
84
85
    """

86
    def __init__(self, init_method, output_layer_init_method):
87
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
88
        args = get_args()
89

90

91
        # Project to 4h.
92
        self.dense_h_to_4h = tensor_parallel.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
93
            args.hidden_size,
94
            args.ffn_hidden_size,
95
            gather_output=False,
96
            init_method=init_method,
97
98
99
            skip_bias_add=True,
            async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
            **_args_to_kwargs())
100

101
102
103
104
105
106
        self.bias_gelu_fusion = args.bias_gelu_fusion
        self.activation_func = F.gelu
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
107
108

        # Project back to h.
109
        self.dense_4h_to_h = tensor_parallel.RowParallelLinear(
110
            args.ffn_hidden_size,
Mohammad's avatar
Mohammad committed
111
            args.hidden_size,
112
            input_is_parallel=True,
113
            init_method=output_layer_init_method,
114
115
            skip_bias_add=True,
            **_args_to_kwargs())
116

117
118
    def forward(self, hidden_states):

119
120
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
121

122
123
124
125
126
127
128
129
130
131
        if self.bias_gelu_fusion:
             intermediate_parallel = \
                     bias_gelu_impl(intermediate_parallel, bias_parallel)
        else:
            intermediate_parallel = \
                self.activation_func(intermediate_parallel + bias_parallel)

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
132

rprenger's avatar
rprenger committed
133
134
135
136
class SwitchMLP(MegatronModule):
    """
    Routes input to one of N MLP "experts"
    """
rprenger's avatar
rprenger committed
137
    def __init__(self, init_method, output_layer_init_method):
rprenger's avatar
rprenger committed
138
139
        super(SwitchMLP, self).__init__()
        args = get_args()
rprenger's avatar
rprenger committed
140
        self.router = torch.nn.Linear(args.hidden_size, args.num_experts)
rprenger's avatar
rprenger committed
141
        self.experts = torch.nn.ModuleList()
rprenger's avatar
rprenger committed
142
        for i in range(args.num_experts):
rprenger's avatar
rprenger committed
143
            self.experts.append(ParallelMLP(init_method, output_layer_init_method))
144

rprenger's avatar
rprenger committed
145
    def forward(self, hidden_states):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
146
147
148
        # hidden_states: [s, b, h]
        s = hidden_states.size(0)
        b = hidden_states.size(1)
rprenger's avatar
rprenger committed
149
150
        h = hidden_states.size(2)
        route = self.router(hidden_states)
rprenger's avatar
rprenger committed
151
        route = torch.nn.functional.softmax(route, dim=2)
rprenger's avatar
rprenger committed
152
        max_prob, max_ind = torch.max(route, dim=2)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
153
        max_prob = torch.unsqueeze(max_prob, 2) # [s b 1]
154

rprenger's avatar
rprenger committed
155
        # TODO (rprenger) TODO this could be made easier to read
Vijay Korthikanti's avatar
Vijay Korthikanti committed
156
        # Converting [s, b, h] to [s*b, h].
157
        # Each vector could be routed differently
Vijay Korthikanti's avatar
Vijay Korthikanti committed
158
159
160
        hidden_states = hidden_states.view(-1, hidden_states.size(2)) # [s*b h]
        max_prob = max_prob.view(-1, max_prob.size(2)) # [s*b 1]
        max_ind = max_ind.view(-1) # [s*b]
rprenger's avatar
rprenger committed
161
162
163

        output_total = torch.empty_like(hidden_states)
        output_bias_total = torch.empty_like(hidden_states)
rprenger's avatar
rprenger committed
164
        #TODO (rprenger) This does each expert in serial, but it could be parallelized
165

rprenger's avatar
rprenger committed
166
        for expert_num, expert in enumerate(self.experts):
167
168
            local_indices = (max_ind == expert_num).nonzero()
            hidden = hidden_states[local_indices,:]
rprenger's avatar
rprenger committed
169
170
            output, output_bias = expert(hidden)
            output_bias = output_bias.expand_as(output)
171
172
173
            output_total[local_indices,:] = output
            output_bias_total[local_indices,:] = output_bias

rprenger's avatar
rprenger committed
174
175
        output_total = output_total*max_prob
        output_bias_total = output_bias_total*max_prob
Vijay Korthikanti's avatar
Vijay Korthikanti committed
176
177
        output_total = output_total.view(s, b, h)
        output_bias_total = output_bias_total.view(s, b, h)
rprenger's avatar
rprenger committed
178
179

        return output_total, output_bias_total
180

181
182

class CoreAttention(MegatronModule):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
183

184
185
186
187
188
189
190
191
192
193
194
195
196
    def __init__(self, layer_number,
                 attn_mask_type=AttnMaskType.padding):
        super(CoreAttention, self).__init__()
        args = get_args()
        self.fp16 = args.fp16
        self.bf16 = args.bf16

        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
        self.attn_mask_type = attn_mask_type
Vijay Korthikanti's avatar
Vijay Korthikanti committed
197
        self.sequence_parallel = args.sequence_parallel
198
199
200
201

        projection_size = args.kv_channels * args.num_attention_heads

        # Per attention head and per partition values.
202
        world_size = mpu.get_tensor_model_parallel_world_size()
203
204
205
        self.hidden_size_per_partition = core.utils.divide(projection_size,
                                                           world_size)
        self.hidden_size_per_attention_head = core.utils.divide(
206
            projection_size, args.num_attention_heads)
207
        self.num_attention_heads_per_partition = core.utils.divide(
208
            args.num_attention_heads, world_size)
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16, self.bf16,
            self.attn_mask_type,
            args.masked_softmax_fusion,
            attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
228

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    def forward(self, query_layer, key_layer,
                value_layer, attention_mask):

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # [b, np, sq, sk]
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
                       key_layer.size(0))

        # [sq, b, np, hn] -> [sq, b * np, hn]
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        # [sk, b, np, hn] -> [sk, b * np, hn]
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
249
        # preallocting input tensor: [b * np, sq, sk]
250
        matmul_input_buffer = mpu.get_global_memory_buffer().get_tensor(
251
            (output_size[0]*output_size[1], output_size[2], output_size[3]),
Vijay Korthikanti's avatar
Vijay Korthikanti committed
252
            query_layer.dtype, "mpu")
253
254
255

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
256
            matmul_input_buffer,
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        # ===========================
        # Attention probs and dropout
        # ===========================

        # attention scores and attention mask [b, np, sq, sk]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
275
        if not self.sequence_parallel:
276
            with tensor_parallel.get_cuda_rng_tracker().fork():
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
                attention_probs = self.attention_dropout(attention_probs)
        else:
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(value_layer.size(0),
                                       output_size[0] * output_size[1], -1)

        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)

        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
class FlashSelfAttention(torch.nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
                 device=None, dtype=None):
        super().__init__()
        assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
                                                      'e.g., with pip install flash-attn')
        assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

    def forward(self, q, k, v):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
        """
        assert q.dtype in [torch.float16, torch.bfloat16]
        assert q.is_cuda
        batch_size, seqlen = q.shape[0], q.shape[1]
        q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
        max_s = seqlen
        cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
                                  device=q.device)
        output = flash_attn_unpadded_func(
            q, k, v, cu_seqlens, cu_seqlens, max_s, max_s,
            self.dropout_p if self.training else 0.0,
            softmax_scale=self.softmax_scale, causal=self.causal
        )
        output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
        return output


361
class ParallelAttention(MegatronModule):
362
363
    """Parallel self-attention layer abstract class.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
364
    Self-attention layer takes input with size [s, b, h]
365
366
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
367

368
    def __init__(self, init_method,
369
370
371
372
                 output_layer_init_method, layer_number,
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
373
        args = get_args()
374
        self.layer_number = max(1, layer_number)
375
376
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
377
        self.params_dtype = args.params_dtype
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
        self.sequence_parallel = args.sequence_parallel

        self.use_flash_attn = args.use_flash_attn
        if self.use_flash_attn:
            if flash_attn_unpadded_func is None:
                raise ImportError('FlashAttention is not installed, please install with '
                                  'pip install flash-attn')
            assert attention_type == AttnType.self_attn, ('FlashAttention code path only supports '
                                                          'self-attention for now')
            assert self.attn_mask_type == AttnMaskType.causal, ('FlashAttention code path only '
                                                                'supports causal mask for now')
            headdim = args.hidden_size / args.num_attention_heads
            assert headdim <= 128, 'FlashAttention only supports head dimension at most 128'
            if rearrange is None:
                raise ImportError('einops is not installed, please install with pip install einops')
393
394

        projection_size = args.kv_channels * args.num_attention_heads
395
396

        # Per attention head and per partition values.
397
        world_size = mpu.get_tensor_model_parallel_world_size()
398
        self.hidden_size_per_attention_head = core.utils.divide(
399
            projection_size, args.num_attention_heads)
400
        self.num_attention_heads_per_partition = core.utils.divide(
Mohammad's avatar
Mohammad committed
401
            args.num_attention_heads, world_size)
402
403

        # Strided linear layer.
404
        if attention_type == AttnType.self_attn:
405
            self.query_key_value = tensor_parallel.ColumnParallelLinear(
406
407
408
                args.hidden_size,
                3 * projection_size,
                gather_output=False,
409
410
411
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
412
413
        else:
            assert attention_type == AttnType.cross_attn
414
            self.query = tensor_parallel.ColumnParallelLinear(
415
416
417
                args.hidden_size,
                projection_size,
                gather_output=False,
418
419
420
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
421

422

423
            self.key_value = tensor_parallel.ColumnParallelLinear(
424
425
426
                args.hidden_size,
                2 * projection_size,
                gather_output=False,
427
428
429
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
430

431
432
        self.core_attention = CoreAttention(self.layer_number,
                                            self.attn_mask_type)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
433
        self.checkpoint_core_attention = args.recompute_granularity == 'selective'
434

435
436
437
438
439
        if self.use_flash_attn:
            self.core_attention_flash = FlashSelfAttention(
                causal=True, attention_dropout=args.attention_dropout
            )

440
        # Output.
441
        self.dense = tensor_parallel.RowParallelLinear(
442
            projection_size,
Mohammad's avatar
Mohammad committed
443
            args.hidden_size,
444
            input_is_parallel=True,
445
            init_method=output_layer_init_method,
446
447
            skip_bias_add=True,
            **_args_to_kwargs())
Vijay Korthikanti's avatar
Vijay Korthikanti committed
448

449
450
451
452
453
454
455
456
457
458
459
460
    def _checkpointed_attention_forward(self, query_layer, key_layer,
                                        value_layer, attention_mask):
        """Forward method with activation checkpointing."""
        def custom_forward(*inputs):
            query_layer = inputs[0]
            key_layer = inputs[1]
            value_layer = inputs[2]
            attention_mask = inputs[3]
            output_ = self.core_attention(query_layer, key_layer,
                                          value_layer, attention_mask)
            return output_

461
        hidden_states = tensor_parallel.checkpoint(
462
463
464
465
            custom_forward,
            False, query_layer, key_layer, value_layer, attention_mask)

        return hidden_states
466
467
468
469
470
471
472
473
474
475
476

    def _allocate_memory(self, inference_max_sequence_len, batch_size):
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())

    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
477
                encoder_output=None, inference_params=None):
478
        # hidden_states: [sq, b, h]
479

480
481
482
        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
mshoeybi's avatar
mshoeybi committed
483
        if inference_params:
484
            if self.layer_number not in inference_params.key_value_memory_dict:
mshoeybi's avatar
mshoeybi committed
485
                inf_max_seq_len = inference_params.max_sequence_len
mshoeybi's avatar
mshoeybi committed
486
                inf_max_batch_size = inference_params.max_batch_size
487
                inference_key_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
488
                    inf_max_seq_len, inf_max_batch_size)
489
                inference_value_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
490
                    inf_max_seq_len, inf_max_batch_size)
491
492
493
494
495
                inference_params.key_value_memory_dict[self.layer_number] = (
                    inference_key_memory, inference_value_memory)
            else:
                inference_key_memory, inference_value_memory = \
                    inference_params.key_value_memory_dict[self.layer_number]
mshoeybi's avatar
mshoeybi committed
496

497
498
499
        # =====================
        # Query, Key, and Value
        # =====================
500

501
502
503
504
505
506
507
508
509
510
511
512
513
        if self.attention_type == AttnType.self_attn:
            # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
            mixed_x_layer, _ = self.query_key_value(hidden_states)

            # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 3 * self.hidden_size_per_attention_head)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
            (query_layer,
             key_layer,
514
             value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_x_layer, 3)
515
516
517
518
519
520
521
522
523
524
525
526
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 2 * self.hidden_size_per_attention_head)
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
527
             value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_kv_layer, 2)
528
529
530
531
532
533
534
535

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
            query_layer = query_layer.view(*new_tensor_shape)
536

mshoeybi's avatar
mshoeybi committed
537
538
539
        # ==================================
        # Adjust key and value for inference
        # ==================================
540

mshoeybi's avatar
mshoeybi committed
541
        if inference_params:
mshoeybi's avatar
mshoeybi committed
542
543
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
544
            assert batch_end <= inference_key_memory.size(1)
mshoeybi's avatar
mshoeybi committed
545
546
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
547
            assert sequence_end <= inference_key_memory.size(0)
548
            # Copy key and values.
549
550
551
552
553
            inference_key_memory[sequence_start:sequence_end,
                                 batch_start:batch_end, ...] = key_layer
            inference_value_memory[sequence_start:sequence_end,
                                   batch_start:batch_end, ...] = value_layer
            key_layer = inference_key_memory[
mshoeybi's avatar
mshoeybi committed
554
                :sequence_end, batch_start:batch_end, ...]
555
            value_layer = inference_value_memory[
mshoeybi's avatar
mshoeybi committed
556
                :sequence_end, batch_start:batch_end, ...]
557

558
559
560
        # ==================================
        # core attention computation
        # ==================================
561

562
563
564
565
566
567
568
        if not self.use_flash_attn:
            if self.checkpoint_core_attention:
                context_layer = self._checkpointed_attention_forward(
                    query_layer, key_layer, value_layer, attention_mask)
            else:
                context_layer = self.core_attention(
                    query_layer, key_layer, value_layer, attention_mask)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
569
        else:
570
571
572
573
574
575
576
577
            q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous()
                       for x in (query_layer, key_layer, value_layer)]
            if not self.sequence_parallel:
                with tensor_parallel.get_cuda_rng_tracker().fork():
                    context_layer = self.core_attention_flash(q, k, v)
            else:
                context_layer = self.core_attention_flash(q, k, v)
            context_layer = rearrange(context_layer, 'b s h d -> s b (h d)').contiguous()
578
579

        # =================
580
        # Output. [sq, b, h]
581
582
583
        # =================

        output, bias = self.dense(context_layer)
584

585
586
587
        return output, bias


588
def bias_dropout_add(x, bias, residual, prob, training):
589
590
591
592
593
594
595
596
597
598
599
600
601
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
    out = torch.nn.functional.dropout(x + bias, p=prob, training=training)
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
602
603
604
605
def bias_dropout_add_fused_train(x: torch.Tensor,
                                 bias: torch.Tensor,
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
606
607
608
609
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
610
611
612
613
def bias_dropout_add_fused_inference(x: torch.Tensor,
                                     bias: torch.Tensor,
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
614
    return bias_dropout_add(x, bias, residual, prob, False)
615
616
617
618
619


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
620
    Transformer layer takes input with size [s, b, h] and returns an
621
622
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
623

624
625
    def __init__(self, init_method, output_layer_init_method,
                 layer_number, layer_type=LayerType.encoder,
626
627
                 self_attn_mask_type=AttnMaskType.padding,
                 drop_path_rate=0.):
Mohammad's avatar
Mohammad committed
628
        args = get_args()
629
630

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
631
        self.layer_number = layer_number
632
        self.layer_type = layer_type
633
634

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
635
            = args.apply_residual_connection_post_layernorm
636

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
637
638
639
        self.bf16 = args.bf16
        self.fp32_residual_connection = args.fp32_residual_connection

640
641
        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
642
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
643
            eps=args.layernorm_epsilon,
644
            no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
645
            sequence_parallel=args.sequence_parallel)
646
647

        # Self attention.
648
649
650
651
652
653
        self.self_attention = ParallelAttention(
            init_method,
            output_layer_init_method,
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
654
655
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
Vijay Korthikanti's avatar
Vijay Korthikanti committed
656
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
657

658
        # Layernorm on the attention output
659
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
660
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
661
            eps=args.layernorm_epsilon,
662
            no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
663
            sequence_parallel=args.sequence_parallel)
664

665
666
667
668
669
670
671
672
673
        if self.layer_type == LayerType.decoder:
            self.inter_attention = ParallelAttention(
                init_method,
                output_layer_init_method,
                layer_number,
                attention_type=AttnType.cross_attn)
            # Layernorm on the attention output.
            self.post_inter_attention_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
674
                eps=args.layernorm_epsilon,
675
                no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
676
                sequence_parallel=args.sequence_parallel)
677

678
        # MLP
rprenger's avatar
rprenger committed
679
680
681
682
        if args.num_experts is not None:
            self.mlp = SwitchMLP(init_method, output_layer_init_method)
        else:
            self.mlp = ParallelMLP(init_method, output_layer_init_method)
683

684
685
686
687
688
689
690
        # Set bias+dropout+add fusion grad_enable execution handler.
        TORCH_MAJOR = int(torch.__version__.split('.')[0])
        TORCH_MINOR = int(torch.__version__.split('.')[1])
        use_nvfuser = TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10)
        self.bias_dropout_add_exec_handler = \
                nullcontext if use_nvfuser else torch.enable_grad

691
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
692
693
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
694
        # hidden_states: [s, b, h]
695

696
        # Layer norm at the beginning of the transformer layer.
697
698
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
699
        attention_output, attention_bias = \
700
701
702
            self.self_attention(
                layernorm_output,
                attention_mask,
mshoeybi's avatar
mshoeybi committed
703
                inference_params=inference_params)
704

705
706
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
707
708
709
710
            residual = layernorm_output
        else:
            residual = hidden_states

Vijay Korthikanti's avatar
Vijay Korthikanti committed
711
        if self.drop_path is None:
712
713
714
715
716
717
718
719
720
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
721
            else:
722
                bias_dropout_add_func = get_bias_dropout_add(self.training)
723

724
            with self.bias_dropout_add_exec_handler():
725
726
727
728
729
730
731
732
733
734
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            layernorm_input = residual + self.drop_path(out)
735

736
737
738
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

739
740
741
742
743
744
745
746
747
748
749
        if self.layer_type == LayerType.decoder:
            attention_output, attention_bias = \
                self.inter_attention(layernorm_output,
                                     enc_dec_attn_mask,
                                     encoder_output=encoder_output)
            # residual connection
            if self.apply_residual_connection_post_layernorm:
                residual = layernorm_output
            else:
                residual = layernorm_input

750
            with self.bias_dropout_add_exec_handler():
751
752
753
754
755
756
757
758
759
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)

            # Layer norm post the decoder attention
            layernorm_output = self.post_inter_attention_layernorm(layernorm_input)

760
        # MLP.
761
        mlp_output, mlp_bias = self.mlp(layernorm_output)
762

763
764
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
765
            residual = layernorm_output
766
        else:
767
768
            residual = layernorm_input

Vijay Korthikanti's avatar
Vijay Korthikanti committed
769
        if self.drop_path is None:
770
            with self.bias_dropout_add_exec_handler():
771
772
773
774
775
                output = bias_dropout_add_func(
                    mlp_output,
                    mlp_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
776
777
778
779
780
781
782

            # Jit compiled function creates 'view' tensor. This tensor
            # potentially gets saved in the MPU checkpoint function context,
            # which rejects view tensors. While making a viewless tensor here
            # won't result in memory savings (like the data loader, or
            # p2p_communication), it serves to document the origin of this
            # 'view' tensor.
783
784
785
            output = core.utils.make_viewless_tensor(inp = output,
                                                     requires_grad = output.requires_grad,
                                                     keep_graph = True)
786

787
788
789
790
791
        else:
            out = torch.nn.functional.dropout(mlp_output + mlp_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)
792
793
794
795

        return output


796
797
798
class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

Lawrence McAfee's avatar
Lawrence McAfee committed
799
    The sole purpose of this layer is for when a standalone embedding layer
800
    is used (i.e., args.standalone_embedding_stage == True). In this case,
Lawrence McAfee's avatar
Lawrence McAfee committed
801
802
803
804
805
806
807
808
809
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
810
811
812
813
814
815
816
817
818
819
820
821
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


Jared Casper's avatar
Jared Casper committed
822
def _get_num_layers(args, is_encoder_and_decoder_model, is_decoder=False):
823
    """Compute the number of transformer layers resident on the current rank."""
Jared Casper's avatar
Jared Casper committed
824
    if mpu.get_pipeline_model_parallel_world_size() > 1:
825
826
827
828
829
830
831
832
833
834
835
836
837
        if is_encoder_and_decoder_model:
            assert args.pipeline_model_parallel_split_rank is not None

            # When a standalone embedding stage is used, a rank is taken from
            # the encoder's ranks, to be used for the encoder's embedding
            # layer. This way, the rank referenced by the 'split rank' remains
            # the same whether or not a standalone embedding stage is used.
            num_ranks_in_encoder = (
                args.pipeline_model_parallel_split_rank - 1
                if args.standalone_embedding_stage else
                args.pipeline_model_parallel_split_rank
            )
            num_ranks_in_decoder = args.transformer_pipeline_model_parallel_size - num_ranks_in_encoder
Jared Casper's avatar
Jared Casper committed
838
839
840
841
            assert args.encoder_num_layers % num_ranks_in_encoder == 0, \
                    'encoder_num_layers (%d) must be divisible by number of ranks given to encoder (%d)' % (args.encoder_num_layers, num_ranks_in_encoder)
            assert args.decoder_num_layers % num_ranks_in_decoder == 0, \
                    'decoder_num_layers (%d) must be divisible by number of ranks given to decoder (%d)' % (args.decoder_num_layers, num_ranks_in_decoder)
Jared Casper's avatar
Jared Casper committed
842
            if mpu.is_pipeline_stage_before_split():
843
844
845
                num_layers = (
                    0
                    if args.standalone_embedding_stage
Jared Casper's avatar
Jared Casper committed
846
                    and mpu.get_pipeline_model_parallel_rank() == 0 else
Jared Casper's avatar
Jared Casper committed
847
                    args.encoder_num_layers // num_ranks_in_encoder
848
849
                )
            else:
Jared Casper's avatar
Jared Casper committed
850
                num_layers = args.decoder_num_layers // num_ranks_in_decoder
851
        else:
Jared Casper's avatar
Jared Casper committed
852
            assert args.num_layers == args.encoder_num_layers
853
854
855
856
857
858
859
860
861
862
            assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \
                'num_layers must be divisible by transformer_pipeline_model_parallel_size'

            # When a standalone embedding stage is used, all transformer layers
            # are divided among pipeline rank >= 1, while on pipeline rank 0,
            # ranks either contain the input embedding layer (virtual pp rank 0),
            # or no layers at all (virtual pp rank >= 1).
            num_layers = (
                0
                if args.standalone_embedding_stage
Jared Casper's avatar
Jared Casper committed
863
                and mpu.get_pipeline_model_parallel_rank() == 0 else
864
865
866
                args.num_layers // args.transformer_pipeline_model_parallel_size
            )
    else:
Jared Casper's avatar
Jared Casper committed
867
868
869
870
        if not is_decoder:
            num_layers = args.encoder_num_layers
        else:
            num_layers = args.decoder_num_layers
871
872
873
    return num_layers


874
875
876
class ParallelTransformer(MegatronModule):
    """Transformer class."""

877
    def __init__(self, init_method, output_layer_init_method,
878
                 layer_type=LayerType.encoder,
879
                 self_attn_mask_type=AttnMaskType.padding,
880
                 post_layer_norm=True,
881
882
                 pre_process=True, post_process=True,
                 drop_path_rate=0.0):
883
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
884
        args = get_args()
885

886
887
        self.layer_type = layer_type
        self.model_type = args.model_type
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
888
        self.bf16 = args.bf16
889
        self.fp32_residual_connection = args.fp32_residual_connection
890
        self.post_layer_norm = post_layer_norm
891
892
893
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
894
        self.drop_path_rate = drop_path_rate
895

896
        # Store activation checkpoiting flag.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
897
898
899
        self.recompute_granularity = args.recompute_granularity
        self.recompute_method = args.recompute_method
        self.recompute_num_layers = args.recompute_num_layers
Vijay Korthikanti's avatar
Vijay Korthikanti committed
900
901
        self.distribute_saved_activations = \
            args.distribute_saved_activations and not args.sequence_parallel
902

Vijay Korthikanti's avatar
Vijay Korthikanti committed
903
        self.sequence_parallel = args.sequence_parallel
904

905
        # Number of layers.
906
        self.num_layers = _get_num_layers(
907
908
909
            args,
            args.model_type == ModelType.encoder_and_decoder,
            layer_type == LayerType.decoder)
Mohammad's avatar
Mohammad committed
910

Vijay Korthikanti's avatar
Vijay Korthikanti committed
911
        self.drop_path_rates = [rate.item() for rate in torch.linspace(0, self.drop_path_rate, args.num_layers)]
912

Mohammad's avatar
Mohammad committed
913
914
        # Transformer layers.
        def build_layer(layer_number):
915
            return ParallelTransformerLayer(
916
917
918
                init_method,
                output_layer_init_method,
                layer_number,
919
                layer_type=layer_type,
920
                self_attn_mask_type=self_attn_mask_type,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
921
                drop_path_rate=self.drop_path_rates[layer_number - 1])
922
923
        if args.virtual_pipeline_model_parallel_size is not None:
            assert args.num_layers % args.virtual_pipeline_model_parallel_size == 0, \
924
925
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
926
            assert args.model_type != ModelType.encoder_and_decoder
927
928
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
929
            self.num_layers = self.num_layers // args.virtual_pipeline_model_parallel_size
930
931
932
933
934
935
936
937
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
938
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
939
                args.num_layers // args.virtual_pipeline_model_parallel_size) + \
940
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
941
        else:
942
            # Each stage gets a contiguous set of layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
943
            if args.model_type == ModelType.encoder_and_decoder and \
944
945
                    mpu.get_pipeline_model_parallel_world_size() > 1:
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
946
947
948
949
950
951
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
952
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
953

954
        if self.num_layers == 0:
Lawrence McAfee's avatar
Lawrence McAfee committed
955
            # When a standalone embedding stage is used (e.g.,
956
            # args.standalone_embedding_stage == True), virtual pipeline ranks
957
            # on pipeline rank 0 will have zero transformer layers assigned to
Lawrence McAfee's avatar
Lawrence McAfee committed
958
959
960
961
962
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
963
964
965
966
967
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])
968

969
        if self.post_process and self.post_layer_norm:
970
971
972
            # Final layer norm before output.
            self.final_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
973
                eps=args.layernorm_epsilon,
974
                no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
975
                sequence_parallel=args.sequence_parallel)
976

Mohammad's avatar
Mohammad committed
977
    def _get_layer(self, layer_number):
978
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
979

980
981
    def _checkpointed_forward(self, hidden_states, attention_mask,
                              encoder_output, enc_dec_attn_mask):
982
983
984
985
        """Forward method with activation checkpointing."""
        def custom(start, end):
            def custom_forward(*inputs):
                x_ = inputs[0]
986
987
988
                attention_mask = inputs[1]
                encoder_output = inputs[2]
                enc_dec_attn_mask = inputs[3]
Mohammad's avatar
Mohammad committed
989
990
                for index in range(start, end):
                    layer = self._get_layer(index)
991
                    x_ = layer(x_, attention_mask, encoder_output, enc_dec_attn_mask)
992
993
994
                return x_
            return custom_forward

Vijay Korthikanti's avatar
Vijay Korthikanti committed
995
        if self.recompute_method == 'uniform':
996
997
998
999
1000
            # Uniformly divide the total number of Transformer layers and checkpoint
            # the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
1001
                hidden_states = tensor_parallel.checkpoint(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1002
                    custom(l, l + self.recompute_num_layers),
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1003
                    self.distribute_saved_activations,
1004
                    hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1005
                l += self.recompute_num_layers
1006

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1007
        elif self.recompute_method == 'block':
1008
1009
1010
1011
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1012
                if l < self.recompute_num_layers:
1013
                    hidden_states = tensor_parallel.checkpoint(
1014
                        custom(l, l + 1),
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1015
                        self.distribute_saved_activations,
1016
1017
1018
1019
1020
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                else:
                    hidden_states = custom(l, l + 1)(
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1021
            raise ValueError("Invalid activation recompute method.")
1022
1023
1024

        return hidden_states

1025
    def set_input_tensor(self, input_tensor):
1026
1027
1028
1029
1030
1031
1032
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
1033
1034
        self.input_tensor = input_tensor

1035
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
1036
1037
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1038
1039
        # hidden_states: [s, b, h]

1040
        # Checks.
mshoeybi's avatar
mshoeybi committed
1041
        if inference_params:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1042
            assert self.recompute_granularity is None, \
1043
                'inference does not work with activation checkpointing'
1044

1045
        if not self.pre_process:
1046
            # See set_input_tensor()
1047
            hidden_states = self.input_tensor
1048

1049
1050
        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
1051
1052
1053
1054
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
1055
1056
1057
1058
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
1059
        #
1060
1061
1062
1063
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
1064
        hidden_states = core.utils.make_viewless_tensor(
1065
            hidden_states,
1066
1067
            requires_grad=True,
            keep_graph=True,
1068
1069
        )

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1070
        if self.sequence_parallel:
1071
            rng_context = tensor_parallel.get_cuda_rng_tracker().fork()
1072
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1073
            rng_context = nullcontext()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1074
1075

        with rng_context:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1076
            # Forward pass.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1077
            if self.recompute_granularity == 'full':
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
                hidden_states = self._checkpointed_forward(hidden_states,
                                                           attention_mask,
                                                           encoder_output,
                                                           enc_dec_attn_mask)
            else:
                for index in range(self.num_layers):
                    layer = self._get_layer(index)
                    hidden_states = layer(
                        hidden_states,
                        attention_mask,
                        encoder_output=encoder_output,
                        enc_dec_attn_mask=enc_dec_attn_mask,
                        inference_params=inference_params)
mshoeybi's avatar
mshoeybi committed
1091

1092
        # Final layer norm.
1093
        if self.post_process and self.post_layer_norm:
1094
1095
            hidden_states = self.final_layernorm(hidden_states)

1096
        return hidden_states