transformer.py 45.8 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
3
4

"""Transformer."""
import math
5
from contextlib import nullcontext
6
import torch
7
import torch.nn.functional as F
8

9
from megatron import get_timers, get_args, core
10
from .module import MegatronModule
11
from megatron.core import mpu, tensor_parallel
12
from megatron.model.enums import AttnMaskType, ModelType, LayerType, AttnType
13
from megatron.model import LayerNorm
14
15
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
16
from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu
17

18
19
20
21
22
23
24
25
26
27
try:
    from einops import rearrange
except ImportError:
    rearrange = None

try:
    from flash_attn.flash_attn_interface import flash_attn_unpadded_func
except ImportError:
    flash_attn_unpadded_func = None

28

29
30
31
32
33
34
35
36
37
38
""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
39
    Transformer takes input of size [s, b, h] and returns a
40
41
42
43
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

44
class DropPath(MegatronModule):
45
    """Drop paths (Stochastic Depth) per sample
46
47
48
    (when applied in main path of residual blocks).
    """

Vijay Korthikanti's avatar
Vijay Korthikanti committed
49
    def __init__(self, drop_prob=0.):
50
51
52
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

Vijay Korthikanti's avatar
Vijay Korthikanti committed
53
    def forward(self, hidden_state):
54
        if self.drop_prob == 0. or not self.training:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
55
            return hidden_state
56
57
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
58
59
        # hidden_state: [s, b, h]
        shape = (1,) + (hidden_state.shape[1],) + (1,) * (hidden_state.ndim - 2)
60
        random_tensor = keep_prob + \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
61
            torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device)
62
        random_tensor.floor_()  # binarize
Vijay Korthikanti's avatar
Vijay Korthikanti committed
63
        output = hidden_state.div(keep_prob) * random_tensor
64
65
        return output

66
67
68
69
70
71
72
73
74
75
76
def _args_to_kwargs():
    args = get_args()

    common_kwargs = {
        "params_dtype": args.params_dtype,
        "use_cpu_initialization": args.use_cpu_initialization,
        "perform_initialization": args.perform_initialization,
        "gradient_accumulation_fusion": args.gradient_accumulation_fusion,
        "sequence_parallel_enabled": args.sequence_parallel,
    }
    return common_kwargs
77

78
79
80
81
82
class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
83
    state back into h hidden dimension.
84
85
    """

86
    def __init__(self, init_method, output_layer_init_method):
87
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
88
        args = get_args()
89

90

91
        # Project to 4h.
92
        self.dense_h_to_4h = tensor_parallel.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
93
            args.hidden_size,
94
            args.ffn_hidden_size,
95
            gather_output=False,
96
            init_method=init_method,
97
98
99
            skip_bias_add=True,
            async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
            **_args_to_kwargs())
100

101
102
103
104
105
106
        self.bias_gelu_fusion = args.bias_gelu_fusion
        self.activation_func = F.gelu
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
107
108

        # Project back to h.
109
        self.dense_4h_to_h = tensor_parallel.RowParallelLinear(
110
            args.ffn_hidden_size,
Mohammad's avatar
Mohammad committed
111
            args.hidden_size,
112
            input_is_parallel=True,
113
            init_method=output_layer_init_method,
114
115
            skip_bias_add=True,
            **_args_to_kwargs())
116

117
118
    def forward(self, hidden_states):

119
120
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
121

122
123
124
125
126
127
128
129
130
131
        if self.bias_gelu_fusion:
             intermediate_parallel = \
                     bias_gelu_impl(intermediate_parallel, bias_parallel)
        else:
            intermediate_parallel = \
                self.activation_func(intermediate_parallel + bias_parallel)

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
132

rprenger's avatar
rprenger committed
133
134
135
136
class SwitchMLP(MegatronModule):
    """
    Routes input to one of N MLP "experts"
    """
rprenger's avatar
rprenger committed
137
    def __init__(self, init_method, output_layer_init_method):
rprenger's avatar
rprenger committed
138
139
        super(SwitchMLP, self).__init__()
        args = get_args()
rprenger's avatar
rprenger committed
140
        self.router = torch.nn.Linear(args.hidden_size, args.num_experts)
rprenger's avatar
rprenger committed
141
        self.experts = torch.nn.ModuleList()
rprenger's avatar
rprenger committed
142
        for i in range(args.num_experts):
rprenger's avatar
rprenger committed
143
            self.experts.append(ParallelMLP(init_method, output_layer_init_method))
144

rprenger's avatar
rprenger committed
145
    def forward(self, hidden_states):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
146
147
148
        # hidden_states: [s, b, h]
        s = hidden_states.size(0)
        b = hidden_states.size(1)
rprenger's avatar
rprenger committed
149
150
        h = hidden_states.size(2)
        route = self.router(hidden_states)
rprenger's avatar
rprenger committed
151
        route = torch.nn.functional.softmax(route, dim=2)
rprenger's avatar
rprenger committed
152
        max_prob, max_ind = torch.max(route, dim=2)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
153
        max_prob = torch.unsqueeze(max_prob, 2) # [s b 1]
154

rprenger's avatar
rprenger committed
155
        # TODO (rprenger) TODO this could be made easier to read
Vijay Korthikanti's avatar
Vijay Korthikanti committed
156
        # Converting [s, b, h] to [s*b, h].
157
        # Each vector could be routed differently
Vijay Korthikanti's avatar
Vijay Korthikanti committed
158
159
160
        hidden_states = hidden_states.view(-1, hidden_states.size(2)) # [s*b h]
        max_prob = max_prob.view(-1, max_prob.size(2)) # [s*b 1]
        max_ind = max_ind.view(-1) # [s*b]
rprenger's avatar
rprenger committed
161
162
163

        output_total = torch.empty_like(hidden_states)
        output_bias_total = torch.empty_like(hidden_states)
rprenger's avatar
rprenger committed
164
        #TODO (rprenger) This does each expert in serial, but it could be parallelized
165

rprenger's avatar
rprenger committed
166
        for expert_num, expert in enumerate(self.experts):
167
168
            local_indices = (max_ind == expert_num).nonzero()
            hidden = hidden_states[local_indices,:]
rprenger's avatar
rprenger committed
169
170
            output, output_bias = expert(hidden)
            output_bias = output_bias.expand_as(output)
171
172
173
            output_total[local_indices,:] = output
            output_bias_total[local_indices,:] = output_bias

rprenger's avatar
rprenger committed
174
175
        output_total = output_total*max_prob
        output_bias_total = output_bias_total*max_prob
Vijay Korthikanti's avatar
Vijay Korthikanti committed
176
177
        output_total = output_total.view(s, b, h)
        output_bias_total = output_bias_total.view(s, b, h)
rprenger's avatar
rprenger committed
178
179

        return output_total, output_bias_total
180

181
182

class CoreAttention(MegatronModule):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
183

184
185
186
187
188
189
190
191
192
193
194
195
196
    def __init__(self, layer_number,
                 attn_mask_type=AttnMaskType.padding):
        super(CoreAttention, self).__init__()
        args = get_args()
        self.fp16 = args.fp16
        self.bf16 = args.bf16

        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
        self.attn_mask_type = attn_mask_type
Vijay Korthikanti's avatar
Vijay Korthikanti committed
197
        self.sequence_parallel = args.sequence_parallel
198
199
200
201

        projection_size = args.kv_channels * args.num_attention_heads

        # Per attention head and per partition values.
202
        world_size = mpu.get_tensor_model_parallel_world_size()
203
204
205
        self.hidden_size_per_partition = core.utils.divide(projection_size,
                                                           world_size)
        self.hidden_size_per_attention_head = core.utils.divide(
206
            projection_size, args.num_attention_heads)
207
        self.num_attention_heads_per_partition = core.utils.divide(
208
            args.num_attention_heads, world_size)
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16, self.bf16,
            self.attn_mask_type,
            args.masked_softmax_fusion,
            attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
228

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    def forward(self, query_layer, key_layer,
                value_layer, attention_mask):

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # [b, np, sq, sk]
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
                       key_layer.size(0))

        # [sq, b, np, hn] -> [sq, b * np, hn]
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        # [sk, b, np, hn] -> [sk, b * np, hn]
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
249
        # preallocting input tensor: [b * np, sq, sk]
250
        matmul_input_buffer = mpu.get_global_memory_buffer().get_tensor(
251
            (output_size[0]*output_size[1], output_size[2], output_size[3]),
Vijay Korthikanti's avatar
Vijay Korthikanti committed
252
            query_layer.dtype, "mpu")
253
254
255

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
256
            matmul_input_buffer,
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        # ===========================
        # Attention probs and dropout
        # ===========================

        # attention scores and attention mask [b, np, sq, sk]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
275
        if not self.sequence_parallel:
276
            with tensor_parallel.get_cuda_rng_tracker().fork():
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
                attention_probs = self.attention_dropout(attention_probs)
        else:
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(value_layer.size(0),
                                       output_size[0] * output_size[1], -1)

        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)

        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
class FlashSelfAttention(torch.nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
                 device=None, dtype=None):
        super().__init__()
        assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
                                                      'e.g., with pip install flash-attn')
        assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

    def forward(self, q, k, v):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
        """
        assert q.dtype in [torch.float16, torch.bfloat16]
        assert q.is_cuda
        batch_size, seqlen = q.shape[0], q.shape[1]
        q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
        max_s = seqlen
        cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
                                  device=q.device)
        output = flash_attn_unpadded_func(
            q, k, v, cu_seqlens, cu_seqlens, max_s, max_s,
            self.dropout_p if self.training else 0.0,
            softmax_scale=self.softmax_scale, causal=self.causal
        )
        output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
        return output


361
class ParallelAttention(MegatronModule):
362
363
    """Parallel self-attention layer abstract class.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
364
    Self-attention layer takes input with size [s, b, h]
365
366
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
367

368
    def __init__(self, init_method,
369
370
371
372
                 output_layer_init_method, layer_number,
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
373
        args = get_args()
374
        self.layer_number = max(1, layer_number)
375
376
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
377
        self.params_dtype = args.params_dtype
378
379
380
381
382
383
384
385
386
387
388
389
390
        self.sequence_parallel = args.sequence_parallel

        self.use_flash_attn = args.use_flash_attn
        if self.use_flash_attn:
            if flash_attn_unpadded_func is None:
                raise ImportError('FlashAttention is not installed, please install with '
                                  'pip install flash-attn')
            assert attention_type == AttnType.self_attn, ('FlashAttention code path only supports '
                                                          'self-attention for now')
            assert self.attn_mask_type == AttnMaskType.causal, ('FlashAttention code path only '
                                                                'supports causal mask for now')
            if rearrange is None:
                raise ImportError('einops is not installed, please install with pip install einops')
391
392

        projection_size = args.kv_channels * args.num_attention_heads
393
394

        # Per attention head and per partition values.
395
        world_size = mpu.get_tensor_model_parallel_world_size()
396
        self.hidden_size_per_attention_head = core.utils.divide(
397
            projection_size, args.num_attention_heads)
398
        self.num_attention_heads_per_partition = core.utils.divide(
Mohammad's avatar
Mohammad committed
399
            args.num_attention_heads, world_size)
400
401

        # Strided linear layer.
402
        if attention_type == AttnType.self_attn:
403
            self.query_key_value = tensor_parallel.ColumnParallelLinear(
404
405
406
                args.hidden_size,
                3 * projection_size,
                gather_output=False,
407
408
409
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
410
411
        else:
            assert attention_type == AttnType.cross_attn
412
            self.query = tensor_parallel.ColumnParallelLinear(
413
414
415
                args.hidden_size,
                projection_size,
                gather_output=False,
416
417
418
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
419

420

421
            self.key_value = tensor_parallel.ColumnParallelLinear(
422
423
424
                args.hidden_size,
                2 * projection_size,
                gather_output=False,
425
426
427
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
428

429
430
        self.core_attention = CoreAttention(self.layer_number,
                                            self.attn_mask_type)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
431
        self.checkpoint_core_attention = args.recompute_granularity == 'selective'
432

433
434
435
436
437
        if self.use_flash_attn:
            self.core_attention_flash = FlashSelfAttention(
                causal=True, attention_dropout=args.attention_dropout
            )

438
        # Output.
439
        self.dense = tensor_parallel.RowParallelLinear(
440
            projection_size,
Mohammad's avatar
Mohammad committed
441
            args.hidden_size,
442
            input_is_parallel=True,
443
            init_method=output_layer_init_method,
444
445
            skip_bias_add=True,
            **_args_to_kwargs())
Vijay Korthikanti's avatar
Vijay Korthikanti committed
446

447
448
449
450
451
452
453
454
455
456
457
458
    def _checkpointed_attention_forward(self, query_layer, key_layer,
                                        value_layer, attention_mask):
        """Forward method with activation checkpointing."""
        def custom_forward(*inputs):
            query_layer = inputs[0]
            key_layer = inputs[1]
            value_layer = inputs[2]
            attention_mask = inputs[3]
            output_ = self.core_attention(query_layer, key_layer,
                                          value_layer, attention_mask)
            return output_

459
        hidden_states = tensor_parallel.checkpoint(
460
461
462
463
            custom_forward,
            False, query_layer, key_layer, value_layer, attention_mask)

        return hidden_states
464
465
466
467
468
469
470
471
472
473
474

    def _allocate_memory(self, inference_max_sequence_len, batch_size):
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())

    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
475
                encoder_output=None, inference_params=None):
476
        # hidden_states: [sq, b, h]
477

478
479
480
        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
mshoeybi's avatar
mshoeybi committed
481
        if inference_params:
482
            if self.layer_number not in inference_params.key_value_memory_dict:
mshoeybi's avatar
mshoeybi committed
483
                inf_max_seq_len = inference_params.max_sequence_len
mshoeybi's avatar
mshoeybi committed
484
                inf_max_batch_size = inference_params.max_batch_size
485
                inference_key_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
486
                    inf_max_seq_len, inf_max_batch_size)
487
                inference_value_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
488
                    inf_max_seq_len, inf_max_batch_size)
489
490
491
492
493
                inference_params.key_value_memory_dict[self.layer_number] = (
                    inference_key_memory, inference_value_memory)
            else:
                inference_key_memory, inference_value_memory = \
                    inference_params.key_value_memory_dict[self.layer_number]
mshoeybi's avatar
mshoeybi committed
494

495
496
497
        # =====================
        # Query, Key, and Value
        # =====================
498

499
500
501
502
503
504
505
506
507
508
509
510
511
        if self.attention_type == AttnType.self_attn:
            # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
            mixed_x_layer, _ = self.query_key_value(hidden_states)

            # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 3 * self.hidden_size_per_attention_head)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
            (query_layer,
             key_layer,
512
             value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_x_layer, 3)
513
514
515
516
517
518
519
520
521
522
523
524
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 2 * self.hidden_size_per_attention_head)
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
525
             value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_kv_layer, 2)
526
527
528
529
530
531
532
533

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
            query_layer = query_layer.view(*new_tensor_shape)
534

mshoeybi's avatar
mshoeybi committed
535
536
537
        # ==================================
        # Adjust key and value for inference
        # ==================================
538

mshoeybi's avatar
mshoeybi committed
539
        if inference_params:
mshoeybi's avatar
mshoeybi committed
540
541
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
542
            assert batch_end <= inference_key_memory.size(1)
mshoeybi's avatar
mshoeybi committed
543
544
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
545
            assert sequence_end <= inference_key_memory.size(0)
546
            # Copy key and values.
547
548
549
550
551
            inference_key_memory[sequence_start:sequence_end,
                                 batch_start:batch_end, ...] = key_layer
            inference_value_memory[sequence_start:sequence_end,
                                   batch_start:batch_end, ...] = value_layer
            key_layer = inference_key_memory[
mshoeybi's avatar
mshoeybi committed
552
                :sequence_end, batch_start:batch_end, ...]
553
            value_layer = inference_value_memory[
mshoeybi's avatar
mshoeybi committed
554
                :sequence_end, batch_start:batch_end, ...]
555

556
557
558
        # ==================================
        # core attention computation
        # ==================================
559

560
561
562
563
564
565
566
        if not self.use_flash_attn:
            if self.checkpoint_core_attention:
                context_layer = self._checkpointed_attention_forward(
                    query_layer, key_layer, value_layer, attention_mask)
            else:
                context_layer = self.core_attention(
                    query_layer, key_layer, value_layer, attention_mask)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
567
        else:
568
569
570
571
572
573
574
575
            q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous()
                       for x in (query_layer, key_layer, value_layer)]
            if not self.sequence_parallel:
                with tensor_parallel.get_cuda_rng_tracker().fork():
                    context_layer = self.core_attention_flash(q, k, v)
            else:
                context_layer = self.core_attention_flash(q, k, v)
            context_layer = rearrange(context_layer, 'b s h d -> s b (h d)').contiguous()
576
577

        # =================
578
        # Output. [sq, b, h]
579
580
581
        # =================

        output, bias = self.dense(context_layer)
582

583
584
585
        return output, bias


586
def bias_dropout_add(x, bias, residual, prob, training):
587
588
589
590
591
592
593
594
595
596
597
598
599
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
    out = torch.nn.functional.dropout(x + bias, p=prob, training=training)
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
600
601
602
603
def bias_dropout_add_fused_train(x: torch.Tensor,
                                 bias: torch.Tensor,
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
604
605
606
607
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
608
609
610
611
def bias_dropout_add_fused_inference(x: torch.Tensor,
                                     bias: torch.Tensor,
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
612
    return bias_dropout_add(x, bias, residual, prob, False)
613
614
615
616
617


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
618
    Transformer layer takes input with size [s, b, h] and returns an
619
620
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
621

622
623
    def __init__(self, init_method, output_layer_init_method,
                 layer_number, layer_type=LayerType.encoder,
624
625
                 self_attn_mask_type=AttnMaskType.padding,
                 drop_path_rate=0.):
Mohammad's avatar
Mohammad committed
626
        args = get_args()
627
628

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
629
        self.layer_number = layer_number
630
        self.layer_type = layer_type
631
632

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
633
            = args.apply_residual_connection_post_layernorm
634

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
635
636
637
        self.bf16 = args.bf16
        self.fp32_residual_connection = args.fp32_residual_connection

638
639
        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
640
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
641
            eps=args.layernorm_epsilon,
642
            no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
643
            sequence_parallel=args.sequence_parallel)
644
645

        # Self attention.
646
647
648
649
650
651
        self.self_attention = ParallelAttention(
            init_method,
            output_layer_init_method,
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
652
653
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
Vijay Korthikanti's avatar
Vijay Korthikanti committed
654
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
655

656
        # Layernorm on the attention output
657
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
658
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
659
            eps=args.layernorm_epsilon,
660
            no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
661
            sequence_parallel=args.sequence_parallel)
662

663
664
665
666
667
668
669
670
671
        if self.layer_type == LayerType.decoder:
            self.inter_attention = ParallelAttention(
                init_method,
                output_layer_init_method,
                layer_number,
                attention_type=AttnType.cross_attn)
            # Layernorm on the attention output.
            self.post_inter_attention_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
672
                eps=args.layernorm_epsilon,
673
                no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
674
                sequence_parallel=args.sequence_parallel)
675

676
        # MLP
rprenger's avatar
rprenger committed
677
678
679
680
        if args.num_experts is not None:
            self.mlp = SwitchMLP(init_method, output_layer_init_method)
        else:
            self.mlp = ParallelMLP(init_method, output_layer_init_method)
681

682
683
684
685
686
687
688
        # Set bias+dropout+add fusion grad_enable execution handler.
        TORCH_MAJOR = int(torch.__version__.split('.')[0])
        TORCH_MINOR = int(torch.__version__.split('.')[1])
        use_nvfuser = TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10)
        self.bias_dropout_add_exec_handler = \
                nullcontext if use_nvfuser else torch.enable_grad

689
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
690
691
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
692
        # hidden_states: [s, b, h]
693

694
        # Layer norm at the beginning of the transformer layer.
695
696
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
697
        attention_output, attention_bias = \
698
699
700
            self.self_attention(
                layernorm_output,
                attention_mask,
mshoeybi's avatar
mshoeybi committed
701
                inference_params=inference_params)
702

703
704
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
705
706
707
708
            residual = layernorm_output
        else:
            residual = hidden_states

Vijay Korthikanti's avatar
Vijay Korthikanti committed
709
        if self.drop_path is None:
710
711
712
713
714
715
716
717
718
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
719
            else:
720
                bias_dropout_add_func = get_bias_dropout_add(self.training)
721

722
            with self.bias_dropout_add_exec_handler():
723
724
725
726
727
728
729
730
731
732
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            layernorm_input = residual + self.drop_path(out)
733

734
735
736
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

737
738
739
740
741
742
743
744
745
746
747
        if self.layer_type == LayerType.decoder:
            attention_output, attention_bias = \
                self.inter_attention(layernorm_output,
                                     enc_dec_attn_mask,
                                     encoder_output=encoder_output)
            # residual connection
            if self.apply_residual_connection_post_layernorm:
                residual = layernorm_output
            else:
                residual = layernorm_input

748
            with self.bias_dropout_add_exec_handler():
749
750
751
752
753
754
755
756
757
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)

            # Layer norm post the decoder attention
            layernorm_output = self.post_inter_attention_layernorm(layernorm_input)

758
        # MLP.
759
        mlp_output, mlp_bias = self.mlp(layernorm_output)
760

761
762
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
763
            residual = layernorm_output
764
        else:
765
766
            residual = layernorm_input

Vijay Korthikanti's avatar
Vijay Korthikanti committed
767
        if self.drop_path is None:
768
            with self.bias_dropout_add_exec_handler():
769
770
771
772
773
                output = bias_dropout_add_func(
                    mlp_output,
                    mlp_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
774
775
776
777
778
779
780

            # Jit compiled function creates 'view' tensor. This tensor
            # potentially gets saved in the MPU checkpoint function context,
            # which rejects view tensors. While making a viewless tensor here
            # won't result in memory savings (like the data loader, or
            # p2p_communication), it serves to document the origin of this
            # 'view' tensor.
781
782
783
            output = core.utils.make_viewless_tensor(inp = output,
                                                     requires_grad = output.requires_grad,
                                                     keep_graph = True)
784

785
786
787
788
789
        else:
            out = torch.nn.functional.dropout(mlp_output + mlp_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)
790
791
792
793

        return output


794
795
796
class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

Lawrence McAfee's avatar
Lawrence McAfee committed
797
    The sole purpose of this layer is for when a standalone embedding layer
798
    is used (i.e., args.standalone_embedding_stage == True). In this case,
Lawrence McAfee's avatar
Lawrence McAfee committed
799
800
801
802
803
804
805
806
807
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
808
809
810
811
812
813
814
815
816
817
818
819
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


Jared Casper's avatar
Jared Casper committed
820
def _get_num_layers(args, is_encoder_and_decoder_model, is_decoder=False):
821
    """Compute the number of transformer layers resident on the current rank."""
Jared Casper's avatar
Jared Casper committed
822
    if mpu.get_pipeline_model_parallel_world_size() > 1:
823
824
825
826
827
828
829
830
831
832
833
834
835
        if is_encoder_and_decoder_model:
            assert args.pipeline_model_parallel_split_rank is not None

            # When a standalone embedding stage is used, a rank is taken from
            # the encoder's ranks, to be used for the encoder's embedding
            # layer. This way, the rank referenced by the 'split rank' remains
            # the same whether or not a standalone embedding stage is used.
            num_ranks_in_encoder = (
                args.pipeline_model_parallel_split_rank - 1
                if args.standalone_embedding_stage else
                args.pipeline_model_parallel_split_rank
            )
            num_ranks_in_decoder = args.transformer_pipeline_model_parallel_size - num_ranks_in_encoder
Jared Casper's avatar
Jared Casper committed
836
837
838
839
            assert args.encoder_num_layers % num_ranks_in_encoder == 0, \
                    'encoder_num_layers (%d) must be divisible by number of ranks given to encoder (%d)' % (args.encoder_num_layers, num_ranks_in_encoder)
            assert args.decoder_num_layers % num_ranks_in_decoder == 0, \
                    'decoder_num_layers (%d) must be divisible by number of ranks given to decoder (%d)' % (args.decoder_num_layers, num_ranks_in_decoder)
Jared Casper's avatar
Jared Casper committed
840
            if mpu.is_pipeline_stage_before_split():
841
842
843
                num_layers = (
                    0
                    if args.standalone_embedding_stage
Jared Casper's avatar
Jared Casper committed
844
                    and mpu.get_pipeline_model_parallel_rank() == 0 else
Jared Casper's avatar
Jared Casper committed
845
                    args.encoder_num_layers // num_ranks_in_encoder
846
847
                )
            else:
Jared Casper's avatar
Jared Casper committed
848
                num_layers = args.decoder_num_layers // num_ranks_in_decoder
849
        else:
Jared Casper's avatar
Jared Casper committed
850
            assert args.num_layers == args.encoder_num_layers
851
852
853
854
855
856
857
858
859
860
            assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \
                'num_layers must be divisible by transformer_pipeline_model_parallel_size'

            # When a standalone embedding stage is used, all transformer layers
            # are divided among pipeline rank >= 1, while on pipeline rank 0,
            # ranks either contain the input embedding layer (virtual pp rank 0),
            # or no layers at all (virtual pp rank >= 1).
            num_layers = (
                0
                if args.standalone_embedding_stage
Jared Casper's avatar
Jared Casper committed
861
                and mpu.get_pipeline_model_parallel_rank() == 0 else
862
863
864
                args.num_layers // args.transformer_pipeline_model_parallel_size
            )
    else:
Jared Casper's avatar
Jared Casper committed
865
866
867
868
        if not is_decoder:
            num_layers = args.encoder_num_layers
        else:
            num_layers = args.decoder_num_layers
869
870
871
    return num_layers


872
873
874
class ParallelTransformer(MegatronModule):
    """Transformer class."""

875
    def __init__(self, init_method, output_layer_init_method,
876
                 layer_type=LayerType.encoder,
877
                 self_attn_mask_type=AttnMaskType.padding,
878
                 post_layer_norm=True,
879
880
                 pre_process=True, post_process=True,
                 drop_path_rate=0.0):
881
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
882
        args = get_args()
883

884
885
        self.layer_type = layer_type
        self.model_type = args.model_type
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
886
        self.bf16 = args.bf16
887
        self.fp32_residual_connection = args.fp32_residual_connection
888
        self.post_layer_norm = post_layer_norm
889
890
891
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
892
        self.drop_path_rate = drop_path_rate
893

894
        # Store activation checkpoiting flag.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
895
896
897
        self.recompute_granularity = args.recompute_granularity
        self.recompute_method = args.recompute_method
        self.recompute_num_layers = args.recompute_num_layers
Vijay Korthikanti's avatar
Vijay Korthikanti committed
898
899
        self.distribute_saved_activations = \
            args.distribute_saved_activations and not args.sequence_parallel
900

Vijay Korthikanti's avatar
Vijay Korthikanti committed
901
        self.sequence_parallel = args.sequence_parallel
902

903
        # Number of layers.
904
        self.num_layers = _get_num_layers(
905
906
907
            args,
            args.model_type == ModelType.encoder_and_decoder,
            layer_type == LayerType.decoder)
Mohammad's avatar
Mohammad committed
908

Vijay Korthikanti's avatar
Vijay Korthikanti committed
909
        self.drop_path_rates = [rate.item() for rate in torch.linspace(0, self.drop_path_rate, args.num_layers)]
910

Mohammad's avatar
Mohammad committed
911
912
        # Transformer layers.
        def build_layer(layer_number):
913
            return ParallelTransformerLayer(
914
915
916
                init_method,
                output_layer_init_method,
                layer_number,
917
                layer_type=layer_type,
918
                self_attn_mask_type=self_attn_mask_type,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
919
                drop_path_rate=self.drop_path_rates[layer_number - 1])
920
921
        if args.virtual_pipeline_model_parallel_size is not None:
            assert args.num_layers % args.virtual_pipeline_model_parallel_size == 0, \
922
923
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
924
            assert args.model_type != ModelType.encoder_and_decoder
925
926
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
927
            self.num_layers = self.num_layers // args.virtual_pipeline_model_parallel_size
928
929
930
931
932
933
934
935
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
936
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
937
                args.num_layers // args.virtual_pipeline_model_parallel_size) + \
938
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
939
        else:
940
            # Each stage gets a contiguous set of layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
941
            if args.model_type == ModelType.encoder_and_decoder and \
942
943
                    mpu.get_pipeline_model_parallel_world_size() > 1:
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
944
945
946
947
948
949
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
950
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
951

952
        if self.num_layers == 0:
Lawrence McAfee's avatar
Lawrence McAfee committed
953
            # When a standalone embedding stage is used (e.g.,
954
            # args.standalone_embedding_stage == True), virtual pipeline ranks
955
            # on pipeline rank 0 will have zero transformer layers assigned to
Lawrence McAfee's avatar
Lawrence McAfee committed
956
957
958
959
960
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
961
962
963
964
965
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])
966

967
        if self.post_process and self.post_layer_norm:
968
969
970
            # Final layer norm before output.
            self.final_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
971
                eps=args.layernorm_epsilon,
972
                no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
973
                sequence_parallel=args.sequence_parallel)
974

Mohammad's avatar
Mohammad committed
975
    def _get_layer(self, layer_number):
976
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
977

978
979
    def _checkpointed_forward(self, hidden_states, attention_mask,
                              encoder_output, enc_dec_attn_mask):
980
981
982
983
        """Forward method with activation checkpointing."""
        def custom(start, end):
            def custom_forward(*inputs):
                x_ = inputs[0]
984
985
986
                attention_mask = inputs[1]
                encoder_output = inputs[2]
                enc_dec_attn_mask = inputs[3]
Mohammad's avatar
Mohammad committed
987
988
                for index in range(start, end):
                    layer = self._get_layer(index)
989
                    x_ = layer(x_, attention_mask, encoder_output, enc_dec_attn_mask)
990
991
992
                return x_
            return custom_forward

Vijay Korthikanti's avatar
Vijay Korthikanti committed
993
        if self.recompute_method == 'uniform':
994
995
996
997
998
            # Uniformly divide the total number of Transformer layers and checkpoint
            # the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
999
                hidden_states = tensor_parallel.checkpoint(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1000
                    custom(l, l + self.recompute_num_layers),
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1001
                    self.distribute_saved_activations,
1002
                    hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1003
                l += self.recompute_num_layers
1004

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1005
        elif self.recompute_method == 'block':
1006
1007
1008
1009
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1010
                if l < self.recompute_num_layers:
1011
                    hidden_states = tensor_parallel.checkpoint(
1012
                        custom(l, l + 1),
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1013
                        self.distribute_saved_activations,
1014
1015
1016
1017
1018
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                else:
                    hidden_states = custom(l, l + 1)(
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1019
            raise ValueError("Invalid activation recompute method.")
1020
1021
1022

        return hidden_states

1023
    def set_input_tensor(self, input_tensor):
1024
1025
1026
1027
1028
1029
1030
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
1031
1032
        self.input_tensor = input_tensor

1033
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
1034
1035
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1036
1037
        # hidden_states: [s, b, h]

1038
        # Checks.
mshoeybi's avatar
mshoeybi committed
1039
        if inference_params:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1040
            assert self.recompute_granularity is None, \
1041
                'inference does not work with activation checkpointing'
1042

1043
        if not self.pre_process:
1044
            # See set_input_tensor()
1045
            hidden_states = self.input_tensor
1046

1047
1048
        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
1049
1050
1051
1052
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
1053
1054
1055
1056
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
1057
        #
1058
1059
1060
1061
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
1062
        hidden_states = core.utils.make_viewless_tensor(
1063
            hidden_states,
1064
1065
            requires_grad=True,
            keep_graph=True,
1066
1067
        )

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1068
        if self.sequence_parallel:
1069
            rng_context = tensor_parallel.get_cuda_rng_tracker().fork()
1070
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1071
            rng_context = nullcontext()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1072
1073

        with rng_context:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1074
            # Forward pass.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1075
            if self.recompute_granularity == 'full':
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
                hidden_states = self._checkpointed_forward(hidden_states,
                                                           attention_mask,
                                                           encoder_output,
                                                           enc_dec_attn_mask)
            else:
                for index in range(self.num_layers):
                    layer = self._get_layer(index)
                    hidden_states = layer(
                        hidden_states,
                        attention_mask,
                        encoder_output=encoder_output,
                        enc_dec_attn_mask=enc_dec_attn_mask,
                        inference_params=inference_params)
mshoeybi's avatar
mshoeybi committed
1089

1090
        # Final layer norm.
1091
        if self.post_process and self.post_layer_norm:
1092
1093
            hidden_states = self.final_layernorm(hidden_states)

1094
        return hidden_states