arguments.py 27.8 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20

import argparse
import os

21
import torch
22
from megatron import fused_kernels
Raul Puri's avatar
Raul Puri committed
23

24
25
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
26
    """Parse all arguments."""
27
28
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
29

Mohammad's avatar
Mohammad committed
30
31
32
33
34
35
36
37
38
39
40
41
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Neel Kant's avatar
Neel Kant committed
42
    parser = _add_realm_args(parser)
Mohammad's avatar
Mohammad committed
43
44
45
46

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
47

Mohammad's avatar
Mohammad committed
48
    # Parse.
49
50
51
52
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
53

Mohammad's avatar
Mohammad committed
54
55
56
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
mohammad's avatar
mohammad committed
57
    # Tensor model parallel size.
58
59
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
60
61
62
63
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
64
65
66
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
67
68
    if args.pipeline_model_parallel_size > 1:
        if "ring_exchange" not in dir(torch.distributed):
mohammad's avatar
mohammad committed
69
70
71
            raise Exception('PyTorch with torch.distributed.ring_exchange '
                            'needed to run pipeline MP!')
    # Checks.
72
73
74
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
mohammad's avatar
mohammad committed
75
76
77
        ' divisible by tensor parallel size ({}) times pipeline paralle ' \
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
78
    args.data_parallel_size = args.world_size // model_parallel_size
Mohammad's avatar
Mohammad committed
79
    if args.rank == 0:
mohammad's avatar
mohammad committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)

    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
Mohammad's avatar
Mohammad committed
96

Mohammad's avatar
Mohammad committed
97
98
99
100
    # Fp16 loss scaling.
    args.dynamic_loss_scale = False
    if args.loss_scale is None:
        args.dynamic_loss_scale = True
Mohammad's avatar
Mohammad committed
101

102
103
104
105
106
107
108
109
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
        args.params_dtype = torch.half
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

110
111
112
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
113

Mohammad's avatar
Mohammad committed
114
115
    # Set input defaults.
    for key in defaults:
Mohammad's avatar
Mohammad committed
116
117
118
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
Raul Puri's avatar
Raul Puri committed
119
        if getattr(args, key) is not None:
Raul Puri's avatar
Raul Puri committed
120
            if args.rank == 0:
Raul Puri's avatar
Raul Puri committed
121
122
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
Raul Puri's avatar
Raul Puri committed
123
124
                                               v2=getattr(args, key)),
                                               flush=True)
Raul Puri's avatar
Raul Puri committed
125
126
        else:
            setattr(args, key, defaults[key])
Mohammad's avatar
Mohammad committed
127

128
129
130
131
132
133
134
135
136
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
137
            'expected iteration-based learning rate warmup'
138
139
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
140
141
142
        if args.lr_warmup_percent is not None:
            assert args.lr_warmup_iters == 0, \
                'can only specify one of lr-warmup-percent and lr-warmup-iters'
143
144
145
146
147
148
149
150
151
152
153

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
154
155
156
        if args.lr_warmup_percent is not None:
            assert args.lr_warmup_samples == 0, \
                'can only specify one of lr-warmup-percent and lr-warmup-samples'
157

158
    # Check required arguments.
Mohammad's avatar
Mohammad committed
159
160
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
161
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
162
        _check_arg_is_not_none(args, req_arg)
163

Mohammad's avatar
Mohammad committed
164
165
    # Checks.
    assert args.hidden_size % args.num_attention_heads == 0
Mohammad's avatar
Mohammad committed
166
167
168
169
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
170
171
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
172
173
174
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
mohammad's avatar
mohammad committed
175
176
177
178
179
    # Activation checkpointing.
    if args.distribute_checkpointed_activations:
        assert args.checkpoint_activations, \
            'for distribute-checkpointed-activations to work you '\
            'need to enable checkpoint-activations'
Mohammad's avatar
Mohammad committed
180

181
182
183
184
    # load scaled_upper_triang_masked_softmax_fusion kernel
    if args.scaled_upper_triang_masked_softmax_fusion:
        fused_kernels.load_scaled_upper_triang_masked_softmax_fusion_kernel()

185
186
187
188
    # load scaled_masked_softmax_fusion kernel
    if args.scaled_masked_softmax_fusion:
        fused_kernels.load_scaled_masked_softmax_fusion_kernel()

Mohammad's avatar
Mohammad committed
189
190
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
191
192


Mohammad's avatar
Mohammad committed
193
194
195
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
196
197
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
198
199
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
200
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
201
202
203
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
204
205
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
206
207


208
209
210
211
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


Mohammad's avatar
Mohammad committed
212
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
213
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
214

215
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
216
                       help='Number of transformer layers.')
217
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
218
                       help='Tansformer hidden size.')
219
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
220
                       help='Number of transformer attention heads.')
221
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
222
223
224
225
226
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
227
228
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
229
230
231
232
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
233
234
235
236
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
237
    group.add_argument('--onnx-safe', type=bool, required=False,
238
                       help='Use workarounds for known problems with Torch ONNX exporter')
Mohammad's avatar
Mohammad committed
239

Mohammad's avatar
Mohammad committed
240
241
242
    return parser


Mohammad's avatar
Mohammad committed
243
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
244
245
246
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
247
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
248
249
250
251
252
253
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
254
255
256
257
258
259
260
    group.add_argument('--adam-beta1', type=float, default=0.9,
                       help='First coefficient for computing running averages of'
                       'gradient and its square')
    group.add_argument('--adam-beta2', type=float, default=0.999,
                       help='Second coefficient for computing running averages of'
                       'gradient and its square')
    group.add_argument('--adam-eps', type=float, default=1e-08,
261
                       help='Term added to the denominator to improve'
262
                       'numerical stability')
Mohammad's avatar
Mohammad committed
263
264
265

    return parser

Mohammad's avatar
Mohammad committed
266
267

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
268
269
    group = parser.add_argument_group(title='training')

270
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
271
272
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
273
                       'parallel size times number of micro batches.')
mohammad's avatar
mohammad committed
274
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
275
276
277
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
278
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
279
280
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
281
282
283
284
285
286
287
288
289
290
291
292
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Mohammad's avatar
Mohammad committed
293
294
295
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
296
297
298
299
    group.add_argument('--distribute-checkpointed-activations',
                       action='store_true',
                       help='If set, distribute checkpointed activations '
                       'across model parallel group.')
Mohammad's avatar
Mohammad committed
300
301
    group.add_argument('--checkpoint-num-layers', type=int, default=1,
                       help='chunk size (number of layers) for checkpointing.')
Mohammad's avatar
Mohammad committed
302
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
303
                       help='Total number of iterations to train over all '
304
305
306
307
308
309
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
310
311
312
313
314
315
316
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
317
318
319
    group.add_argument('--scaled-upper-triang-masked-softmax-fusion',
                       action='store_true',
                       help='Enable fusion of query_key_value_scaling '
320
321
322
323
324
                       'time (upper diagonal) masking and softmax.')
    group.add_argument('--scaled-masked-softmax-fusion',
                       action='store_true',
                       help='Enable fusion of query_key_value_scaling '
                       'general masking and softmax.')
325
326
327
328
    group.add_argument('--bias-gelu-fusion', action='store_true',
                        help='Enable bias and gelu fusion.')
    group.add_argument('--bias-dropout-fusion', action='store_true',
                       help='Enable bias and dropout fusion.')
Mohammad's avatar
Mohammad committed
329
330
331
332

    return parser


Mohammad's avatar
Mohammad committed
333
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
334
335
336
337
338
339
340
341
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
Mohammad's avatar
Mohammad committed
342

Mohammad's avatar
Mohammad committed
343
344
345
    return parser


Mohammad's avatar
Mohammad committed
346
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
347
348
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
349
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
350
351
352
353
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
mohammad's avatar
mohammad committed
354
                       choices=['constant', 'linear', 'cosine'],
Mohammad's avatar
Mohammad committed
355
356
357
358
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
359
360
361
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
362
363
364
    group.add_argument('--lr-warmup-percent', type=float, default=None,
                       help='percentage of lr-warmup-(iters/samples) to use '
                       'for warmup')
365
366
367
368
369
370
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
Mohammad's avatar
Mohammad committed
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
    group.add_argument('--override-lr-scheduler', action='store_true',
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
    group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
389
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
    group.add_argument('--no-save-optim', action='store_true',
                       help='Do not save current optimizer.')
    group.add_argument('--no-save-rng', action='store_true',
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
    group.add_argument('--no-load-optim', action='store_true',
                       help='Do not load optimizer when loading checkpoint.')
    group.add_argument('--no-load-rng', action='store_true',
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
414
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
415
416
417
418
419
420
421
422
423
424
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
    group.add_argument('--apply-query-key-layer-scaling', action='store_true',
                       help='Scale Q * K^T by 1 / layer-number. If this flag '
                       'is set, then it will automatically set '
                       'attention-softmax-in-fp32 to true')
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
                       help='Run attention masking and softmax in fp32.')
Mohammad's avatar
Mohammad committed
425
426
    group.add_argument('--fp32-allreduce', action='store_true',
                       help='All-reduce in fp32')
Mohammad's avatar
Mohammad committed
427
428
429
430
431
432
433
434
435
436
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--min-scale', type=float, default=1,
                       help='Minimum loss scale for dynamic loss scale.')
437
438
439
440
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
441
442
443
444

    return parser


Mohammad's avatar
Mohammad committed
445
def _add_distributed_args(parser):
446
447
    group = parser.add_argument_group(title='distributed')

448
449
450
451
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
Mohammad's avatar
Mohammad committed
452
453
454
455
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
456
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
457
458
459
460
                       help='which DistributedDataParallel implementation '
                       'to use.')
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
461
462
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
                       help='If set to True, initialize_megatron() skips DDP initialization'
Boris Fomitchev's avatar
Boris Fomitchev committed
463
464
                       ' and returns function to complete it instead.'
                       'Also turns on --use-cpu-initialization flag.'
465
                       'This is for external DDP manager.' )
466
467
    group.add_argument('--use-cpu-initialization', action='store_true',
                       help='If set, affine parallel weights initialization uses CPU' )
Mohammad's avatar
Mohammad committed
468
469
470
    return parser


Mohammad's avatar
Mohammad committed
471
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
472
473
474
475
476
477
478
479
480
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
481
482
483
    return parser


Mohammad's avatar
Mohammad committed
484
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
485
486
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
487
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
488
489
490
491
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
Mohammad's avatar
Mohammad committed
492
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
493
494
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
495
496
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
Mohammad's avatar
Mohammad committed
497
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
498
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
499
500
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
Mohammad's avatar
Mohammad committed
501
    group.add_argument('--seq-length', type=int, default=None,
Mohammad's avatar
Mohammad committed
502
503
504
505
506
507
508
509
510
                       help="Maximum sequence length to process.")
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
511
512
513
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
514
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
515
516
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
517
518
519
520
521
522
523
524
525
526
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
527

Mohammad's avatar
Mohammad committed
528
529
    return parser

Raul Puri's avatar
Raul Puri committed
530

Mohammad's avatar
Mohammad committed
531
532
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
533

Mohammad's avatar
Mohammad committed
534
535
536
537
538
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
539

Mohammad's avatar
Mohammad committed
540
    return parser
Neel Kant's avatar
Neel Kant committed
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560


def _add_realm_args(parser):
    group = parser.add_argument_group(title='realm')

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
                       help='Size of block embeddings to be used in ICT and REALM (paper default: 128)')

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
                       help='Directory containing an BertModel checkpoint (needed to start ICT and REALM)')

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
                       help='Probability of keeping query in block for ICT dataset')
Neel Kant's avatar
Neel Kant committed
561
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
562
563
                       help='Whether to use one sentence documents in ICT')

564
565
566
567
    # training
    group.add_argument('--report-topk-accuracies', nargs='+', default=[],
                       help="Which top-k accuracies to report (e.g. '1 5 20')")

Neel Kant's avatar
Neel Kant committed
568
569
570
    # faiss index
    group.add_argument('--faiss-use-gpu', action='store_true',
                       help='Whether create the FaissMIPSIndex on GPU')
Neel Kant's avatar
Neel Kant committed
571
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
572
                       help='Where to save/load BlockData to/from')
Neel Kant's avatar
Neel Kant committed
573
574
575
576
577
578

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
                       help='How large of batches to use when doing indexing jobs')
    group.add_argument('--indexer-log-interval', type=int, default=1000,
                       help='After how many batches should the indexer report progress')
Neel Kant's avatar
Neel Kant committed
579
    return parser