optimizer.py 39.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron optimizer."""
mohammad's avatar
mohammad committed
17
18
19
20
21
22
23
24
25

from abc import ABC
from abc import abstractmethod

import torch

from apex.multi_tensor_apply import multi_tensor_applier
import amp_C

mohammad's avatar
mohammad committed
26
27
from megatron import get_timers
from megatron import mpu
mohammad's avatar
mohammad committed
28
29
from megatron import print_rank_0

Rewon Child's avatar
Rewon Child committed
30
from .clip_grads import clip_grad_norm_fp32, count_zeros_fp32
mohammad's avatar
mohammad committed
31

32
33
34
# >>>
from lutil import pax, tp
# <<<
mohammad's avatar
mohammad committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

def _zero_grad_group_helper(group, set_to_none):
    """Zero out the gradient for a group of parameters.
    Note: copied from torch.optim.optimizer."""
    for param in group:
        if param.grad is not None:
            if set_to_none:
                param.grad = None
            else:
                if param.grad.grad_fn is not None:
                    param.grad.detach_()
                else:
                    param.grad.requires_grad_(False)
                param.grad.zero_()


51
def _multi_tensor_copy_this_to_that(this, that, overflow_buf=None):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
52
53
54
55
    """Use multi-tensor-applier to copy values from one list to another.
    We don't have a blfoat16 implementation so for now if the overflow_buf
    is not provided, we default back to simple loop copy to be compatible
    with bfloat16."""
56
57
    if overflow_buf:
        overflow_buf.fill_(0)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
58
59
60
61
62
        # Scaling with factor `1.0` is equivalent to copy.
        multi_tensor_applier(amp_C.multi_tensor_scale,
                             overflow_buf,
                             [this, that],
                             1.0)
63
    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
64
65
66
        for this_, that_ in zip(this, that):
            that_.copy_(this_)

67

mohammad's avatar
mohammad committed
68
69
70

class MegatronOptimizer(ABC):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
71
72
73

    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
74
                 params_have_main_grad,
75
                 use_contiguous_buffers_in_local_ddp):
76

mohammad's avatar
mohammad committed
77
78
79
        """Input optimizer is the base optimizer for example Adam."""
        self.optimizer = optimizer
        assert self.optimizer, 'no optimizer is provided.'
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
80
81
82
83
        # Set gradient clipping and logging params.
        self.clip_grad = clip_grad
        self.log_num_zeros_in_grad = log_num_zeros_in_grad
        self.params_have_main_grad = params_have_main_grad
84
        self.use_contiguous_buffers_in_local_ddp = use_contiguous_buffers_in_local_ddp
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
85

86
        if self.use_contiguous_buffers_in_local_ddp:
87
88
            assert self.params_have_main_grad, \
                "use of contiguous buffer requires that params have main grad"
mohammad's avatar
mohammad committed
89

Rewon Child's avatar
Rewon Child committed
90
    def get_parameters(self):
91
92
93
94
        params = []
        for param_group in self.optimizer.param_groups:
            for param in param_group['params']:
                params.append(param)
Rewon Child's avatar
Rewon Child committed
95
96
        return params

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
97

Rewon Child's avatar
Rewon Child committed
98
99
    def clip_grad_norm(self, clip_grad):
        params = self.get_parameters()
100
        return clip_grad_norm_fp32(params, clip_grad)
101

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
102

Rewon Child's avatar
Rewon Child committed
103
104
105
106
    def count_zeros(self):
        params = self.get_parameters()
        return count_zeros_fp32(params)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
107

mohammad's avatar
mohammad committed
108
109
110
111
    @abstractmethod
    def zero_grad(self, set_to_none=True):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
112

mohammad's avatar
mohammad committed
113
114
    @abstractmethod
    def get_loss_scale(self):
115
        """The output should be a cuda tensor of size 1."""
mohammad's avatar
mohammad committed
116
117
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
118

mohammad's avatar
mohammad committed
119
120
121
122
    def scale_loss(self, loss):
        """Simple scaling."""
        return self.get_loss_scale() * loss

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
123

Lawrence McAfee's avatar
Lawrence McAfee committed
124
125
126
127
128
    @abstractmethod
    def reduce_gradients(self):
        pass


mohammad's avatar
mohammad committed
129
130
131
132
    @abstractmethod
    def step(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
133

Lawrence McAfee's avatar
Lawrence McAfee committed
134
135
136
137
138
    @abstractmethod
    def gather_params(self):
        pass


139
140
    @abstractmethod
    def reload_model_params(self):
141
142
143
144
145
        """Refreshes any internal state from the current model parameters.
        Call whenever the parameters are changed outside of the optimizer.
        For example, when we load a model from a checkpoint  without loading
        the optimizer, the model parameters are updated but for fp16 optimizer
        with main parameters, the main parameters need to also be updated."""
146
147
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
148

mohammad's avatar
mohammad committed
149
150
151
152
    @abstractmethod
    def state_dict(self):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
153

mohammad's avatar
mohammad committed
154
155
156
157
    @abstractmethod
    def load_state_dict(self, state_dict):
        pass

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
158

mohammad's avatar
mohammad committed
159
160
161
162
163
164
165
166
167
168
    # Promote state so it can be retrieved or set via
    # "optimizer_instance.state"
    def _get_state(self):
        return self.optimizer.state

    def _set_state(self, value):
        self.optimizer.state = value

    state = property(_get_state, _set_state)

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
169

mohammad's avatar
mohammad committed
170
171
172
173
174
175
176
177
178
179
180
181
182
    # Promote param_groups so it can be retrieved or set via
    # "optimizer_instance.param_groups"
    # (for example, to adjust the learning rate)
    def _get_param_groups(self):
        return self.optimizer.param_groups

    def _set_param_groups(self, value):
        self.optimizer.param_groups = value

    param_groups = property(_get_param_groups, _set_param_groups)



Lawrence McAfee's avatar
Lawrence McAfee committed
183
class BaseFloat16Optimizer(MegatronOptimizer):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
184
185

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
186
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
187
                 bf16, grad_scaler):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
188

Lawrence McAfee's avatar
Lawrence McAfee committed
189
        super().__init__(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
190
            optimizer, clip_grad, log_num_zeros_in_grad,
191
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
192
193

        self.bf16 = bf16
mohammad's avatar
mohammad committed
194
        self.grad_scaler = grad_scaler
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
195
196
197
        # None grad scaler is only supported for bf16.
        if self.grad_scaler is None:
            assert self.bf16, 'fp16 expects a grad scaler.'
mohammad's avatar
mohammad committed
198
199
200

        # Tensor used to determine if a nan/if has happend.
        # Any non-zero value indicates inf/nan.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
201
202
203
204
        # Note that we keep this for the cases that grad scaler is none.
        # We still record nan/inf if we have a bfloat16 with a grad scaler.
        if self.grad_scaler:
            self.found_inf = torch.cuda.FloatTensor([0.0])
mohammad's avatar
mohammad committed
205
206

        # Dummy tensor needed for apex multi-apply tensor.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
207
208
209
210
211
212
213
214
215
216
        # For bfloat, we don't have multi-tensor apply and for now
        # we set it to none so the multi-tensor apply gets ignored.
        if bf16:
            self._dummy_overflow_buf = None
        else:
            self._dummy_overflow_buf = torch.cuda.IntTensor([0])

        # In case grad scaler is not passed, define the unity scale.
        if self.grad_scaler is None:
            self._scale_one = torch.cuda.FloatTensor([1.0])
mohammad's avatar
mohammad committed
217

Lawrence McAfee's avatar
Lawrence McAfee committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

    def get_loss_scale(self):
        if self.grad_scaler is None:
            return self._scale_one
        return self.grad_scaler.scale


# class Float16OptimizerWithFloat16Params(MegatronOptimizer):
class Float16OptimizerWithFloat16Params(BaseFloat16Optimizer):
    """Float16 optimizer for fp16 and bf16 data types.

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
    """

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
                 bf16, grad_scaler):

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            bf16, grad_scaler)

mohammad's avatar
mohammad committed
260
        # ======================
261
        # main parameter stuff
mohammad's avatar
mohammad committed
262
263
264
        # ======================

        # Three groups of parameters:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
265
266
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
mohammad's avatar
mohammad committed
267
        #   fp32_from_fp32_groups: original fp32 parameters
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
268
269
        self.float16_groups = []
        self.fp32_from_float16_groups = []
mohammad's avatar
mohammad committed
270
271
272
273
        self.fp32_from_fp32_groups = []

        # For all the groups in the original optimizer:
        for param_group in self.optimizer.param_groups:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
274
            float16_params_this_group = []
mohammad's avatar
mohammad committed
275
            fp32_params_this_group = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
276
            fp32_from_float16_params_this_group = []
mohammad's avatar
mohammad committed
277
278
279
280
            # For all the parameters in this group:
            for i, param in enumerate(param_group['params']):
                if param.requires_grad:

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
281
282
283
284
                    # float16 params:
                    if param.type() in ['torch.cuda.HalfTensor',
                                        'torch.cuda.BFloat16Tensor']:
                        float16_params_this_group.append(param)
mohammad's avatar
mohammad committed
285
                        # Create a copy
286
                        main_param = param.detach().clone().float()
mohammad's avatar
mohammad committed
287
                        # Copy tensor model parallel attributes.
288
                        mpu.copy_tensor_model_parallel_attributes(main_param,
mohammad's avatar
mohammad committed
289
                                                                  param)
290
                        if hasattr(param, 'shared'):
291
                            main_param.shared = param.shared
mohammad's avatar
mohammad committed
292
                        # Replace the optimizer params with the new fp32 copy.
293
                        param_group['params'][i] = main_param
Lawrence McAfee's avatar
Lawrence McAfee committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
                        # >>>
                        def debug():
                            from lutil import pax, tp
                            pax(0, {
                                "optimizer" : optimizer,
                                # "optimizer / state" : optimizer.state,
                                "optimizer / pg / 0" : optimizer.param_groups[0]["params"],
                                "optimizer / pg / 1" : optimizer.param_groups[1]["params"],
                                "param" : tp(param),
                                "param / hash" : hash(param),
                                "main_param" : tp(main_param),
                                "main_param / hash" : hash(main_param),
                            })
                        # <<<
                        # >>>
                        # debug()
310
311
312
313
314
315

                        # from lutil import pax, tp
                        # pax(0, {
                        #     "param" : tp(param),
                        #     "main_param" : tp(main_param),
                        # })
Lawrence McAfee's avatar
Lawrence McAfee committed
316
                        # <<<
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
317
                        fp32_from_float16_params_this_group.append(main_param)
318
                        # Reset existing state dict key to the new main param.
mohammad's avatar
mohammad committed
319
                        if param in self.optimizer.state:
320
                            self.optimizer.state[main_param] \
mohammad's avatar
mohammad committed
321
                                = self.optimizer.state.pop(param)
Lawrence McAfee's avatar
Lawrence McAfee committed
322
323
324
                        # >>>
                        # debug()
                        # <<<
mohammad's avatar
mohammad committed
325
326
327

                    # fp32 params.
                    elif param.type() == 'torch.cuda.FloatTensor':
Lawrence McAfee's avatar
Lawrence McAfee committed
328
329
330
331
                        # >>>
                        from lutil import pax
                        pax(0, {"param": param})
                        # <<<
mohammad's avatar
mohammad committed
332
333
334
335
                        fp32_params_this_group.append(param)
                        param_group['params'][i] = param

                    else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
336
337
338
339
340
341
342
343
344
                        raise TypeError('Wrapped parameters must be one of '
                                        'torch.cuda.FloatTensor,  '
                                        'torch.cuda.HalfTensor, or '
                                        'torch.cuda.BFloat16Tensor. '
                                        'Received {}'.format(param.type()))

            self.float16_groups.append(float16_params_this_group)
            self.fp32_from_float16_groups.append(
                fp32_from_float16_params_this_group)
mohammad's avatar
mohammad committed
345
346
347
348
349
350
351
352
353
            self.fp32_from_fp32_groups.append(fp32_params_this_group)

        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())


    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
354
355
356
357
        float16_groups & fp32_from_fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
358
        for group in self.float16_groups:
mohammad's avatar
mohammad committed
359
            _zero_grad_group_helper(group, set_to_none)
360
361
        for group in self.fp32_from_float16_groups:
            _zero_grad_group_helper(group, set_to_none)
mohammad's avatar
mohammad committed
362
363
364
365
        for group in self.fp32_from_fp32_groups:
            _zero_grad_group_helper(group, set_to_none)


366
    # >>>
367
368
369
370
371
372
373
374
375
376
377
378
379
380
    def reduce_gradients(self, model):

        # >>>
        from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP

        from megatron import get_args
        from megatron import get_timers
        from megatron.model import DistributedDataParallel as LocalDDP
        from megatron.model import Float16Module
        from megatron.utils import unwrap_model

        args = get_args()
        timers = get_timers()
        # <<<
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423

        # >>>
        # if not args.use_distributed_optimizer:

        # All-reduce if needed.
        # >>>
        # if args.DDP_impl == 'local' and not args.use_distributed_optimizer:
        if args.DDP_impl == 'local':
        # <<<
            timers('backward-params-all-reduce').start()
            for model_module in model:
                # >>>
                # from lutil import pax, tp
                # pax(0, {
                #     "model" : model,
                #     "model_module" : model_module,
                # })
                # <<<
                # >>>
                # e.g., grad_shard = optimizer.get_grad_shard()
                # <<<
                model_module.allreduce_gradients()
            timers('backward-params-all-reduce').stop()

        # All-reduce word_embeddings' grad across first and last stages to ensure
        # that word_embeddings parameters stay in sync.
        # This should only run for models that support pipelined model parallelism
        # (BERT and GPT-2).
        timers('backward-embedding-all-reduce').start()
        if mpu.is_rank_in_embedding_group(ignore_virtual=True) and \
                mpu.get_pipeline_model_parallel_world_size() > 1:
            if mpu.is_pipeline_first_stage(ignore_virtual=True):
                unwrapped_model = model[0]
            elif mpu.is_pipeline_last_stage(ignore_virtual=True):
                unwrapped_model = model[-1]
            else:  # We do not support the interleaved schedule for T5 yet.
                unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))

            if unwrapped_model.share_word_embeddings:
                word_embeddings_weight = unwrapped_model.word_embeddings_weight()
                # >>>
424
425
426
427
428
                if args.DDP_impl == 'local':
                    grad = word_embeddings_weight.main_grad
                else:
                    grad = word_embeddings_weight.grad
                torch.distributed.all_reduce(grad, group=mpu.get_embedding_group())
429
                # +++
430
431
432
                # grad_shard = optimizer.get_grad_shard(word_embeddings)
                # torch.distributed.all_reduce(grad_shard,
                #                              group=mpu.get_embedding_group())
433
434
435
436
437
438
439
440
441
442
443
444
445
446
                # <<<

        # All-reduce position_embeddings grad across first (encoder) and split (decoder) 
        # stages to ensure that position embeddings parameters stay in sync.
        # This should only run for T5 models with pipeline parallelism
        if mpu.is_rank_in_position_embedding_group() and \
                mpu.get_pipeline_model_parallel_world_size() > 1 and \
                args.pipeline_model_parallel_split_rank is not None:
            unwrapped_model = model[0]
            unwrapped_model = unwrap_model(
                unwrapped_model, (torchDDP, LocalDDP, Float16Module))
            assert args.DDP_impl == 'local', \
                'T5 model is only supported with local DDP mode'
            # >>>
447
448
            grad = unwrapped_model.language_model.embedding.position_embeddings.weight.main_grad
            torch.distributed.all_reduce(grad, group=mpu.get_position_embedding_group())
449
            # +++
450
451
452
453
            # grad_shard = optimizer.get_grad_shard(
            #     unwrapped_model.language_model.embedding.position_embeddings.weight)
            # torch.distributed.all_reduce(grad_shard,
            #                              group=mpu.get_position_embedding_group())
454
455
456
            # <<<
        timers('backward-embedding-all-reduce').stop()

457
    def _copy_model_grads_to_main_grads(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
458
459
460
        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
461
            for model_param, main_param in zip(model_group, main_group):
462
                if self.params_have_main_grad and hasattr(model_param, 'main_grad'):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
463
464
465
466
                    main_param.grad = model_param.main_grad.float()
                else:
                    if model_param.grad is not None:
                        main_param.grad = model_param.grad.float()
467
468
469
470
471

                # Safe to deallocate model's grad/main_grad after copying.
                # (If using contiguous buffers, main_grad's memory should
                # persist and therefore should not be deallocated.)
                model_param.grad = None
472
                if self.params_have_main_grad and \
473
                   not self.use_contiguous_buffers_in_local_ddp:
474
475
                    model_param.main_grad = None

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
476
477
478
479
480
        # For fp32 grads, we need to reset the grads to main grad.
        if self.params_have_main_grad:
            for model_group in self.fp32_from_fp32_groups:
                for model_param in model_group:
                    model_param.grad = model_param.main_grad
mohammad's avatar
mohammad committed
481

482
483
484
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
485
                    if not self.use_contiguous_buffers_in_local_ddp:
486
                        model_param.main_grad = None
mohammad's avatar
mohammad committed
487

488
489
    def _unscale_main_grads_and_check_for_nan(self):
        main_grads = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
490
491
        # fp32 params fromm float16 ones.
        for main_group in self.fp32_from_float16_groups:
492
493
494
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
mohammad's avatar
mohammad committed
495
        # Append fp32 parameters.
496
497
498
499
        for main_group in self.fp32_from_fp32_groups:
            for main_param in main_group:
                if main_param.grad is not None:
                    main_grads.append(main_param.grad.data)
mohammad's avatar
mohammad committed
500
501
502
503
        # Reset found inf.
        self.found_inf.fill_(0.0)
        # Unscale and set found inf/nan
        torch._amp_foreach_non_finite_check_and_unscale_(
504
            main_grads, self.found_inf, self.grad_scaler.inv_scale)
mohammad's avatar
mohammad committed
505
506
507
508
        # Update across all model parallel instances.
        torch.distributed.all_reduce(self.found_inf,
                                     op=torch.distributed.ReduceOp.MAX,
                                     group=mpu.get_model_parallel_group())
mohammad's avatar
mohammad committed
509
510
511
512
513
514

        # Check for nan.
        found_inf_flag = (self.found_inf.item() > 0)
        return found_inf_flag


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
515
    def _get_model_and_main_params_data_float16(self):
mohammad's avatar
mohammad committed
516
        model_data = []
517
        main_data = []
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
518
519
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
520
            for model_param, main_param in zip(model_group, main_group):
mohammad's avatar
mohammad committed
521
                model_data.append(model_param.data)
522
523
                main_data.append(main_param.data)
        return model_data, main_data
524
525


526
    def _copy_main_params_to_model_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
527
528
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
529
530
531
532
533
        _multi_tensor_copy_this_to_that(this=main_data, that=model_data,
                                        overflow_buf=self._dummy_overflow_buf)


    def _copy_model_params_to_main_params(self):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
534
535
        # Only needed for the float16 params.
        model_data, main_data = self._get_model_and_main_params_data_float16()
536
537
        _multi_tensor_copy_this_to_that(this=model_data, that=main_data,
                                        overflow_buf=self._dummy_overflow_buf)
538
539
540


    def reload_model_params(self):
541
        self._copy_model_params_to_main_params()
mohammad's avatar
mohammad committed
542

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
543

mohammad's avatar
mohammad committed
544
545
546
547
548
    @torch.no_grad()
    def step(self):

        timers = get_timers()

549
550
551
552
        # Copy gradients from model params to main params.
        timers('optimizer-copy-to-main-grad').start()
        self._copy_model_grads_to_main_grads()
        timers('optimizer-copy-to-main-grad').stop()
mohammad's avatar
mohammad committed
553

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
554
555
556
        # Do unscale, check for inf, and update grad scaler only for
        # the case that grad scaler is provided.
        if self.grad_scaler:
mohammad's avatar
mohammad committed
557

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
558
559
560
561
            # Unscale and check for inf/nan.
            timers('optimizer-unscale-and-check-inf').start()
            found_inf_flag = self._unscale_main_grads_and_check_for_nan()
            timers('optimizer-unscale-and-check-inf').stop()
mohammad's avatar
mohammad committed
562

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
563
564
565
566
567
568
569
            # We are done with scaling gradients
            # so we can update the loss scale.
            self.grad_scaler.update(found_inf_flag)

            # If we found inf/nan, skip the update.
            if found_inf_flag:
                return False, None, None
mohammad's avatar
mohammad committed
570

571
572
        # Clip the main gradients.
        timers('optimizer-clip-main-grad').start()
573
574
575
        grad_norm = None
        if self.clip_grad > 0.0:
            grad_norm = self.clip_grad_norm(self.clip_grad)
576
        timers('optimizer-clip-main-grad').stop()
mohammad's avatar
mohammad committed
577

Rewon Child's avatar
Rewon Child committed
578
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
579
580
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
581

mohammad's avatar
mohammad committed
582
583
584
        # Step the optimizer.
        self.optimizer.step()

Lawrence McAfee's avatar
Lawrence McAfee committed
585
586
587
588
589
590
591
592
593
594
        # >>>
        # from lutil import pax, tp
        # pax(0, {
        #     "optimizer / state" :
        #     { hash(k):tp(v) for k,v in self.optimizer.state.items() },
        #     "optimizer / state / len" : len(self.optimizer.state),
        #     "optimizer / state / 0" : list(self.optimizer.state.values())[0],
        # })
        # <<<

595
596
597
598
        # Update params from main params.
        timers('optimizer-copy-main-to-model-params').start()
        self._copy_main_params_to_model_params()
        timers('optimizer-copy-main-to-model-params').stop()
mohammad's avatar
mohammad committed
599

mohammad's avatar
mohammad committed
600
        # Successful update.
601
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
602
603


mohammad's avatar
mohammad committed
604
605
606
    def state_dict(self):
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
607
608
609
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['fp32_from_fp16_params'] = self.fp32_from_float16_groups
mohammad's avatar
mohammad committed
610
611
612
613
        return state_dict


    def load_state_dict(self, state_dict):
mohammad's avatar
mohammad committed
614
615
616
617
618
619
620
621
622
623
624
625
626
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
627
628
629
630
631
632
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')
mohammad's avatar
mohammad committed
633

634
        # Copy data for the main params.
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
635
636
637
        fp32_from_float16_params_key = 'fp32_from_fp16_params'
        if fp32_from_float16_params_key not in state_dict:
            fp32_from_float16_params_key = 'fp32_from_fp16'
mohammad's avatar
mohammad committed
638
        for current_group, saved_group in zip(
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
639
640
                self.fp32_from_float16_groups,
                state_dict[fp32_from_float16_params_key]):
mohammad's avatar
mohammad committed
641
642
643
644
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)


645
# >>>
646
import math
647

648
# from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
649

650
651
652
653
654
from megatron import get_args
# from megatron import get_timers
# from megatron.model import DistributedDataParallel as LocalDDP
# from megatron.model import Float16Module
# from megatron.utils import unwrap_model
655

656
657
658
# >>>
from lutil import pax, tp
# <<<
659

660
# class Float16DistributedOptimizer(Float16OptimizerWithFloat16Params):
Lawrence McAfee's avatar
Lawrence McAfee committed
661
662
# class Float16DistributedOptimizer(MegatronOptimizer):
class Float16DistributedOptimizer(BaseFloat16Optimizer):
663

664
665
666
667
668
669
670
671
    # >>>
    @classmethod
    def test_reduce_scatter(cls):

        torch.manual_seed(mpu.get_data_parallel_rank())
        size = (20,)
        dtype = torch.float
        device = torch.cuda.current_device()
672
        data_parallel_world_size = mpu.get_data_parallel_world_size()
673
674
675
676
677
678
679
680
681
682
683
684
685
        data_parallel_group = mpu.get_data_parallel_group()

        input_list = [
            # torch.randn(size, dtype = dtype, device = device)
            5 * torch.randint(low = 1, high = 3, size = size, dtype = dtype, device = device)
            for _ in range(data_parallel_world_size)
        ]
        output = torch.empty(size, dtype = dtype, device = device)

        torch.distributed.reduce_scatter(
            output,
            input_list,
            group = data_parallel_group,
686
687
        )

688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
        if torch.distributed.get_rank() == 0:
            print(output)
        pax(0, {
            "data_parallel_world_size" : data_parallel_world_size,
            "data_parallel_group" : data_parallel_group,
            "input_list" : input_list,
            "output" : tp(output),
        })
    # <<<

    # def __init__(self, *_args):
    #     super().__init__(*_args)
    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
                 bf16, grad_scaler):

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
Lawrence McAfee's avatar
Lawrence McAfee committed
706
707
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            bf16, grad_scaler)
708
709

        # >>>
710
711
        # self.test_reduce_scatter()
        # <<<
712

713
714
715
        # >>>
        args = get_args()
        # <<<
716

717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
        # Data parallel info.
        self.data_parallel_group = mpu.get_data_parallel_group()
        self.data_parallel_rank = mpu.get_data_parallel_rank()
        self.data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Total trainable param count.
        # self.total_param_size = sum(
        #     p.numel()
        #     for g in self.param_groups
        #     for p in g["params"]
        #     # if p .requires_grad ???
        # )

        # Model params: group sizes, group offset maps.
        # self.model_params = []
        # self.model_param_group_sizes = []
        # self.model_param_group_offset_maps = []
        self.model_param_groups = []
        for param_group in self.optimizer.param_groups:
            param_group_offset = 0
            param_group_offset_map = {}
            for param in param_group['params']:
                if not param.requires_grad:
                    continue
                # self.model_params.append(param)
                param_group_offset_map[param] = {
                    "start" : param_group_offset,
                    "end" : param_group_offset + param.numel(),
                }
                param_group_offset += param.numel()
            # self.model_param_group_sizes.append(param_group_offset)
            # self.model_param_group_offset_maps.append(param_group_offset_map)
            self.model_param_groups.append({
                "size" : param_group_offset,
                "offset_map" : param_group_offset_map,
            })

        # pax(0, {
        #     "model_params" : model_params,
        #     "model_param_group_sizes" : model_param_group_sizes,
        #     "model_param_group_offset_maps" : model_param_group_offset_maps,
        # })

        # Shard allocator.
761
762
        # ** torch.nn.Parameter ??
        # ** MemoryBuffer ??
763
764
765
        allocate_shard = lambda shard_size, dtype : torch.empty(
            (shard_size,),
            dtype = dtype,
Lawrence McAfee's avatar
Lawrence McAfee committed
766
767
            device = torch.cuda.current_device(),
            requires_grad = True)
768

Lawrence McAfee's avatar
Lawrence McAfee committed
769
770
        # Allocate shards.
        # (Also, collect world DP shard info.)
771
772
773
        model_main_dtypes = set([ args.params_dtype, torch.float ])
        self.world_shard_info_groups = [] # world_group_shard_infos ?
        self.main_param_shard_groups = []
Lawrence McAfee's avatar
Lawrence McAfee committed
774
        for group_index, model_param_group in enumerate(self.model_param_groups):
775

776
777
778
779
780
781
782
            # pax(0, {
            #     "model_param_group" : model_param_group,
            #     # "offset_map" : {str(p.shape):o for p, o in model_param_group["offset_map"].items()},
            #     "offset_map" : [(o,tp(p)) for p, o in model_param_group["offset_map"].items()],
            # })

            # Group sizes.
Lawrence McAfee's avatar
Lawrence McAfee committed
783
784
            model_param_size = model_param_group["size"]
            max_world_shard_size = int(math.ceil(model_param_size /
785
786
                                                 self.data_parallel_world_size))

Lawrence McAfee's avatar
Lawrence McAfee committed
787
788
            # DP world shard infos.
            world_shard_infos = []
789
            for r in range(self.data_parallel_world_size):
Lawrence McAfee's avatar
Lawrence McAfee committed
790
791
792
793
                shard_start_index = r * max_world_shard_size
                shard_end_index = min(model_param_size,
                                      shard_start_index + max_world_shard_size)
                world_shard_infos.append({
794
795
796
797
                    "start" : shard_start_index,
                    "end" : shard_end_index,
                    "size" : shard_end_index - shard_start_index,
                })
Lawrence McAfee's avatar
Lawrence McAfee committed
798
799
            self.world_shard_info_groups.append(world_shard_infos)

800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
            # DP local shard info.
            local_shard_info = world_shard_infos[self.data_parallel_rank]
            local_shard_start_index = local_shard_info["start"]
            local_shard_end_index = local_shard_info["end"]
            local_shard_size = local_shard_info["size"]

            # Shard param index map.
            local_shard_info["param_index_map"] = {}
            for param, offset_dict in model_param_group["offset_map"].items():
                param_start_index = offset_dict["start"]
                param_end_index = offset_dict["end"]
                param_shard_start_index = max(local_shard_start_index,
                                              param_start_index)
                param_shard_end_index = min(local_shard_end_index,
                                            param_end_index)

                if param_shard_end_index > param_shard_start_index:
                    local_shard_info["param_index_map"][param] = {
                        "start" :
                        param_shard_start_index - local_shard_start_index,
                        "end" :
                        param_shard_end_index - local_shard_start_index,
                    }

                # pax(0, {
                #     "local index" : "%d, %d" % (
                #         local_shard_start_index,
                #         local_shard_end_index,
                #     ),
                #     "param index" : "%s, %d" % (
                #         param_start_index,
                #         param_end_index,
                #     ),
                #     "param" : tp(param),
                #     "shard_param_index_map" : shard_param_index_map,
                #     "local_shard_info" : local_shard_info,
                # })

            pax(0, {"local_shard_info": local_shard_info})
839
840

            # Allocate shards.
Lawrence McAfee's avatar
Lawrence McAfee committed
841
842
843
844
845
846
847
848
849
850
            # (Non-fp32 shards are for convenience; e.g., intermediaries
            # between model params and main fp32 shard. Necessary???)
            main_param_shards = {
                ty : allocate_shard(local_shard_size, ty)
                for ty in model_main_dtypes}
            self.main_param_shard_groups.append(main_param_shards)

            # Update optimizer group.
            self.optimizer.param_groups[group_index]["params"] = \
                [ main_param_shards[torch.float] ]
851
852

            # pax(0, {
Lawrence McAfee's avatar
Lawrence McAfee committed
853
854
            #     "param_groups" : self.optimizer.param_groups,
            #     "params" : self.optimizer.param_groups[group_index]["params"],
855
856
            # })

Lawrence McAfee's avatar
Lawrence McAfee committed
857
858
859
860
861
862
863
864
865
        # Leverage state_dict() and load_state_dict() to
        # recast preexisting per-param state tensors
        self.optimizer.load_state_dict(self.optimizer.state_dict())

    # def get_loss_scale(self):
    #     if self.grad_scaler is None:
    #         return self._scale_one
    #     return self.grad_scaler.scale

866
867
868
869
870
871
    def load_state_dict(self):
        raise Exception("hi.")
    def reload_model_params(self):
        raise Exception("hi.")
    def state_dict(self):
        raise Exception("hi.")
Lawrence McAfee's avatar
Lawrence McAfee committed
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886

    def zero_grad(self, set_to_none=True):

        params = []
        for model_param_group in self.model_param_groups:
            params.extend(model_param_group["offset_map"].keys())
        for main_group in self.optimizer.param_groups:
            params.extend(main_group["params"])

        _zero_grad_group_helper(params, set_to_none)

        # pax(0, {
        #     "model_param_groups" : self.model_param_groups,
        #     "params" : params,
        # })
887
888
889
890

    def reduce_gradients(self, model):

        # >>>
891
892
893
894
        args = get_args()
        # timers = get_timers()
        # <<<

895
        # >>> [ already checked in arguments.py ]
896
897
898
        assert args.use_contiguous_buffers_in_local_ddp
        # <<<

899
900
901
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Copy model grads to main shard.

902
903
904
905
906
907
908
909
910
911
912
        local_shard_info_groups = [g[self.data_parallel_rank]
                                   for g in self.world_shard_info_groups]

        pax(0, {
            # "world_shard_info_groups" : self.world_shard_info_groups,
            # **{"world_shard_info_groups / %d" % i : v
            #    for i, v in enumerate(self.world_shard_info_groups)},
            "local_shard_info_groups" : local_shard_info_groups,
            "main_param_shard_groups" : self.main_param_shard_groups,
            # "main_param_shard_groups" : self.main_param_shard_groups,
        })
913
914
915
916
917
918
919

        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Reduce-scatter.

        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

920
921
922
        # grad_buffers = [ m._grad_buffers for m in model ]
        for virtual_model in model:

923
924
925
926
927
928
929
930
931
932
933
934
935
            grad_buffer_map = virtual_model._grad_buffers

            # >>>
            assert len(grad_buffer_map) == 1, \
                "multiple param types not currently supported."
            assert args.params_dtype in grad_buffer_map
            assert self.total_param_size == grad_buffer_map[args.params_dtype].numel
            # <<<

            # pax(0, {
            #     "total_param_size" : self.total_param_size,
            #     "grad_buffer" : tp(grad_buffer_map[args.params_dtype]),
            # })
936

937
            for dtype, grad_buffer in grad_buffer_map.items():
938
939

                dp_grad_buffers = [
940
941
942
943
                    grad_buffer.get(torch.Size((self.shard_infos[i]["size"],)),
                                    self.shard_infos[i]["start"])
                    for i in range(self.data_parallel_world_size)]
                grad_shard = self.grad_shard_map[dtype]
944
945

                torch.distributed.reduce_scatter(
946
947
948
                    grad_shard,
                    dp_grad_buffers,
                    group = self.data_parallel_group,
949
950
951
952
953
                )

                # >>>
                pax(0, {
                    "virtual_model" : virtual_model,
954
                    "grad_buffer_map" : grad_buffer_map,
955
                    "dtype" : dtype,
956
957
                    "grad_shard" : tp(grad_shard),
                    "dp_grad_buffers" : dp_grad_buffers,
958
959
960
961
962
963
964
965
966
967
968
969
                })
                # <<<

        # >>>
        pax(0, {
            "model" : model,
            "grad_buffers" : grad_buffers,
            "grad_buffers / 0" : grad_buffers[0],
            "grad_buffers / 0 / data" :tp(list(grad_buffers[0].values())[0].data),
        })
        # <<<

Lawrence McAfee's avatar
Lawrence McAfee committed
970

971
972
    def step(self):

973
        raise Exception("step.")
974

Lawrence McAfee's avatar
Lawrence McAfee committed
975
976
977
978
979

    def gather_params(self):

        raise Exception("gather params.")

980
981
# <<<

mohammad's avatar
mohammad committed
982

mohammad's avatar
mohammad committed
983
984
class FP32Optimizer(MegatronOptimizer):

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
985
986
    def __init__(self, optimizer, clip_grad,
                 log_num_zeros_in_grad,
987
                 params_have_main_grad,
988
                 use_contiguous_buffers_in_local_ddp):
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
989
990
991

        super(FP32Optimizer, self).__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
992
            params_have_main_grad, use_contiguous_buffers_in_local_ddp)
mohammad's avatar
mohammad committed
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010

        self._scale = torch.cuda.FloatTensor([1.0])


    def zero_grad(self, set_to_none=True):
        """Copied from torch.optim.optimizer"""
        for group in self.optimizer.param_groups:
            _zero_grad_group_helper(group['params'], set_to_none)


    def get_loss_scale(self):
        """FP32 optimizer does not do any scaling."""
        return self._scale


    @torch.no_grad()
    def step(self):
        """Clip gradients (if needed) and step the base optimizer.
mohammad's avatar
mohammad committed
1011
        Always return successful since there is no overflow."""
mohammad's avatar
mohammad committed
1012

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1013
1014
1015
1016
1017
1018
        # Copy main_grads to grads.
        if self.params_have_main_grad:
            for param_group in self.optimizer.param_groups:
                for param in param_group['params']:
                    param.grad = param.main_grad

1019
1020
1021
                    # Safe to de-reference model's main_grad after copying.
                    # (If using contiguous buffers, main_grad's memory should
                    # persist and therefore should not be deallocated.)
1022
                    if not self.use_contiguous_buffers_in_local_ddp:
1023
1024
                        param.main_grad = None

mohammad's avatar
mohammad committed
1025
        # Clip gradients.
1026
        grad_norm = None
mohammad's avatar
mohammad committed
1027
        if self.clip_grad > 0.0:
1028
            grad_norm = self.clip_grad_norm(self.clip_grad)
mohammad's avatar
mohammad committed
1029

Rewon Child's avatar
Rewon Child committed
1030
        # count the zeros in the grads
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
1031
1032
        num_zeros_in_grad = self.count_zeros() if \
                            self.log_num_zeros_in_grad else None
Rewon Child's avatar
Rewon Child committed
1033

mohammad's avatar
mohammad committed
1034
1035
1036
1037
        # Update parameters.
        self.optimizer.step()

        # No overflow for FP32 optimizer.
1038
        return True, grad_norm, num_zeros_in_grad
mohammad's avatar
mohammad committed
1039
1040


1041
1042
1043
1044
    def reload_model_params(self):
        pass


mohammad's avatar
mohammad committed
1045
1046
1047
1048
1049
1050
    def state_dict(self):
        return self.optimizer.state_dict()


    def load_state_dict(self, state_dict):
        self.optimizer.load_state_dict(state_dict)