transformer.py 52 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
3
4

"""Transformer."""
import math
5
from contextlib import nullcontext
6
import torch
7
import torch.nn.functional as F
8

9
from megatron import get_timers, get_args, core, get_num_microbatches
10
from .module import MegatronModule
11
from megatron.core import mpu, tensor_parallel
12
13
from megatron.core.enums import ModelType
from megatron.model.enums import AttnMaskType, LayerType, AttnType
14
15
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
16
from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu
17

18
19
20
21
22
23
24
25
26
27
try:
    from einops import rearrange
except ImportError:
    rearrange = None

try:
    from flash_attn.flash_attn_interface import flash_attn_unpadded_func
except ImportError:
    flash_attn_unpadded_func = None

28
29
30
31
32
33
34
35
36
37
""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
38
    Transformer takes input of size [s, b, h] and returns a
39
40
41
42
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

43
class DropPath(MegatronModule):
44
    """Drop paths (Stochastic Depth) per sample
45
46
47
    (when applied in main path of residual blocks).
    """

Vijay Korthikanti's avatar
Vijay Korthikanti committed
48
    def __init__(self, drop_prob=0.):
49
50
51
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

Vijay Korthikanti's avatar
Vijay Korthikanti committed
52
    def forward(self, hidden_state):
53
        if self.drop_prob == 0. or not self.training:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
54
            return hidden_state
55
56
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
57
58
        # hidden_state: [s, b, h]
        shape = (1,) + (hidden_state.shape[1],) + (1,) * (hidden_state.ndim - 2)
59
        random_tensor = keep_prob + \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
60
            torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device)
61
        random_tensor.floor_()  # binarize
Vijay Korthikanti's avatar
Vijay Korthikanti committed
62
        output = hidden_state.div(keep_prob) * random_tensor
63
64
        return output

65
66
67
68
69
70
71
72
73
74
75
def _args_to_kwargs():
    args = get_args()

    common_kwargs = {
        "params_dtype": args.params_dtype,
        "use_cpu_initialization": args.use_cpu_initialization,
        "perform_initialization": args.perform_initialization,
        "gradient_accumulation_fusion": args.gradient_accumulation_fusion,
        "sequence_parallel_enabled": args.sequence_parallel,
    }
    return common_kwargs
76

77
78
79
80
81
class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
82
    state back into h hidden dimension.
83
84
    """

85
    def __init__(self, init_method, output_layer_init_method):
86
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
87
        args = get_args()
88

89

90
        # Project to 4h.
91
        self.dense_h_to_4h = tensor_parallel.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
92
            args.hidden_size,
93
            args.ffn_hidden_size,
94
            gather_output=False,
95
            init_method=init_method,
96
97
98
            skip_bias_add=True,
            async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
            **_args_to_kwargs())
99

100
101
102
103
104
105
        self.bias_gelu_fusion = args.bias_gelu_fusion
        self.activation_func = F.gelu
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
106
107

        # Project back to h.
108
        self.dense_4h_to_h = tensor_parallel.RowParallelLinear(
109
            args.ffn_hidden_size,
Mohammad's avatar
Mohammad committed
110
            args.hidden_size,
111
            input_is_parallel=True,
112
            init_method=output_layer_init_method,
113
114
            skip_bias_add=True,
            **_args_to_kwargs())
115

116
117
    def forward(self, hidden_states):

118
119
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
120

121
122
123
124
125
126
127
128
129
130
        if self.bias_gelu_fusion:
             intermediate_parallel = \
                     bias_gelu_impl(intermediate_parallel, bias_parallel)
        else:
            intermediate_parallel = \
                self.activation_func(intermediate_parallel + bias_parallel)

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
131

rprenger's avatar
rprenger committed
132
133
134
135
class SwitchMLP(MegatronModule):
    """
    Routes input to one of N MLP "experts"
    """
rprenger's avatar
rprenger committed
136
    def __init__(self, init_method, output_layer_init_method):
rprenger's avatar
rprenger committed
137
138
        super(SwitchMLP, self).__init__()
        args = get_args()
rprenger's avatar
rprenger committed
139
        self.router = torch.nn.Linear(args.hidden_size, args.num_experts)
rprenger's avatar
rprenger committed
140
        self.experts = torch.nn.ModuleList()
rprenger's avatar
rprenger committed
141
        for i in range(args.num_experts):
rprenger's avatar
rprenger committed
142
            self.experts.append(ParallelMLP(init_method, output_layer_init_method))
143

rprenger's avatar
rprenger committed
144
    def forward(self, hidden_states):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
145
146
147
        # hidden_states: [s, b, h]
        s = hidden_states.size(0)
        b = hidden_states.size(1)
rprenger's avatar
rprenger committed
148
149
        h = hidden_states.size(2)
        route = self.router(hidden_states)
rprenger's avatar
rprenger committed
150
        route = torch.nn.functional.softmax(route, dim=2)
rprenger's avatar
rprenger committed
151
        max_prob, max_ind = torch.max(route, dim=2)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
152
        max_prob = torch.unsqueeze(max_prob, 2) # [s b 1]
153

rprenger's avatar
rprenger committed
154
        # TODO (rprenger) TODO this could be made easier to read
Vijay Korthikanti's avatar
Vijay Korthikanti committed
155
        # Converting [s, b, h] to [s*b, h].
156
        # Each vector could be routed differently
Vijay Korthikanti's avatar
Vijay Korthikanti committed
157
158
159
        hidden_states = hidden_states.view(-1, hidden_states.size(2)) # [s*b h]
        max_prob = max_prob.view(-1, max_prob.size(2)) # [s*b 1]
        max_ind = max_ind.view(-1) # [s*b]
rprenger's avatar
rprenger committed
160
161
162

        output_total = torch.empty_like(hidden_states)
        output_bias_total = torch.empty_like(hidden_states)
rprenger's avatar
rprenger committed
163
        #TODO (rprenger) This does each expert in serial, but it could be parallelized
164

rprenger's avatar
rprenger committed
165
        for expert_num, expert in enumerate(self.experts):
166
167
            local_indices = (max_ind == expert_num).nonzero()
            hidden = hidden_states[local_indices,:]
rprenger's avatar
rprenger committed
168
169
            output, output_bias = expert(hidden)
            output_bias = output_bias.expand_as(output)
170
171
172
            output_total[local_indices,:] = output
            output_bias_total[local_indices,:] = output_bias

rprenger's avatar
rprenger committed
173
174
        output_total = output_total*max_prob
        output_bias_total = output_bias_total*max_prob
Vijay Korthikanti's avatar
Vijay Korthikanti committed
175
176
        output_total = output_total.view(s, b, h)
        output_bias_total = output_bias_total.view(s, b, h)
rprenger's avatar
rprenger committed
177
178

        return output_total, output_bias_total
179

180
181

class CoreAttention(MegatronModule):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
182

183
184
185
186
187
188
189
190
191
192
193
194
195
    def __init__(self, layer_number,
                 attn_mask_type=AttnMaskType.padding):
        super(CoreAttention, self).__init__()
        args = get_args()
        self.fp16 = args.fp16
        self.bf16 = args.bf16

        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
        self.attn_mask_type = attn_mask_type
Vijay Korthikanti's avatar
Vijay Korthikanti committed
196
        self.sequence_parallel = args.sequence_parallel
197
198
199
200

        projection_size = args.kv_channels * args.num_attention_heads

        # Per attention head and per partition values.
201
        world_size = mpu.get_tensor_model_parallel_world_size()
202
203
204
        self.hidden_size_per_partition = core.utils.divide(projection_size,
                                                           world_size)
        self.hidden_size_per_attention_head = core.utils.divide(
205
            projection_size, args.num_attention_heads)
206
        self.num_attention_heads_per_partition = core.utils.divide(
207
            args.num_attention_heads, world_size)
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226

        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16, self.bf16,
            self.attn_mask_type,
            args.masked_softmax_fusion,
            attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
227

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    def forward(self, query_layer, key_layer,
                value_layer, attention_mask):

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # [b, np, sq, sk]
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
                       key_layer.size(0))

        # [sq, b, np, hn] -> [sq, b * np, hn]
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        # [sk, b, np, hn] -> [sk, b * np, hn]
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
248
        # preallocting input tensor: [b * np, sq, sk]
249
        matmul_input_buffer = mpu.get_global_memory_buffer().get_tensor(
250
            (output_size[0]*output_size[1], output_size[2], output_size[3]),
Vijay Korthikanti's avatar
Vijay Korthikanti committed
251
            query_layer.dtype, "mpu")
252
253
254

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
255
            matmul_input_buffer,
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        # ===========================
        # Attention probs and dropout
        # ===========================

        # attention scores and attention mask [b, np, sq, sk]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
273
        if not self.sequence_parallel:
274
            with tensor_parallel.get_cuda_rng_tracker().fork():
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
                attention_probs = self.attention_dropout(attention_probs)
        else:
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(value_layer.size(0),
                                       output_size[0] * output_size[1], -1)

        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)

        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
class FlashSelfAttention(torch.nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
                 device=None, dtype=None):
        super().__init__()
        assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
                                                      'e.g., with pip install flash-attn')
        assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

    def forward(self, q, k, v):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
        """
        assert q.dtype in [torch.float16, torch.bfloat16]
        assert q.is_cuda
        batch_size, seqlen = q.shape[0], q.shape[1]
        q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
        max_s = seqlen
        cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
                                  device=q.device)
        output = flash_attn_unpadded_func(
            q, k, v, cu_seqlens, cu_seqlens, max_s, max_s,
            self.dropout_p if self.training else 0.0,
            softmax_scale=self.softmax_scale, causal=self.causal
        )
        output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
        return output


359
class ParallelAttention(MegatronModule):
360
361
    """Parallel self-attention layer abstract class.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
362
    Self-attention layer takes input with size [s, b, h]
363
364
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
365

366
    def __init__(self, init_method,
367
368
369
370
                 output_layer_init_method, layer_number,
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
371
        args = get_args()
372
        self.layer_number = max(1, layer_number)
373
374
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
375
        self.params_dtype = args.params_dtype
376
377
378
379
380
381
382
383
384
385
386
387
388
        self.sequence_parallel = args.sequence_parallel

        self.use_flash_attn = args.use_flash_attn
        if self.use_flash_attn:
            if flash_attn_unpadded_func is None:
                raise ImportError('FlashAttention is not installed, please install with '
                                  'pip install flash-attn')
            assert attention_type == AttnType.self_attn, ('FlashAttention code path only supports '
                                                          'self-attention for now')
            assert self.attn_mask_type == AttnMaskType.causal, ('FlashAttention code path only '
                                                                'supports causal mask for now')
            if rearrange is None:
                raise ImportError('einops is not installed, please install with pip install einops')
389
390

        projection_size = args.kv_channels * args.num_attention_heads
391
392

        # Per attention head and per partition values.
393
        world_size = mpu.get_tensor_model_parallel_world_size()
394
        self.hidden_size_per_attention_head = core.utils.divide(
395
            projection_size, args.num_attention_heads)
396
        self.num_attention_heads_per_partition = core.utils.divide(
Mohammad's avatar
Mohammad committed
397
            args.num_attention_heads, world_size)
398
399

        # Strided linear layer.
400
        if attention_type == AttnType.self_attn:
401
            self.query_key_value = tensor_parallel.ColumnParallelLinear(
402
403
404
                args.hidden_size,
                3 * projection_size,
                gather_output=False,
405
406
407
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
408
409
        else:
            assert attention_type == AttnType.cross_attn
410
            self.query = tensor_parallel.ColumnParallelLinear(
411
412
413
                args.hidden_size,
                projection_size,
                gather_output=False,
414
415
416
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
417

418

419
            self.key_value = tensor_parallel.ColumnParallelLinear(
420
421
422
                args.hidden_size,
                2 * projection_size,
                gather_output=False,
423
424
425
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
426

427
428
        self.core_attention = CoreAttention(self.layer_number,
                                            self.attn_mask_type)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
429
        self.checkpoint_core_attention = args.recompute_granularity == 'selective'
430

431
432
433
434
435
        if self.use_flash_attn:
            self.core_attention_flash = FlashSelfAttention(
                causal=True, attention_dropout=args.attention_dropout
            )

436
        # Output.
437
        self.dense = tensor_parallel.RowParallelLinear(
438
            projection_size,
Mohammad's avatar
Mohammad committed
439
            args.hidden_size,
440
            input_is_parallel=True,
441
            init_method=output_layer_init_method,
442
443
            skip_bias_add=True,
            **_args_to_kwargs())
Vijay Korthikanti's avatar
Vijay Korthikanti committed
444

445
446
447
448
449
450
451
452
453
454
455
456
    def _checkpointed_attention_forward(self, query_layer, key_layer,
                                        value_layer, attention_mask):
        """Forward method with activation checkpointing."""
        def custom_forward(*inputs):
            query_layer = inputs[0]
            key_layer = inputs[1]
            value_layer = inputs[2]
            attention_mask = inputs[3]
            output_ = self.core_attention(query_layer, key_layer,
                                          value_layer, attention_mask)
            return output_

457
        hidden_states = tensor_parallel.checkpoint(
458
459
460
461
            custom_forward,
            False, query_layer, key_layer, value_layer, attention_mask)

        return hidden_states
462
463
464
465
466
467
468
469
470
471
472

    def _allocate_memory(self, inference_max_sequence_len, batch_size):
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())

    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
473
                encoder_output=None, inference_params=None):
474
        # hidden_states: [sq, b, h]
475

476
477
478
        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
479

mshoeybi's avatar
mshoeybi committed
480
        if inference_params:
481
            if self.layer_number not in inference_params.key_value_memory_dict:
mshoeybi's avatar
mshoeybi committed
482
                inf_max_seq_len = inference_params.max_sequence_len
mshoeybi's avatar
mshoeybi committed
483
                inf_max_batch_size = inference_params.max_batch_size
484
                inference_key_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
485
                    inf_max_seq_len, inf_max_batch_size)
486
                inference_value_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
487
                    inf_max_seq_len, inf_max_batch_size)
488
489
490
491
492
                inference_params.key_value_memory_dict[self.layer_number] = (
                    inference_key_memory, inference_value_memory)
            else:
                inference_key_memory, inference_value_memory = \
                    inference_params.key_value_memory_dict[self.layer_number]
mshoeybi's avatar
mshoeybi committed
493

494
495
496
        # =====================
        # Query, Key, and Value
        # =====================
497

498
499
500
501
502
503
504
505
506
507
508
509
510
        if self.attention_type == AttnType.self_attn:
            # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
            mixed_x_layer, _ = self.query_key_value(hidden_states)

            # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 3 * self.hidden_size_per_attention_head)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
            (query_layer,
             key_layer,
511
             value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_x_layer, 3)
512
513
514
515
516
517
518
519
520
521
522
523
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 2 * self.hidden_size_per_attention_head)
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
524
             value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_kv_layer, 2)
525
526
527
528
529
530
531
532

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
            query_layer = query_layer.view(*new_tensor_shape)
533

mshoeybi's avatar
mshoeybi committed
534
535
536
        # ==================================
        # Adjust key and value for inference
        # ==================================
537

mshoeybi's avatar
mshoeybi committed
538
        if inference_params:
mshoeybi's avatar
mshoeybi committed
539
540
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
541
            assert batch_end <= inference_key_memory.size(1)
mshoeybi's avatar
mshoeybi committed
542
543
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
544
            assert sequence_end <= inference_key_memory.size(0)
545
            # Copy key and values.
546
547
548
549
550
            inference_key_memory[sequence_start:sequence_end,
                                 batch_start:batch_end, ...] = key_layer
            inference_value_memory[sequence_start:sequence_end,
                                   batch_start:batch_end, ...] = value_layer
            key_layer = inference_key_memory[
mshoeybi's avatar
mshoeybi committed
551
                :sequence_end, batch_start:batch_end, ...]
552
            value_layer = inference_value_memory[
mshoeybi's avatar
mshoeybi committed
553
                :sequence_end, batch_start:batch_end, ...]
554

555
556
557
        # ==================================
        # core attention computation
        # ==================================
558

559
560
561
562
563
564
565
        if not self.use_flash_attn:
            if self.checkpoint_core_attention:
                context_layer = self._checkpointed_attention_forward(
                    query_layer, key_layer, value_layer, attention_mask)
            else:
                context_layer = self.core_attention(
                    query_layer, key_layer, value_layer, attention_mask)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
566
        else:
567
568
569
570
571
572
573
574
            q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous()
                       for x in (query_layer, key_layer, value_layer)]
            if not self.sequence_parallel:
                with tensor_parallel.get_cuda_rng_tracker().fork():
                    context_layer = self.core_attention_flash(q, k, v)
            else:
                context_layer = self.core_attention_flash(q, k, v)
            context_layer = rearrange(context_layer, 'b s h d -> s b (h d)').contiguous()
575
576

        # =================
577
        # Output. [sq, b, h]
578
579
580
        # =================

        output, bias = self.dense(context_layer)
581

582
583
584
        return output, bias


585
def bias_dropout_add(x, bias, residual, prob, training):
586
587
588
589
590
591
592
593
594
595
596
597
598
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
    out = torch.nn.functional.dropout(x + bias, p=prob, training=training)
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
599
600
601
602
def bias_dropout_add_fused_train(x: torch.Tensor,
                                 bias: torch.Tensor,
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
603
604
605
606
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
607
608
609
610
def bias_dropout_add_fused_inference(x: torch.Tensor,
                                     bias: torch.Tensor,
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
611
    return bias_dropout_add(x, bias, residual, prob, False)
612
613
614
615
616


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
617
    Transformer layer takes input with size [s, b, h] and returns an
618
619
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
620

621
622
    def __init__(self, init_method, output_layer_init_method,
                 layer_number, layer_type=LayerType.encoder,
623
624
                 self_attn_mask_type=AttnMaskType.padding,
                 drop_path_rate=0.):
Mohammad's avatar
Mohammad committed
625
        args = get_args()
626
627

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
628
        self.layer_number = layer_number
629
        self.layer_type = layer_type
630
631

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
632
            = args.apply_residual_connection_post_layernorm
633

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
634
635
636
        self.bf16 = args.bf16
        self.fp32_residual_connection = args.fp32_residual_connection

Mostofa Patwary's avatar
Mostofa Patwary committed
637
638
639
640
641
        if args.apply_layernorm_1p:
            from megatron.model import LayerNorm1P as LayerNorm
        else:
            from megatron.model import LayerNorm

642
643
        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
644
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
645
            eps=args.layernorm_epsilon,
646
            no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
647
            sequence_parallel=args.sequence_parallel)
648
649

        # Self attention.
650
651
652
653
654
655
        self.self_attention = ParallelAttention(
            init_method,
            output_layer_init_method,
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
656
657
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
Vijay Korthikanti's avatar
Vijay Korthikanti committed
658
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
659

660
        # Layernorm on the attention output
661
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
662
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
663
            eps=args.layernorm_epsilon,
664
            no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
665
            sequence_parallel=args.sequence_parallel)
666

667
668
669
670
671
672
673
674
675
        if self.layer_type == LayerType.decoder:
            self.inter_attention = ParallelAttention(
                init_method,
                output_layer_init_method,
                layer_number,
                attention_type=AttnType.cross_attn)
            # Layernorm on the attention output.
            self.post_inter_attention_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
676
                eps=args.layernorm_epsilon,
677
                no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
678
                sequence_parallel=args.sequence_parallel)
679

680
        # MLP
rprenger's avatar
rprenger committed
681
682
683
684
        if args.num_experts is not None:
            self.mlp = SwitchMLP(init_method, output_layer_init_method)
        else:
            self.mlp = ParallelMLP(init_method, output_layer_init_method)
685

686
687
688
689
690
691
692
        # Set bias+dropout+add fusion grad_enable execution handler.
        TORCH_MAJOR = int(torch.__version__.split('.')[0])
        TORCH_MINOR = int(torch.__version__.split('.')[1])
        use_nvfuser = TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10)
        self.bias_dropout_add_exec_handler = \
                nullcontext if use_nvfuser else torch.enable_grad

693
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
694
695
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
696
        # hidden_states: [s, b, h]
697

698
        # Layer norm at the beginning of the transformer layer.
699
700
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
701
        attention_output, attention_bias = \
702
703
704
            self.self_attention(
                layernorm_output,
                attention_mask,
mshoeybi's avatar
mshoeybi committed
705
                inference_params=inference_params)
706

707
708
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
709
710
711
712
            residual = layernorm_output
        else:
            residual = hidden_states

Vijay Korthikanti's avatar
Vijay Korthikanti committed
713
        if self.drop_path is None:
714
715
716
717
718
719
720
721
722
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
723
            else:
724
                bias_dropout_add_func = get_bias_dropout_add(self.training)
725

726
            with self.bias_dropout_add_exec_handler():
727
728
729
730
731
732
733
734
735
736
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            layernorm_input = residual + self.drop_path(out)
737

738
739
740
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

741
742
743
744
745
746
747
748
749
750
751
        if self.layer_type == LayerType.decoder:
            attention_output, attention_bias = \
                self.inter_attention(layernorm_output,
                                     enc_dec_attn_mask,
                                     encoder_output=encoder_output)
            # residual connection
            if self.apply_residual_connection_post_layernorm:
                residual = layernorm_output
            else:
                residual = layernorm_input

752
            with self.bias_dropout_add_exec_handler():
753
754
755
756
757
758
759
760
761
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)

            # Layer norm post the decoder attention
            layernorm_output = self.post_inter_attention_layernorm(layernorm_input)

762
        # MLP.
763
        mlp_output, mlp_bias = self.mlp(layernorm_output)
764

765
766
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
767
            residual = layernorm_output
768
        else:
769
770
            residual = layernorm_input

Vijay Korthikanti's avatar
Vijay Korthikanti committed
771
        if self.drop_path is None:
772
            with self.bias_dropout_add_exec_handler():
773
774
775
776
777
                output = bias_dropout_add_func(
                    mlp_output,
                    mlp_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
778
779
780
781
782
783
784

            # Jit compiled function creates 'view' tensor. This tensor
            # potentially gets saved in the MPU checkpoint function context,
            # which rejects view tensors. While making a viewless tensor here
            # won't result in memory savings (like the data loader, or
            # p2p_communication), it serves to document the origin of this
            # 'view' tensor.
785
786
787
            output = core.utils.make_viewless_tensor(inp = output,
                                                     requires_grad = output.requires_grad,
                                                     keep_graph = True)
788

789
790
791
792
793
        else:
            out = torch.nn.functional.dropout(mlp_output + mlp_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)
794
795
796
797

        return output


798
799
800
class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

Lawrence McAfee's avatar
Lawrence McAfee committed
801
    The sole purpose of this layer is for when a standalone embedding layer
802
    is used (i.e., args.standalone_embedding_stage == True). In this case,
Lawrence McAfee's avatar
Lawrence McAfee committed
803
804
805
806
807
808
809
810
811
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
812
813
814
815
816
817
818
819
820
821
822
823
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


Jared Casper's avatar
Jared Casper committed
824
def _get_num_layers(args, is_encoder_and_decoder_model, is_decoder=False):
825
    """Compute the number of transformer layers resident on the current rank."""
Jared Casper's avatar
Jared Casper committed
826
    if mpu.get_pipeline_model_parallel_world_size() > 1:
827
828
829
830
831
832
833
834
835
836
837
838
839
        if is_encoder_and_decoder_model:
            assert args.pipeline_model_parallel_split_rank is not None

            # When a standalone embedding stage is used, a rank is taken from
            # the encoder's ranks, to be used for the encoder's embedding
            # layer. This way, the rank referenced by the 'split rank' remains
            # the same whether or not a standalone embedding stage is used.
            num_ranks_in_encoder = (
                args.pipeline_model_parallel_split_rank - 1
                if args.standalone_embedding_stage else
                args.pipeline_model_parallel_split_rank
            )
            num_ranks_in_decoder = args.transformer_pipeline_model_parallel_size - num_ranks_in_encoder
Jared Casper's avatar
Jared Casper committed
840
841
842
843
            assert args.encoder_num_layers % num_ranks_in_encoder == 0, \
                    'encoder_num_layers (%d) must be divisible by number of ranks given to encoder (%d)' % (args.encoder_num_layers, num_ranks_in_encoder)
            assert args.decoder_num_layers % num_ranks_in_decoder == 0, \
                    'decoder_num_layers (%d) must be divisible by number of ranks given to decoder (%d)' % (args.decoder_num_layers, num_ranks_in_decoder)
Jared Casper's avatar
Jared Casper committed
844
            if mpu.is_pipeline_stage_before_split():
845
846
847
                num_layers = (
                    0
                    if args.standalone_embedding_stage
Jared Casper's avatar
Jared Casper committed
848
                    and mpu.get_pipeline_model_parallel_rank() == 0 else
Jared Casper's avatar
Jared Casper committed
849
                    args.encoder_num_layers // num_ranks_in_encoder
850
851
                )
            else:
Jared Casper's avatar
Jared Casper committed
852
                num_layers = args.decoder_num_layers // num_ranks_in_decoder
853
        else:
Jared Casper's avatar
Jared Casper committed
854
            assert args.num_layers == args.encoder_num_layers
855
856
857
858
859
860
861
862
863
864
            assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \
                'num_layers must be divisible by transformer_pipeline_model_parallel_size'

            # When a standalone embedding stage is used, all transformer layers
            # are divided among pipeline rank >= 1, while on pipeline rank 0,
            # ranks either contain the input embedding layer (virtual pp rank 0),
            # or no layers at all (virtual pp rank >= 1).
            num_layers = (
                0
                if args.standalone_embedding_stage
Jared Casper's avatar
Jared Casper committed
865
                and mpu.get_pipeline_model_parallel_rank() == 0 else
866
867
868
                args.num_layers // args.transformer_pipeline_model_parallel_size
            )
    else:
Jared Casper's avatar
Jared Casper committed
869
870
871
872
        if not is_decoder:
            num_layers = args.encoder_num_layers
        else:
            num_layers = args.decoder_num_layers
873
874
875
    return num_layers


876
877
878
class ParallelTransformer(MegatronModule):
    """Transformer class."""

879
    def __init__(self, init_method, output_layer_init_method,
880
                 layer_type=LayerType.encoder,
881
                 self_attn_mask_type=AttnMaskType.padding,
882
                 post_layer_norm=True,
883
884
                 pre_process=True, post_process=True,
                 drop_path_rate=0.0):
885
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
886
        args = get_args()
887

888
889
        self.layer_type = layer_type
        self.model_type = args.model_type
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
890
        self.bf16 = args.bf16
891
        self.fp32_residual_connection = args.fp32_residual_connection
892
        self.post_layer_norm = post_layer_norm
893
894
895
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
896
        self.drop_path_rate = drop_path_rate
897
        self.transformer_impl = args.transformer_impl
898

899
        # Store activation checkpoiting flag.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
900
901
902
        self.recompute_granularity = args.recompute_granularity
        self.recompute_method = args.recompute_method
        self.recompute_num_layers = args.recompute_num_layers
Vijay Korthikanti's avatar
Vijay Korthikanti committed
903
904
        self.distribute_saved_activations = \
            args.distribute_saved_activations and not args.sequence_parallel
905

Vijay Korthikanti's avatar
Vijay Korthikanti committed
906
        self.sequence_parallel = args.sequence_parallel
907

908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
        # Transformer Engine Init.
        if self.transformer_impl == 'transformer_engine':
            global transformer_engine
            import transformer_engine
        self.use_fp8 = args.fp8_e4m3 or args.fp8_hybrid
        self.fp8_recipe = None
        self.fp8_group = mpu.get_data_parallel_group()
        if self.use_fp8:
            if args.fp8_e4m3:
                fp8_format = transformer_engine.common.recipe.Format.E4M3
            elif args.fp8_hybrid:
                fp8_format = transformer_engine.common.recipe.Format.HYBRID
            self.fp8_recipe = transformer_engine.common.recipe.DelayedScaling(
                margin=args.fp8_margin,
                interval=args.fp8_interval,
                fp8_format=fp8_format,
                amax_history_len=args.fp8_amax_history_len,
                amax_compute_algo=args.fp8_amax_compute_algo,
                override_linear_precision=(False, False, not args.fp8_wgrad),
            )

        self.num_microbatches_in_previous_step = -1
        self.microbatch_count = 0
        self.checkpoint_core_attention = args.recompute_granularity == 'selective'

933
        # Number of layers.
934
        self.num_layers = _get_num_layers(
935
936
937
            args,
            args.model_type == ModelType.encoder_and_decoder,
            layer_type == LayerType.decoder)
Mohammad's avatar
Mohammad committed
938

Vijay Korthikanti's avatar
Vijay Korthikanti committed
939
        self.drop_path_rates = [rate.item() for rate in torch.linspace(0, self.drop_path_rate, args.num_layers)]
940

Mohammad's avatar
Mohammad committed
941
942
        # Transformer layers.
        def build_layer(layer_number):
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
            if args.transformer_impl == 'local':
                return ParallelTransformerLayer(
                    init_method,
                    output_layer_init_method,
                    layer_number,
                    layer_type=layer_type,
                    self_attn_mask_type=self_attn_mask_type,
                    drop_path_rate=self.drop_path_rates[layer_number - 1])
            else:
                return transformer_engine.pytorch.TransformerLayer(
                    args.hidden_size,
                    args.ffn_hidden_size,
                    args.num_attention_heads,
                    layernorm_epsilon=args.layernorm_epsilon,
                    hidden_dropout=args.hidden_dropout,
                    attention_dropout=args.attention_dropout,
                    init_method=init_method,
                    output_layer_init_method=output_layer_init_method,
                    layer_number=layer_number,
                    kv_channels=args.kv_channels,
                    self_attn_mask_type=self_attn_mask_type.name,
                    tp_group=mpu.get_tensor_model_parallel_group(),
                    get_rng_state_tracker=tensor_parallel.get_cuda_rng_tracker,
                    fuse_wgrad_accumulation=args.gradient_accumulation_fusion,
                    apply_query_key_layer_scaling=args.apply_query_key_layer_scaling,
                    attention_softmax_in_fp32=args.attention_softmax_in_fp32,
                    seq_length=args.seq_length,
                    micro_batch_size=args.micro_batch_size,
                    sequence_parallel=args.sequence_parallel,
                    params_dtype=args.params_dtype,
                    apply_residual_connection_post_layernorm=args.apply_residual_connection_post_layernorm,
                    output_layernorm=False,
                    layer_type="encoder",
                    drop_path_rate=self.drop_path_rates[layer_number - 1],
                    set_parallel_mode=True,
                    fuse_qkv_params=True)

980
981
        if args.virtual_pipeline_model_parallel_size is not None:
            assert args.num_layers % args.virtual_pipeline_model_parallel_size == 0, \
982
983
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
984
            assert args.model_type != ModelType.encoder_and_decoder
985
986
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
987
            self.num_layers = self.num_layers // args.virtual_pipeline_model_parallel_size
988
989
990
991
992
993
994
995
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
996
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
997
                args.num_layers // args.virtual_pipeline_model_parallel_size) + \
998
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
999
        else:
1000
            # Each stage gets a contiguous set of layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1001
            if args.model_type == ModelType.encoder_and_decoder and \
1002
1003
                    mpu.get_pipeline_model_parallel_world_size() > 1:
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1004
1005
1006
1007
1008
1009
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
1010
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
1011

1012
        if self.num_layers == 0:
Lawrence McAfee's avatar
Lawrence McAfee committed
1013
            # When a standalone embedding stage is used (e.g.,
1014
            # args.standalone_embedding_stage == True), virtual pipeline ranks
1015
            # on pipeline rank 0 will have zero transformer layers assigned to
Lawrence McAfee's avatar
Lawrence McAfee committed
1016
1017
1018
1019
1020
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
1021
1022
1023
1024
1025
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])
1026

Mostofa Patwary's avatar
Mostofa Patwary committed
1027
1028
1029
1030
1031
        if args.apply_layernorm_1p:
            from megatron.model import LayerNorm1P as LayerNorm
        else:
            from megatron.model import LayerNorm

1032
        if self.post_process and self.post_layer_norm:
1033
1034
1035
            # Final layer norm before output.
            self.final_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
1036
                eps=args.layernorm_epsilon,
1037
                no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1038
                sequence_parallel=args.sequence_parallel)
1039

Mohammad's avatar
Mohammad committed
1040
    def _get_layer(self, layer_number):
1041
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
1042

1043
    def _checkpointed_forward(self, hidden_states, attention_mask,
1044
                              encoder_output, enc_dec_attn_mask, is_first_microbatch):
1045
        """Forward method with activation checkpointing."""
1046
1047
        def custom(start, end, is_transformer_engine=False):
            def custom_forward(*args, **kwargs):
Mohammad's avatar
Mohammad committed
1048
1049
                for index in range(start, end):
                    layer = self._get_layer(index)
1050
                    x_ = layer(*args, **kwargs)
1051
                return x_
1052
1053
1054
1055
1056
1057
            def custom_forward_transformer_engine(*args, **kwargs):
                return custom_forward(*args, is_first_microbatch=is_first_microbatch, **kwargs)
            if not is_transformer_engine:
                return custom_forward
            else:
                return custom_forward_transformer_engine
1058

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1059
        if self.recompute_method == 'uniform':
1060
1061
1062
1063
1064
            # Uniformly divide the total number of Transformer layers and checkpoint
            # the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
                if self.transformer_impl == 'transformer_engine':
                    hidden_states = transformer_engine.pytorch.distributed.checkpoint(
                        custom(l, l + self.recompute_num_layers, is_transformer_engine=True),
                        self.distribute_saved_activations,
                        tensor_parallel.get_cuda_rng_tracker,
                        mpu.get_tensor_model_parallel_group(),
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                else:
                    hidden_states = tensor_parallel.checkpoint(
                        custom(l, l + self.recompute_num_layers),
                        self.distribute_saved_activations,
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1078
                l += self.recompute_num_layers
1079

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1080
        elif self.recompute_method == 'block':
1081
1082
1083
1084
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1085
                if l < self.recompute_num_layers:
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = transformer_engine.pytorch.distributed.checkpoint(
                            custom(l, l + 1, is_transformer_engine=True),
                            self.distribute_saved_activations,
                            tensor_parallel.get_cuda_rng_tracker,
                            mpu.get_tensor_model_parallel_group(),
                            hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                    else:
                        hidden_states = tensor_parallel.checkpoint(
                            custom(l, l + 1),
                            self.distribute_saved_activations,
                            hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
1098
                else:
1099
1100
1101
1102
1103
1104
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = custom(l, l + 1, is_transformer_engine=True)(
                            hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                    else:
                        hidden_states = custom(l, l + 1)(
                            hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
1105
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1106
            raise ValueError("Invalid activation recompute method.")
1107
1108
1109

        return hidden_states

1110
    def set_input_tensor(self, input_tensor):
1111
1112
1113
1114
1115
1116
1117
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
1118
1119
        self.input_tensor = input_tensor

1120
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
1121
1122
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1123
1124
        # hidden_states: [s, b, h]

1125
        # Checks.
mshoeybi's avatar
mshoeybi committed
1126
        if inference_params:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1127
            assert self.recompute_granularity is None, \
1128
                'inference does not work with activation checkpointing'
1129

1130
        if not self.pre_process:
1131
            # See set_input_tensor()
1132
            hidden_states = self.input_tensor
1133

1134
1135
        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
1136
1137
1138
1139
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
1140
1141
1142
1143
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
1144
        #
1145
1146
1147
1148
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
1149
        hidden_states = core.utils.make_viewless_tensor(
1150
            hidden_states,
1151
1152
            requires_grad=True,
            keep_graph=True,
1153
1154
        )

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1155
        if self.sequence_parallel:
1156
            rng_context = tensor_parallel.get_cuda_rng_tracker().fork()
1157
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1158
            rng_context = nullcontext()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1159
1160

        with rng_context:
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
            # The fp8_autocast context manager is a no-op when enabled=True
            # The if...else serves to short circuit name resolution for fp8_autocast
            with transformer_engine.pytorch.fp8_autocast(
                enabled=self.use_fp8,
                fp8_recipe=self.fp8_recipe,
                fp8_group=self.fp8_group
            ) if self.use_fp8 else nullcontext():
                # Determine if the current iteration is first microbatch
                if self.num_microbatches_in_previous_step != get_num_microbatches():
                    self.microbatch_count = 0 # Reset count on new batch size rampup interval
                self.num_microbatches_in_previous_step = get_num_microbatches()
                is_first_microbatch = self.microbatch_count % get_num_microbatches() == 0

                # Forward pass.
                if self.recompute_granularity == 'full':
                    hidden_states = self._checkpointed_forward(hidden_states,
                                                               attention_mask,
                                                               encoder_output,
                                                               enc_dec_attn_mask,
                                                               is_first_microbatch)
                else:
                    forward_kwargs = {
                        'encoder_output': encoder_output,
                        'enc_dec_attn_mask': enc_dec_attn_mask,
                        'inference_params': inference_params,
                    }

                    if self.transformer_impl == 'transformer_engine':
                        forward_kwargs['is_first_microbatch'] = is_first_microbatch
                        forward_kwargs['checkpoint_core_attention'] = self.checkpoint_core_attention

                    for index in range(self.num_layers):
                        layer = self._get_layer(index)

                        hidden_states = layer(
                            hidden_states,
                            attention_mask,
                            **forward_kwargs)

                # Skip counter update for eval and activation checkpointing
                if torch.is_grad_enabled() and self.training:
                    self.microbatch_count += 1
mshoeybi's avatar
mshoeybi committed
1203

1204
        # Final layer norm.
1205
        if self.post_process and self.post_layer_norm:
1206
1207
            hidden_states = self.final_layernorm(hidden_states)

1208
        return hidden_states