training.py 36.6 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from apex.optimizers import FusedAdam as Adam

Neel Kant's avatar
Neel Kant committed
25
from megatron import get_args
Mohammad's avatar
Mohammad committed
26
27
from megatron import get_timers
from megatron import get_tensorboard_writer
mohammad's avatar
mohammad committed
28
29
from megatron import get_num_microbatches
from megatron import update_num_microbatches
30
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
31
from megatron import print_rank_0
32
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
33
34
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
35
36
from megatron.fp16 import FP16_Module
from megatron.fp16 import FP16_Optimizer
Mohammad's avatar
Mohammad committed
37
from megatron.initialize import initialize_megatron
38
39
40
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import get_params_for_weight_decay_optimization
Neel Kant's avatar
Neel Kant committed
41
from megatron.model.realm_model import ICTBertModel
42
from megatron.utils import check_adlr_autoresume_termination
43
from megatron.data.data_loaders import build_pretraining_data_loader
44
from megatron.utils import report_memory
45
46


47
def pretrain(train_valid_test_dataset_provider, model_provider,
48
             forward_step_func, extra_args_provider=None, args_defaults={}):
49
50
51
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
52
53
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
54
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
55
        4) train the modle using the forward_step_func.
56
57

    Arguments:
58
59
60
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
61
62
63
64
65
66
67
68
69
70
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
71
72
    """

73
    # Initalize and get arguments, timers, and Tensorboard writer.
74
75
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
76

77
    args = get_args()
Mohammad's avatar
Mohammad committed
78
    timers = get_timers()
79
80

    # Model, optimizer, and learning rate.
Mohammad's avatar
Mohammad committed
81
82
83
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()
84
85

    # Data stuff.
86
87
88
89
90
    timers('train/valid/test data iterators').start()
    train_data_iterator, valid_data_iterator, test_data_iterator \
        = build_train_valid_test_data_iterators(
            train_valid_test_dataset_provider)
    timers('train/valid/test data iterators').stop()
Mohammad's avatar
Mohammad committed
91
92
93

    # Print setup timing.
    print_rank_0('done with setups ...')
94
    timers.log(['model and optimizer', 'train/valid/test data iterators'])
Mohammad's avatar
Mohammad committed
95
    print_rank_0('training ...')
96
97

    iteration = 0
98
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
99
100
101
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
Mohammad's avatar
Mohammad committed
102

103
104
105
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
106
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
107
                                   iteration, False)
108
109

    if args.save and iteration != 0:
110
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
111
112
113
114
115
116

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
117
                                   0, True)
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
def update_train_iters(args):

    # For iteration-based training, we don't need to do anything
    if args.train_iters:
        return

    # Constant batch size with sample-based training.
    if args.rampup_batch_size is None:
        args.train_iters = args.train_samples // args.global_batch_size

    else:
        # Sample based training with rampup batch size.
        iterations = 0
        consumed_samples = 0
        # Rampup phase.
        while consumed_samples <= int(args.rampup_batch_size[2]):
            update_num_microbatches(consumed_samples)
            consumed_samples += get_num_microbatches() * \
                                args.micro_batch_size * \
                                args.data_parallel_size
            iterations += 1
        # Reset
        update_num_microbatches(0)
        # Constant phase
        # Note that we throw away any partial last batch.
        iterations += (args.train_samples - consumed_samples) // \
                      args.global_batch_size
        args.train_iters = iterations

    print_rank_0('setting training iterations to {}'.format(args.train_iters))

150

Mohammad's avatar
Mohammad committed
151
def get_model(model_provider_func):
152
    """Build the model."""
Mohammad's avatar
Mohammad committed
153
    args = get_args()
154
155

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
156
    model = model_provider_func()
157
158
159

    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
160
        print(' > number of parameters on (tensor, pipeline) '
161
              'model parallel rank ({}, {}): {}'.format(
162
163
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
164
165
166
167
168
169
170
171
172
173
174
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
        model = FP16_Module(model)

    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
Mohammad's avatar
Mohammad committed
175
176
        model = torchDDP(model, device_ids=[i], output_device=i,
                         process_group=mpu.get_data_parallel_group())
177
178
        return model
    if args.DDP_impl == 'local':
Mohammad's avatar
Mohammad committed
179
        model = LocalDDP(model)
180
181
        return model

182
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
183
                              'Exiting.'.format(args.DDP_impl))
184
185


Mohammad's avatar
Mohammad committed
186
def get_optimizer(model):
187
    """Set up the optimizer."""
Mohammad's avatar
Mohammad committed
188
    args = get_args()
189
190

    # Build parameter groups (weight decay and non-decay).
Mohammad's avatar
Mohammad committed
191
    while isinstance(model, (torchDDP, LocalDDP, FP16_Module)):
192
193
194
195
196
197
        model = model.module
    param_groups = get_params_for_weight_decay_optimization(model)

    # Add model parallel attribute if it is not set.
    for param_group in param_groups:
        for param in param_group['params']:
198
199
            if not hasattr(param, 'tensor_model_parallel'):
                param.tensor_model_parallel = False
200
201

    # Use Adam.
202
203
    optimizer = Adam(param_groups, lr=args.lr, weight_decay=args.weight_decay,
        betas=(args.adam_beta1, args.adam_beta2), eps=args.adam_eps)
204
205
206
207
208
209
210
211

    # Wrap into fp16 optimizer.
    if args.fp16:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.loss_scale,
                                   dynamic_loss_scale=args.dynamic_loss_scale,
                                   dynamic_loss_args={
                                       'scale_window': args.loss_scale_window,
Neel Kant's avatar
Neel Kant committed
212
                                       'min_scale': args.min_scale,
213
214
215
216
217
                                       'delayed_shift': args.hysteresis})

    return optimizer


Mohammad's avatar
Mohammad committed
218
def get_learning_rate_scheduler(optimizer):
219
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
220
    args = get_args()
221

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    # Iteration-based training.
    if args.train_iters:
        if args.lr_decay_iters is None:
            args.lr_decay_iters = args.train_iters
        warmup_steps = args.lr_warmup_iters * args.global_batch_size
        decay_steps = args.lr_decay_iters * args.global_batch_size
    # Sample-based training.
    elif args.train_samples:
        # We need to set training iters for later use. Technically
        # we need to adjust the training samples too (due to last
        # batch being incomplete) but we leave it as is for now.
        update_train_iters(args)        
        if args.lr_decay_samples is None:
            args.lr_decay_samples = args.train_samples
        warmup_steps = args.lr_warmup_samples
        decay_steps = args.lr_decay_samples
238
    else:
239
240
241
        raise Exception(
            'either train-iters or train-samples should be provided.')

242
243
    lr_scheduler = AnnealingLR(
        optimizer,
244
        max_lr=args.lr,
245
        min_lr=args.min_lr,
246
247
        warmup_steps=warmup_steps,
        decay_steps=decay_steps,
248
        decay_style=args.lr_decay_style,
249
250
251
252
253
254
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
255
def setup_model_and_optimizer(model_provider_func):
256
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
257
    args = get_args()
258

Mohammad's avatar
Mohammad committed
259
260
261
    model = get_model(model_provider_func)
    optimizer = get_optimizer(model)
    lr_scheduler = get_learning_rate_scheduler(optimizer)
262
263

    if args.load is not None:
264
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
265
266
267
    else:
        args.iteration = 0

mohammad's avatar
mohammad committed
268
    # We only support local DDP with multiple micro-batches.
mohammad's avatar
mohammad committed
269
270
271
    if get_num_microbatches() > 1:
        assert args.DDP_impl == 'local'

Neel Kant's avatar
Neel Kant committed
272
273
274
275
276
    # get model without FP16 and/or TorchDDP wrappers
    unwrapped_model = model
    while hasattr(unwrapped_model, 'module'):
        unwrapped_model = unwrapped_model.module

277
278
    if args.iteration == 0 and hasattr(unwrapped_model,
                                       'init_state_dict_from_bert'):
279
        print("Initializing ICT from pretrained BERT model", flush=True)
280
        unwrapped_model.init_state_dict_from_bert()
Neel Kant's avatar
Neel Kant committed
281

282
283
284
    return model, optimizer, lr_scheduler


285
286
287
288
289
290
291
292
def communicate(tensor_send_next, tensor_send_prev, recv_forward, recv_backward):
    """Communicate tensors between stages using torch.distributed.ring_exchange(.) API."""
    args = get_args()

    # Create placeholder tensors for receive in forward and backward directions
    # if needed.
    tensor_recv_prev = None
    tensor_recv_next = None
293
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)
294
295
296
    if recv_forward:
        tensor_recv_prev = torch.empty(tensor_shape,
                                       requires_grad=True,
297
298
                                       device=torch.cuda.current_device(),
                                       dtype=args.params_dtype)
299
300
301
    if recv_backward:
        tensor_recv_next = torch.empty(tensor_shape,
                                       requires_grad=True,
302
303
                                       device=torch.cuda.current_device(),
                                       dtype=args.params_dtype)
304
305
306
307
308
309

    # Send tensors in both the forward and backward directions as appropriate.
    torch.distributed.ring_exchange(tensor_send_prev=tensor_send_prev,
                                    tensor_recv_prev=tensor_recv_prev,
                                    tensor_send_next=tensor_send_next,
                                    tensor_recv_next=tensor_recv_next,
310
                                    group=mpu.get_pipeline_model_parallel_group())
311
312
313
314
315

    return tensor_recv_prev, tensor_recv_next


def backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad):
316
    """Backward step."""
Mohammad's avatar
Mohammad committed
317
318
    args = get_args()
    timers = get_timers()
319

320
321
322
323
    # Retain the grad on the input_tensor.
    if input_tensor is not None:
        input_tensor.retain_grad()

324
    # Backward pass.
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    if args.fp16:
        optimizer.backward(output_tensor, update_master_grads=False,
                           output_tensor_grad=output_tensor_grad)
    else:
        torch.autograd.backward(output_tensor, grad_tensors=output_tensor_grad)

    # Collect the grad of the input_tensor.
    input_tensor_grad = None
    if input_tensor is not None:
        input_tensor_grad = input_tensor.grad

    return input_tensor_grad


339
340
341
def forward_step_with_communication(forward_step_func, data_iterator, model,
                                    input_tensors, output_tensors,
                                    losses_reduced, timers):
342
343
    args = get_args()

344
    if not mpu.is_pipeline_first_stage():
345
        timers('forward-recv').start()
346
347
348
349
350
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=True,
            recv_backward=False)
351
        timers('forward-recv').stop()
352
353
354
355
    else:
        input_tensor = None

    # Forward model for one step.
356
    timers('forward-compute').start()
357
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
358
    timers('forward-compute').stop()
359
360
361

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
362
        output_tensor = loss / get_num_microbatches()
363
364
        losses_reduced.append(loss_reduced)
    else:
365
        timers('forward-send').start()
366
367
368
369
370
        communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=False)
371
        timers('forward-send').stop()
372
373
374
375
376
377
378
379
380
381
382
383

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)


def backward_step_with_communication(optimizer, model, input_tensors, output_tensors, timers):
    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    if mpu.is_pipeline_last_stage():
        output_tensor_grad = None
    else:
384
        timers('backward-recv').start()
385
386
387
388
389
        _, output_tensor_grad = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
390
        timers('backward-recv').stop()
391
392

    # Backward pass for one step.
393
    timers('backward-compute').start()
394
395
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
396
    timers('backward-compute').stop()
397
398

    if not mpu.is_pipeline_first_stage():
399
        timers('backward-send').start()
400
401
402
403
404
        communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=False,
            recv_backward=False)
405
        timers('backward-send').stop()
406
407


408
409
410
411
412
def forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                  optimizer,
                                                  input_tensor, last_microbatch,
                                                  input_tensors, output_tensors,
                                                  losses_reduced, timers):
413
414
    args = get_args()

415
416
417
418
419
420
421
    # Forward model for one step.
    timers('forward-compute').start()
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
    timers('forward-compute').stop()

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
mohammad's avatar
mohammad committed
422
        output_tensor = loss / get_num_microbatches()
423
424
425
        output_tensor_grad = None
        losses_reduced.append(loss_reduced)
    else:
Deepak Narayanan's avatar
Deepak Narayanan committed
426
        timers('forward-send-backward-recv').start()
427
428
429
430
431
        _, output_tensor_grad = communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
Deepak Narayanan's avatar
Deepak Narayanan committed
432
        timers('forward-send-backward-recv').stop()
433
434
435
436
437
438
439
440
441
442
443
444
445
446

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)

    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    # Backward pass for one step.
    timers('backward-compute').start()
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
    timers('backward-compute').stop()

    if not mpu.is_pipeline_first_stage():
Deepak Narayanan's avatar
Deepak Narayanan committed
447
        timers('backward-send-forward-recv').start()
448
449
450
451
452
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=(not last_microbatch),
            recv_backward=False)
Deepak Narayanan's avatar
Deepak Narayanan committed
453
        timers('backward-send-forward-recv').stop()
454
455
456
457
458
459
    else:
        input_tensor = None

    return input_tensor


460
461
462
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers):
    """Run forward and backward passes without inter-stage communication."""
463
464
    args = get_args()

465
    losses_reduced = []
mohammad's avatar
mohammad committed
466
    for i in range(get_num_microbatches()):
467
468
        timers('forward-compute').start()
        loss, loss_reduced = forward_step_func(data_iterator, model, input_tensor=None)
mohammad's avatar
mohammad committed
469
        output_tensor = loss / get_num_microbatches()
470
471
472
473
474
475
476
477
478
479
        losses_reduced.append(loss_reduced)
        timers('forward-compute').stop()

        timers('backward-compute').start()
        output_tensor_grad = None
        backward_step(optimizer, model, input_tensor=None,
                      output_tensor=output_tensor, output_tensor_grad=None)
        timers('backward-compute').stop()

    return losses_reduced
480

481
482
483
484
485
486
487

def forward_backward_pipelining(forward_step_func, data_iterator, model,
                                optimizer, timers):
    """Run 1F1B schedule, with communication and warmup + cooldown microbatches as needed."""
    args = get_args()

    # Compute number of warmup microbatches.
mohammad's avatar
mohammad committed
488
    num_microbatches = get_num_microbatches()
489
490
491
492
493
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
494
495
496
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches
497
498
499
500
501

    input_tensors = []
    output_tensors = []
    losses_reduced = []

502
503
    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
504
505
506
507
        forward_step_with_communication(
            forward_step_func, data_iterator, model,
            input_tensors, output_tensors,
            losses_reduced, timers)
508

509
    # Before running 1F1B, need to receive first forward tensor.
510
511
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
512
    if num_microbatches_remaining > 0:
513
514
515
        if mpu.is_pipeline_first_stage():
            input_tensor = None
        else:
516
            timers('forward-recv').start()
517
518
519
520
            input_tensor, _ = communicate(tensor_send_next=None,
                                          tensor_send_prev=None,
                                          recv_forward=True,
                                          recv_backward=False)
521
            timers('forward-recv').stop()
522
523

    # Run 1F1B.
524
525
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))
526
527
528
529
530
531
532
        input_tensor = \
            forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                          optimizer,
                                                          input_tensor, last_iteration,
                                                          input_tensors, output_tensors,
                                                          losses_reduced, timers)

533
534
    # Run cooldown backward passes.
    for i in range(num_warmup_microbatches):
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
        backward_step_with_communication(
            optimizer, model, input_tensors, output_tensors, timers)

    return losses_reduced


def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
    if args.fp16:
        optimizer.zero_grad(set_grads_to_None=True)
    else:
        optimizer.zero_grad()

    if mpu.get_pipeline_model_parallel_world_size() > 1:
        losses_reduced = forward_backward_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
    else:
        losses_reduced = forward_backward_no_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
559
560
561

    # All-reduce if needed.
    if args.DDP_impl == 'local':
562
        timers('backward-params-all-reduce').start()
563
564
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
565
        timers('backward-params-all-reduce').stop()
566

567
568
569
570
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
571
    timers('backward-embedding-all-reduce').start()
572
    if (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()) and \
573
            mpu.get_pipeline_model_parallel_world_size() > 1:
574
575
576
577
578
579
580
        unwrapped_model = model
        while isinstance(unwrapped_model, (torchDDP, LocalDDP, FP16_Module)):
            unwrapped_model = unwrapped_model.module

        word_embeddings_weight = unwrapped_model.word_embeddings_weight()
        torch.distributed.all_reduce(word_embeddings_weight.grad,
                                     group=mpu.get_embedding_group())
581
    timers('backward-embedding-all-reduce').stop()
582

583
584
585
586
587
588
    # Update master gradients.
    timers('backward-master-grad').start()
    if args.fp16:
        optimizer.update_master_grads()
    timers('backward-master-grad').stop()

589
    # Clipping gradients helps prevent the exploding gradient.
590
    timers('backward-clip-grad').start()
591
    if args.clip_grad > 0.:
592
        if not args.fp16:
593
594
595
596
597
598
599
600
            named_parameters = model.named_parameters()
            parameters = []
            parameter_names = []
            for parameter_name, parameter in model.named_parameters():
                parameters.append(parameter)
                parameter_names.append(parameter_name)
            mpu.clip_grad_norm(parameters, args.clip_grad,
                               parameter_names=parameter_names)
601
602
        else:
            optimizer.clip_master_grads(args.clip_grad)
603
    timers('backward-clip-grad').stop()
604
605
606
607
608
609
610
611
612

    # Update parameters.
    timers('optimizer').start()
    optimizer.step()
    timers('optimizer').stop()

    # Update learning rate.
    skipped_iter = 0
    if not (args.fp16 and optimizer.overflow):
613
614
615
616
        increment = get_num_microbatches() * \
                    args.micro_batch_size * \
                    args.data_parallel_size
        lr_scheduler.step(increment=increment)
617
618
619
    else:
        skipped_iter = 1

620
    if mpu.is_pipeline_last_stage():
621
622
623
624
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
625
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
626
627
        return loss_reduced, skipped_iter
    return {}, skipped_iter
628
629


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
630
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
631
                 loss_scale, report_memory_flag, skipped_iter):
Mohammad's avatar
Mohammad committed
632
633
634
635
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
636
637

    # Update losses.
mohammad's avatar
mohammad committed
638
639
640
    skipped_iters_key = 'skipped iterations'
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
641
    got_nan_key = 'got nan'
mohammad's avatar
mohammad committed
642
643

    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
644
    for key in loss_dict:
mohammad's avatar
mohammad committed
645
        if not skipped_iter:
646
647
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
648
649
650
651
652
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
653
654
655
656
            got_nan = got_nan or is_nan

    total_loss_dict[got_nan_key] = total_loss_dict.get(
        got_nan_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
657
658
659

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
660

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
661
662
663
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
664
665
666
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
667
    add_to_logging('forward-send-backward-recv')
668
669
670
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
671
    add_to_logging('backward-send-forward-recv')
672
    add_to_logging('backward-master-grad')
673
    add_to_logging('backward-params-all-reduce')
674
    add_to_logging('backward-embedding-all-reduce')
675
    add_to_logging('backward-clip-grad')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
    add_to_logging('optimizer')
    add_to_logging('batch generator')

    # Tensorboard values.
    if writer and torch.distributed.get_rank() == 0:
        writer.add_scalar('learning_rate', learning_rate, iteration)
        for key in loss_dict:
            writer.add_scalar(key, loss_dict[key], iteration)
        if args.fp16:
            writer.add_scalar('loss_scale', loss_scale, iteration)
        normalizer = iteration % args.log_interval
        if normalizer == 0:
            normalizer = args.log_interval
        timers.write(timers_to_log, writer, iteration,
                     normalizer=normalizer)

    if iteration % args.log_interval == 0:
        elapsed_time = timers('interval time').elapsed()
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('iteration_time',
                              elapsed_time / args.log_interval, iteration)
697
698
        log_string = ' iteration {:8d}/{:8d} |'.format(
            iteration, args.train_iters)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
699
700
701
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
            elapsed_time * 1000.0 / args.log_interval)
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
702
703
        num_iterations = max(
            1, args.log_interval - total_loss_dict[skipped_iters_key])
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
704
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
705
            if key not in [skipped_iters_key, got_nan_key]:
mohammad's avatar
mohammad committed
706
                avg = total_loss_dict[key].item() / float(num_iterations)
707
708
709
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
710
711
        if args.fp16:
            log_string += ' loss scale: {:.1f} |'.format(loss_scale)
mohammad's avatar
mohammad committed
712
713
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
714
715
        log_string += ' number of nan iterations: {:3d} |'.format(
            total_loss_dict[got_nan_key])
mohammad's avatar
mohammad committed
716
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
717
        total_loss_dict[got_nan_key] = 0
718
        print_rank_last(log_string)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
719
720
721
722
723
724
725
726
        if report_memory_flag:
            report_memory('after {} iterations'.format(iteration))
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


727
def train(forward_step_func, model, optimizer, lr_scheduler,
728
          train_data_iterator, valid_data_iterator):
729
    """Train the model function."""
Mohammad's avatar
Mohammad committed
730
731
    args = get_args()
    timers = get_timers()
732
733
734
735
736
737
738
739
740
741
742
743
744

    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

    timers('interval time').start()
    report_memory_flag = True
    while iteration < args.train_iters:
mohammad's avatar
mohammad committed
745
        update_num_microbatches(args.consumed_train_samples)
746
747
748
749
        loss_dict, skipped_iter = train_step(forward_step_func,
                                             train_data_iterator,
                                             model,
                                             optimizer,
Mohammad's avatar
Mohammad committed
750
                                             lr_scheduler)
751
        iteration += 1
752
        args.consumed_train_samples += mpu.get_data_parallel_world_size() * \
753
                                       args.micro_batch_size * \
mohammad's avatar
mohammad committed
754
                                       get_num_microbatches()
755
756

        # Logging.
Mohammad's avatar
Mohammad committed
757
758
759
        loss_scale = None
        if args.fp16:
            loss_scale = optimizer.loss_scale
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
760
761
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
762
                                          iteration, loss_scale,
mohammad's avatar
mohammad committed
763
                                          report_memory_flag, skipped_iter)
764
765

        # Autoresume
766
767
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
768
            check_adlr_autoresume_termination(iteration, model, optimizer,
769
                                              lr_scheduler)
770
771
772
773

        # Checkpointing
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
774
            save_checkpoint(iteration, model, optimizer, lr_scheduler)
775
776
777
778
779
780

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
781
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
782
                                       iteration, False)
783
784

        if args.exit_interval and iteration % args.exit_interval == 0:
785
            torch.distributed.barrier()
786
787
            time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            rank = torch.distributed.get_rank()
Mohammad's avatar
Mohammad committed
788
789
790
            print_rank_0('rank: {} | time: {} | exiting the program at '
                         'iteration {}'.format(rank, time_str, iteration))
            sys.exit()
791

mohammad's avatar
mohammad committed
792
    return iteration
793
794


Mohammad's avatar
Mohammad committed
795
def evaluate(forward_step_func, data_iterator, model, verbose=False):
796
    """Evaluation."""
Mohammad's avatar
Mohammad committed
797
    args = get_args()
798
799
800
801
802
803
804
805
806
807
808
809
810

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
811

mohammad's avatar
mohammad committed
812
            for _ in range(get_num_microbatches()):
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
                if not mpu.is_pipeline_first_stage():
                    input_tensor, _ = communicate(
                        tensor_send_next=None,
                        tensor_send_prev=None,
                        recv_forward=True,
                        recv_backward=False)
                else:
                    input_tensor = None

                # Forward evaluation.
                output_tensor = forward_step_func(data_iterator, model, input_tensor)

                if mpu.is_pipeline_last_stage():
                    _, loss_dict = output_tensor
                    # Reduce across processes.
                    for key in loss_dict:
                        total_loss_dict[key] = total_loss_dict.get(key, torch.cuda.FloatTensor([0.0])) + \
                            loss_dict[key]
                else:
                    communicate(
                        tensor_send_next=output_tensor,
                        tensor_send_prev=None,
                        recv_forward=False,
                        recv_backward=False)
837

838
            args.consumed_valid_samples += mpu.get_data_parallel_world_size() \
839
                                           * args.micro_batch_size \
mohammad's avatar
mohammad committed
840
                                           * get_num_microbatches()
841
842
843
844
    # Move model back to the train mode.
    model.train()

    for key in total_loss_dict:
mohammad's avatar
mohammad committed
845
        total_loss_dict[key] /= args.eval_iters * get_num_microbatches()
846
847
848
849
850
851

    return total_loss_dict


def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
852
                               iteration, verbose=False):
853
    """Helper function to evaluate and dump results on screen."""
Mohammad's avatar
Mohammad committed
854
855
856
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
857
858
859
860
861
862
863
864
865
866
867
868
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('{} value'.format(key),
                              total_loss_dict[key].item(),
                              iteration)
            writer.add_scalar('{} ppl'.format(key), ppl, iteration)

    length = len(string) + 1
869
870
871
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
872
873


874
875
876
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
877
    args = get_args()
878

879
880
881
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
882
883
884

    # Backward compatibility, assume fixed batch size.
    if args.iteration > 0 and args.consumed_train_samples == 0:
885
886
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
mohammad's avatar
mohammad committed
887
        args.consumed_train_samples = args.iteration * args.global_batch_size
888
    if args.iteration > 0 and args.consumed_valid_samples == 0:
889
890
        assert args.train_samples is None, \
            'only backward compatiblity support for iteration-based training'
891
        args.consumed_valid_samples = (args.iteration // args.eval_interval) * \
mohammad's avatar
mohammad committed
892
            args.eval_iters * args.global_batch_size
893

894
    # Data loader only on rank 0 of each model parallel group.
895
    if mpu.get_tensor_model_parallel_rank() == 0:
896
897

        # Number of train/valid/test samples.
898
899
900
901
902
903
        if args.train_samples:
            train_samples = args.train_samples
        else:
            train_samples = args.train_iters * args.global_batch_size
        eval_iters = (args.train_iters // args.eval_interval + 1) * \
                     args.eval_iters
904
        test_iters = args.eval_iters
905
        train_val_test_num_samples = [train_samples,
mohammad's avatar
mohammad committed
906
907
                                      eval_iters * args.global_batch_size,
                                      test_iters * args.global_batch_size]
908
909
910
911
912
913
914
915
916
917
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
918
919
920
921
922
        train_dataloader = build_pretraining_data_loader(
            train_ds, args.consumed_train_samples)
        valid_dataloader = build_pretraining_data_loader(
            valid_ds, args.consumed_valid_samples)
        test_dataloader = build_pretraining_data_loader(test_ds, 0)
923
924
925
926
927
928
929
930
931
932
933
934
935

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
936
937
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
938
939
940
941
942
943
944
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

    # Build iterators.
    if train_dataloader is not None:
        train_data_iterator = iter(train_dataloader)
945
946
947
    else:
        train_data_iterator = None

948
949
    if valid_dataloader is not None:
        valid_data_iterator = iter(valid_dataloader)
950
    else:
951
        valid_data_iterator = None
952

953
954
    if test_dataloader is not None:
        test_data_iterator = iter(test_dataloader)
955
956
957
    else:
        test_data_iterator = None

958
    return train_data_iterator, valid_data_iterator, test_data_iterator