transformer.py 38.7 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer."""
import math
18
from contextlib import nullcontext
19
import torch
20
import torch.nn.functional as F
21

22
from megatron import get_timers, get_args
23
from megatron import mpu
24
from .module import MegatronModule
25
from megatron.model.enums import AttnMaskType, ModelType, LayerType, AttnType
26
from megatron.model import LayerNorm
27
28
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
29
from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu
30

31

32
33
34
35
36
37
38
39
40
41
""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
42
    Transformer takes input of size [s, b, h] and returns a
43
44
45
46
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

47
48
49
50
51
class DropPath(MegatronModule):
    """Drop paths (Stochastic Depth) per sample 
    (when applied in main path of residual blocks).
    """

Vijay Korthikanti's avatar
Vijay Korthikanti committed
52
    def __init__(self, drop_prob=0.):
53
54
55
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

Vijay Korthikanti's avatar
Vijay Korthikanti committed
56
    def forward(self, hidden_state):
57
        if self.drop_prob == 0. or not self.training:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
58
            return hidden_state
59
60
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
Vijay Korthikanti's avatar
Vijay Korthikanti committed
61
        shape = (hidden_state.shape[0],) + (1,) * (hidden_state.ndim - 1)
62
        random_tensor = keep_prob + \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
63
            torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device)
64
        random_tensor.floor_()  # binarize
Vijay Korthikanti's avatar
Vijay Korthikanti committed
65
        output = hidden_state.div(keep_prob) * random_tensor
66
67
68
        return output


69
70
71
72
73
class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
74
    state back into h hidden dimension.
75
76
    """

77
    def __init__(self, init_method, output_layer_init_method):
78
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
79
        args = get_args()
80
81
82

        # Project to 4h.
        self.dense_h_to_4h = mpu.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
83
            args.hidden_size,
84
            args.ffn_hidden_size,
85
            gather_output=False,
86
87
            init_method=init_method,
            skip_bias_add=True)
88

89
90
91
92
93
94
        self.bias_gelu_fusion = args.bias_gelu_fusion
        self.activation_func = F.gelu
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
95
96
97

        # Project back to h.
        self.dense_4h_to_h = mpu.RowParallelLinear(
98
            args.ffn_hidden_size,
Mohammad's avatar
Mohammad committed
99
            args.hidden_size,
100
            input_is_parallel=True,
101
102
            init_method=output_layer_init_method,
            skip_bias_add=True)
103

104
105
    def forward(self, hidden_states):

106
107
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
108

109
110
111
112
113
114
115
116
117
118
        if self.bias_gelu_fusion:
             intermediate_parallel = \
                     bias_gelu_impl(intermediate_parallel, bias_parallel)
        else:
            intermediate_parallel = \
                self.activation_func(intermediate_parallel + bias_parallel)

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
119

rprenger's avatar
rprenger committed
120
121
122
123
class SwitchMLP(MegatronModule):
    """
    Routes input to one of N MLP "experts"
    """
rprenger's avatar
rprenger committed
124
    def __init__(self, init_method, output_layer_init_method):
rprenger's avatar
rprenger committed
125
126
        super(SwitchMLP, self).__init__()
        args = get_args()
rprenger's avatar
rprenger committed
127
        self.router = torch.nn.Linear(args.hidden_size, args.num_experts)
rprenger's avatar
rprenger committed
128
        self.experts = torch.nn.ModuleList()
rprenger's avatar
rprenger committed
129
        for i in range(args.num_experts):
rprenger's avatar
rprenger committed
130
            self.experts.append(ParallelMLP(init_method, output_layer_init_method))
131

rprenger's avatar
rprenger committed
132
    def forward(self, hidden_states):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
133
134
135
        # hidden_states: [s, b, h]
        s = hidden_states.size(0)
        b = hidden_states.size(1)
rprenger's avatar
rprenger committed
136
137
        h = hidden_states.size(2)
        route = self.router(hidden_states)
rprenger's avatar
rprenger committed
138
        route = torch.nn.functional.softmax(route, dim=2)
rprenger's avatar
rprenger committed
139
        max_prob, max_ind = torch.max(route, dim=2)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
140
        max_prob = torch.unsqueeze(max_prob, 2) # [s b 1]
141

rprenger's avatar
rprenger committed
142
        # TODO (rprenger) TODO this could be made easier to read
Vijay Korthikanti's avatar
Vijay Korthikanti committed
143
        # Converting [s, b, h] to [s*b, h].
144
        # Each vector could be routed differently
Vijay Korthikanti's avatar
Vijay Korthikanti committed
145
146
147
        hidden_states = hidden_states.view(-1, hidden_states.size(2)) # [s*b h]
        max_prob = max_prob.view(-1, max_prob.size(2)) # [s*b 1]
        max_ind = max_ind.view(-1) # [s*b]
rprenger's avatar
rprenger committed
148
149
150

        output_total = torch.empty_like(hidden_states)
        output_bias_total = torch.empty_like(hidden_states)
rprenger's avatar
rprenger committed
151
        #TODO (rprenger) This does each expert in serial, but it could be parallelized
152
        
rprenger's avatar
rprenger committed
153
        for expert_num, expert in enumerate(self.experts):
154
155
            local_indices = (max_ind == expert_num).nonzero()
            hidden = hidden_states[local_indices,:]
rprenger's avatar
rprenger committed
156
157
            output, output_bias = expert(hidden)
            output_bias = output_bias.expand_as(output)
158
159
160
            output_total[local_indices,:] = output
            output_bias_total[local_indices,:] = output_bias

rprenger's avatar
rprenger committed
161
162
        output_total = output_total*max_prob
        output_bias_total = output_bias_total*max_prob
Vijay Korthikanti's avatar
Vijay Korthikanti committed
163
164
        output_total = output_total.view(s, b, h)
        output_bias_total = output_bias_total.view(s, b, h)
rprenger's avatar
rprenger committed
165
166

        return output_total, output_bias_total
167

168
169

class CoreAttention(MegatronModule):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
170

171
172
173
174
175
176
177
178
179
180
181
182
183
    def __init__(self, layer_number,
                 attn_mask_type=AttnMaskType.padding):
        super(CoreAttention, self).__init__()
        args = get_args()
        self.fp16 = args.fp16
        self.bf16 = args.bf16

        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
        self.attn_mask_type = attn_mask_type
Vijay Korthikanti's avatar
Vijay Korthikanti committed
184
        self.sequence_parallel = args.sequence_parallel
185
186
187
188
189
190
191
192
193

        projection_size = args.kv_channels * args.num_attention_heads

        # Per attention head and per partition values.
        world_size = mpu.get_tensor_model_parallel_world_size()
        self.hidden_size_per_partition = mpu.divide(projection_size,
                                                    world_size)
        self.hidden_size_per_attention_head = mpu.divide(
            projection_size, args.num_attention_heads)
194
195
        self.num_attention_heads_per_partition = mpu.divide(
            args.num_attention_heads, world_size)
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16, self.bf16,
            self.attn_mask_type,
            args.masked_softmax_fusion,
            attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
215

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    def forward(self, query_layer, key_layer,
                value_layer, attention_mask):

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # [b, np, sq, sk]
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
                       key_layer.size(0))

        # [sq, b, np, hn] -> [sq, b * np, hn]
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        # [sk, b, np, hn] -> [sk, b * np, hn]
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
236
        # preallocting input tensor: [b * np, sq, sk]
Vijay Korthikanti's avatar
Vijay Korthikanti committed
237
238
239
240
241
242
        matmul_input_buffer = torch.empty(
            output_size[0]*output_size[1],
            output_size[2],
            output_size[3],
            dtype=query_layer.dtype,
            device=torch.cuda.current_device())
243
244
245

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
246
            matmul_input_buffer,
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        # ===========================
        # Attention probs and dropout
        # ===========================

        # attention scores and attention mask [b, np, sq, sk]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
265
        if not self.sequence_parallel:
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
            with mpu.get_cuda_rng_tracker().fork():
                attention_probs = self.attention_dropout(attention_probs)
        else:
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(value_layer.size(0),
                                       output_size[0] * output_size[1], -1)

        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)

        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


309
class ParallelAttention(MegatronModule):
310
311
    """Parallel self-attention layer abstract class.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
312
    Self-attention layer takes input with size [s, b, h]
313
314
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
315

316
    def __init__(self, init_method,
317
318
319
320
                 output_layer_init_method, layer_number,
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
321
        args = get_args()
322
        self.layer_number = max(1, layer_number)
323
324
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
325
        self.params_dtype = args.params_dtype
326
327

        projection_size = args.kv_channels * args.num_attention_heads
328
329

        # Per attention head and per partition values.
330
        world_size = mpu.get_tensor_model_parallel_world_size()
331
        self.hidden_size_per_attention_head = mpu.divide(
332
            projection_size, args.num_attention_heads)
333
        self.num_attention_heads_per_partition = mpu.divide(
Mohammad's avatar
Mohammad committed
334
            args.num_attention_heads, world_size)
335
336

        # Strided linear layer.
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
        if attention_type == AttnType.self_attn:
            self.query_key_value = mpu.ColumnParallelLinear(
                args.hidden_size,
                3 * projection_size,
                gather_output=False,
                init_method=init_method)
        else:
            assert attention_type == AttnType.cross_attn
            self.query = mpu.ColumnParallelLinear(
                args.hidden_size,
                projection_size,
                gather_output=False,
                init_method=init_method)

            self.key_value = mpu.ColumnParallelLinear(
                args.hidden_size,
                2 * projection_size,
                gather_output=False,
                init_method=init_method)
356

357
358
        self.core_attention = CoreAttention(self.layer_number,
                                            self.attn_mask_type)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
359
        self.checkpoint_core_attention = args.recompute_granularity == 'selective'
360
361
362

        # Output.
        self.dense = mpu.RowParallelLinear(
363
            projection_size,
Mohammad's avatar
Mohammad committed
364
            args.hidden_size,
365
            input_is_parallel=True,
366
367
            init_method=output_layer_init_method,
            skip_bias_add=True)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
368

369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
    def _checkpointed_attention_forward(self, query_layer, key_layer,
                                        value_layer, attention_mask):
        """Forward method with activation checkpointing."""
        def custom_forward(*inputs):
            query_layer = inputs[0]
            key_layer = inputs[1]
            value_layer = inputs[2]
            attention_mask = inputs[3]
            output_ = self.core_attention(query_layer, key_layer,
                                          value_layer, attention_mask)
            return output_

        hidden_states = mpu.checkpoint(
            custom_forward,
            False, query_layer, key_layer, value_layer, attention_mask)

        return hidden_states
386
387
388
389
390
391
392
393
394
395
396

    def _allocate_memory(self, inference_max_sequence_len, batch_size):
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())

    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
397
                encoder_output=None, inference_params=None):
398
        # hidden_states: [sq, b, h]
399

400
401
402
        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
mshoeybi's avatar
mshoeybi committed
403
        if inference_params:
404
            if self.layer_number not in inference_params.key_value_memory_dict:
mshoeybi's avatar
mshoeybi committed
405
                inf_max_seq_len = inference_params.max_sequence_len
mshoeybi's avatar
mshoeybi committed
406
                inf_max_batch_size = inference_params.max_batch_size
407
                inference_key_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
408
                    inf_max_seq_len, inf_max_batch_size)
409
                inference_value_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
410
                    inf_max_seq_len, inf_max_batch_size)
411
412
413
414
415
                inference_params.key_value_memory_dict[self.layer_number] = (
                    inference_key_memory, inference_value_memory)
            else:
                inference_key_memory, inference_value_memory = \
                    inference_params.key_value_memory_dict[self.layer_number]
mshoeybi's avatar
mshoeybi committed
416

417
418
419
        # =====================
        # Query, Key, and Value
        # =====================
420

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
        if self.attention_type == AttnType.self_attn:
            # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
            mixed_x_layer, _ = self.query_key_value(hidden_states)

            # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 3 * self.hidden_size_per_attention_head)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
            (query_layer,
             key_layer,
             value_layer) = mpu.split_tensor_along_last_dim(mixed_x_layer, 3)
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 2 * self.hidden_size_per_attention_head)
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
             value_layer) = mpu.split_tensor_along_last_dim(mixed_kv_layer, 2)

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
            query_layer = query_layer.view(*new_tensor_shape)
456

mshoeybi's avatar
mshoeybi committed
457
458
459
        # ==================================
        # Adjust key and value for inference
        # ==================================
460

mshoeybi's avatar
mshoeybi committed
461
        if inference_params:
mshoeybi's avatar
mshoeybi committed
462
463
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
464
            assert batch_end <= inference_key_memory.size(1)
mshoeybi's avatar
mshoeybi committed
465
466
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
467
            assert sequence_end <= inference_key_memory.size(0)
468
            # Copy key and values.
469
470
471
472
473
            inference_key_memory[sequence_start:sequence_end,
                                 batch_start:batch_end, ...] = key_layer
            inference_value_memory[sequence_start:sequence_end,
                                   batch_start:batch_end, ...] = value_layer
            key_layer = inference_key_memory[
mshoeybi's avatar
mshoeybi committed
474
                :sequence_end, batch_start:batch_end, ...]
475
            value_layer = inference_value_memory[
mshoeybi's avatar
mshoeybi committed
476
                :sequence_end, batch_start:batch_end, ...]
477

478
479
480
        # ==================================
        # core attention computation
        # ==================================
481

Vijay Korthikanti's avatar
Vijay Korthikanti committed
482
        if self.checkpoint_core_attention:
483
484
            context_layer = self._checkpointed_attention_forward(
                query_layer, key_layer, value_layer, attention_mask)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
485
        else:
486
487
            context_layer = self.core_attention(
                query_layer, key_layer, value_layer, attention_mask)
488
489

        # =================
490
        # Output. [sq, b, h]
491
492
493
        # =================

        output, bias = self.dense(context_layer)
494

495
496
497
        return output, bias


498
def bias_dropout_add(x, bias, residual, prob, training):
499
500
501
502
503
504
505
506
507
508
509
510
511
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
    out = torch.nn.functional.dropout(x + bias, p=prob, training=training)
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
512
513
514
515
def bias_dropout_add_fused_train(x: torch.Tensor,
                                 bias: torch.Tensor,
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
516
517
518
519
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
520
521
522
523
def bias_dropout_add_fused_inference(x: torch.Tensor,
                                     bias: torch.Tensor,
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
524
    return bias_dropout_add(x, bias, residual, prob, False)
525
526
527
528
529


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
530
    Transformer layer takes input with size [s, b, h] and returns an
531
532
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
533

534
535
    def __init__(self, init_method, output_layer_init_method,
                 layer_number, layer_type=LayerType.encoder,
536
537
                 self_attn_mask_type=AttnMaskType.padding,
                 drop_path_rate=0.):
Mohammad's avatar
Mohammad committed
538
        args = get_args()
539
540

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
541
        self.layer_number = layer_number
542
        self.layer_type = layer_type
543
544

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
545
            = args.apply_residual_connection_post_layernorm
546

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
547
548
549
        self.bf16 = args.bf16
        self.fp32_residual_connection = args.fp32_residual_connection

550
551
        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
552
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
553
            eps=args.layernorm_epsilon,
554
            no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
555
            sequence_parallel=args.sequence_parallel)
556
557

        # Self attention.
558
559
560
561
562
563
        self.self_attention = ParallelAttention(
            init_method,
            output_layer_init_method,
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
564
565
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
Vijay Korthikanti's avatar
Vijay Korthikanti committed
566
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
567

568
        # Layernorm on the attention output
569
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
570
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
571
            eps=args.layernorm_epsilon,
572
            no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
573
            sequence_parallel=args.sequence_parallel)
574

575
576
577
578
579
580
581
582
583
        if self.layer_type == LayerType.decoder:
            self.inter_attention = ParallelAttention(
                init_method,
                output_layer_init_method,
                layer_number,
                attention_type=AttnType.cross_attn)
            # Layernorm on the attention output.
            self.post_inter_attention_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
584
                eps=args.layernorm_epsilon,
585
                no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
586
                sequence_parallel=args.sequence_parallel)
587

588
        # MLP
rprenger's avatar
rprenger committed
589
590
591
592
        if args.num_experts is not None:
            self.mlp = SwitchMLP(init_method, output_layer_init_method)
        else:
            self.mlp = ParallelMLP(init_method, output_layer_init_method)
593

594
595
596
597
598
599
600
        # Set bias+dropout+add fusion grad_enable execution handler.
        TORCH_MAJOR = int(torch.__version__.split('.')[0])
        TORCH_MINOR = int(torch.__version__.split('.')[1])
        use_nvfuser = TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10)
        self.bias_dropout_add_exec_handler = \
                nullcontext if use_nvfuser else torch.enable_grad

601
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
602
603
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
604
        # hidden_states: [s, b, h]
605

606
        # Layer norm at the beginning of the transformer layer.
607
608
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
609
        attention_output, attention_bias = \
610
611
612
            self.self_attention(
                layernorm_output,
                attention_mask,
mshoeybi's avatar
mshoeybi committed
613
                inference_params=inference_params)
614

615
616
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
617
618
619
620
            residual = layernorm_output
        else:
            residual = hidden_states

Vijay Korthikanti's avatar
Vijay Korthikanti committed
621
        if self.drop_path is None:
622
623
624
625
626
627
628
629
630
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
631
            else:
632
                bias_dropout_add_func = get_bias_dropout_add(self.training)
633

634
            with self.bias_dropout_add_exec_handler():
635
636
637
638
639
640
641
642
643
644
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            layernorm_input = residual + self.drop_path(out)
645

646
647
648
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

649
650
651
652
653
654
655
656
657
658
659
        if self.layer_type == LayerType.decoder:
            attention_output, attention_bias = \
                self.inter_attention(layernorm_output,
                                     enc_dec_attn_mask,
                                     encoder_output=encoder_output)
            # residual connection
            if self.apply_residual_connection_post_layernorm:
                residual = layernorm_output
            else:
                residual = layernorm_input

660
            with self.bias_dropout_add_exec_handler():
661
662
663
664
665
666
667
668
669
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)

            # Layer norm post the decoder attention
            layernorm_output = self.post_inter_attention_layernorm(layernorm_input)

670
        # MLP.
671
        mlp_output, mlp_bias = self.mlp(layernorm_output)
672

673
674
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
675
            residual = layernorm_output
676
        else:
677
678
            residual = layernorm_input

Vijay Korthikanti's avatar
Vijay Korthikanti committed
679
        if self.drop_path is None:
680
            with self.bias_dropout_add_exec_handler():
681
682
683
684
685
                output = bias_dropout_add_func(
                    mlp_output,
                    mlp_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
686
687
688
689
690
691
692
693
694
695
696

            # Jit compiled function creates 'view' tensor. This tensor
            # potentially gets saved in the MPU checkpoint function context,
            # which rejects view tensors. While making a viewless tensor here
            # won't result in memory savings (like the data loader, or
            # p2p_communication), it serves to document the origin of this
            # 'view' tensor.
            output = mpu.make_viewless_tensor(inp = output,
                                              requires_grad = output.requires_grad,
                                              keep_graph = True)

697
698
699
700
701
        else:
            out = torch.nn.functional.dropout(mlp_output + mlp_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)
702
703
704
705

        return output


706
707
708
class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

Lawrence McAfee's avatar
Lawrence McAfee committed
709
    The sole purpose of this layer is for when a standalone embedding layer
710
    is used (i.e., args.standalone_embedding_stage == True). In this case,
Lawrence McAfee's avatar
Lawrence McAfee committed
711
712
713
714
715
716
717
718
719
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
720
721
722
723
724
725
726
727
728
729
730
731
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


732
733
734
class ParallelTransformer(MegatronModule):
    """Transformer class."""

735
    def __init__(self, init_method, output_layer_init_method,
736
                 layer_type=LayerType.encoder,
737
                 self_attn_mask_type=AttnMaskType.padding,
738
                 post_layer_norm=True, 
739
740
                 pre_process=True, post_process=True,
                 drop_path_rate=0.0):
741
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
742
        args = get_args()
743

744
745
        self.layer_type = layer_type
        self.model_type = args.model_type
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
746
        self.bf16 = args.bf16
747
        self.fp32_residual_connection = args.fp32_residual_connection
748
        self.post_layer_norm = post_layer_norm
749
750
751
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
752
        self.drop_path_rate = drop_path_rate
753

754
        # Store activation checkpoiting flag.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
755
756
757
        self.recompute_granularity = args.recompute_granularity
        self.recompute_method = args.recompute_method
        self.recompute_num_layers = args.recompute_num_layers
Vijay Korthikanti's avatar
Vijay Korthikanti committed
758
759
        self.distribute_saved_activations = \
            args.distribute_saved_activations and not args.sequence_parallel
760

Vijay Korthikanti's avatar
Vijay Korthikanti committed
761
        self.sequence_parallel = args.sequence_parallel
762

763
        # Number of layers.
764
765
        self.num_layers = mpu.get_num_layers(
            args, args.model_type == ModelType.encoder_and_decoder)
Mohammad's avatar
Mohammad committed
766

Vijay Korthikanti's avatar
Vijay Korthikanti committed
767
        self.drop_path_rates = [rate.item() for rate in torch.linspace(0, self.drop_path_rate, args.num_layers)]
768

Mohammad's avatar
Mohammad committed
769
770
        # Transformer layers.
        def build_layer(layer_number):
771
            return ParallelTransformerLayer(
772
773
774
                init_method,
                output_layer_init_method,
                layer_number,
775
                layer_type=layer_type,
776
                self_attn_mask_type=self_attn_mask_type,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
777
                drop_path_rate=self.drop_path_rates[layer_number - 1])
778
779
        if args.virtual_pipeline_model_parallel_size is not None:
            assert args.num_layers % args.virtual_pipeline_model_parallel_size == 0, \
780
781
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
782
            assert args.model_type != ModelType.encoder_and_decoder
783
784
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
785
            self.num_layers = self.num_layers // args.virtual_pipeline_model_parallel_size
786
787
788
789
790
791
792
793
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
794
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
795
                args.num_layers // args.virtual_pipeline_model_parallel_size) + \
796
797
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
        else:
798
            # Each stage gets a contiguous set of layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
799
800
            if args.model_type == ModelType.encoder_and_decoder and \
                    mpu.get_pipeline_model_parallel_world_size() > 1:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
801
802
803
804
805
806
807
808
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
809

810
        if self.num_layers == 0:
Lawrence McAfee's avatar
Lawrence McAfee committed
811
            # When a standalone embedding stage is used (e.g.,
812
            # args.standalone_embedding_stage == True), virtual pipeline ranks
813
            # on pipeline rank 0 will have zero transformer layers assigned to
Lawrence McAfee's avatar
Lawrence McAfee committed
814
815
816
817
818
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
819
820
821
822
823
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])
824

825
        if self.post_process and self.post_layer_norm:
826
827
828
            # Final layer norm before output.
            self.final_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
829
                eps=args.layernorm_epsilon,
830
                no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
831
                sequence_parallel=args.sequence_parallel)
832

Mohammad's avatar
Mohammad committed
833
    def _get_layer(self, layer_number):
834
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
835

836
837
    def _checkpointed_forward(self, hidden_states, attention_mask,
                              encoder_output, enc_dec_attn_mask):
838
839
840
841
        """Forward method with activation checkpointing."""
        def custom(start, end):
            def custom_forward(*inputs):
                x_ = inputs[0]
842
843
844
                attention_mask = inputs[1]
                encoder_output = inputs[2]
                enc_dec_attn_mask = inputs[3]
Mohammad's avatar
Mohammad committed
845
846
                for index in range(start, end):
                    layer = self._get_layer(index)
847
                    x_ = layer(x_, attention_mask, encoder_output, enc_dec_attn_mask)
848
849
850
                return x_
            return custom_forward

Vijay Korthikanti's avatar
Vijay Korthikanti committed
851
        if self.recompute_method == 'uniform':
852
853
854
855
856
857
            # Uniformly divide the total number of Transformer layers and checkpoint
            # the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
                hidden_states = mpu.checkpoint(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
858
                    custom(l, l + self.recompute_num_layers),
Vijay Korthikanti's avatar
Vijay Korthikanti committed
859
                    self.distribute_saved_activations,
860
                    hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
861
                l += self.recompute_num_layers
862

Vijay Korthikanti's avatar
Vijay Korthikanti committed
863
        elif self.recompute_method == 'block':
864
865
866
867
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
868
                if l < self.recompute_num_layers:
869
870
                    hidden_states = mpu.checkpoint(
                        custom(l, l + 1),
Vijay Korthikanti's avatar
Vijay Korthikanti committed
871
                        self.distribute_saved_activations,
872
873
874
875
876
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                else:
                    hidden_states = custom(l, l + 1)(
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
877
            raise ValueError("Invalid activation recompute method.")
878
879
880

        return hidden_states

881
    def set_input_tensor(self, input_tensor):
882
883
884
885
886
887
888
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
889
890
        self.input_tensor = input_tensor

891
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
892
893
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
894
895
        # hidden_states: [s, b, h]

896
        # Checks.
mshoeybi's avatar
mshoeybi committed
897
        if inference_params:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
898
            assert self.recompute_granularity is None, \
899
                'inference does not work with activation checkpointing'
900

901
        if not self.pre_process:
902
            # See set_input_tensor()
903
            hidden_states = self.input_tensor
904

905
906
        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
907
908
909
910
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
911
912
913
914
915
916
917
918
919
920
921
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
        # 
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
        hidden_states = mpu.make_viewless_tensor(
            hidden_states,
922
923
            requires_grad=True,
            keep_graph=True,
924
925
        )

Vijay Korthikanti's avatar
Vijay Korthikanti committed
926
927
        if self.sequence_parallel:
            rng_context = mpu.get_cuda_rng_tracker().fork()
928
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
929
            rng_context = nullcontext()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
930
931

        with rng_context:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
932
            # Forward pass.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
933
            if self.recompute_granularity == 'full':
Vijay Korthikanti's avatar
Vijay Korthikanti committed
934
935
936
937
938
939
940
941
942
943
944
945
946
                hidden_states = self._checkpointed_forward(hidden_states,
                                                           attention_mask,
                                                           encoder_output,
                                                           enc_dec_attn_mask)
            else:
                for index in range(self.num_layers):
                    layer = self._get_layer(index)
                    hidden_states = layer(
                        hidden_states,
                        attention_mask,
                        encoder_output=encoder_output,
                        enc_dec_attn_mask=enc_dec_attn_mask,
                        inference_params=inference_params)
mshoeybi's avatar
mshoeybi committed
947

948
        # Final layer norm.
949
        if self.post_process and self.post_layer_norm:
950
951
            hidden_states = self.final_layernorm(hidden_states)

952
        return hidden_states