schedules.py 29.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
from contextlib import contextmanager
17
import torch
18
from torch.autograd.variable import Variable
19
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
20
21

from megatron import get_args
22
from megatron import get_num_microbatches
23
24
from megatron import get_timers
from megatron import mpu
25
from megatron import p2p_communication
26
27
28
from megatron.utils import unwrap_model
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module
29
30
from megatron.model import ModelType

31

Jared Casper's avatar
Jared Casper committed
32
33
34
35
36
def get_forward_backward_func():
    args = get_args()
    if mpu.get_pipeline_model_parallel_world_size() > 1:
        if args.virtual_pipeline_model_parallel_size is not None:
            forward_backward_func = forward_backward_pipelining_with_interleaving
Lawrence McAfee's avatar
Lawrence McAfee committed
37
38
39
40
41
42
43
            assert get_num_microbatches() % \
                args.pipeline_model_parallel_size == 0, \
                'number of microbatches (%d) is not divisible by pipeline-' \
                'model-parallel-size (%d) when using interleaved schedule' % (
                    get_num_microbatches(),
                    args.pipeline_model_parallel_size,
                )
Jared Casper's avatar
Jared Casper committed
44
45
46
47
48
49
        else:
            forward_backward_func = forward_backward_pipelining_without_interleaving
    else:
        forward_backward_func = forward_backward_no_pipelining
    return forward_backward_func

50
51
def deallocate_output_tensor(out):
    '''Pseudo-deallocate (i.e., set to scalar) the output tensor's '.data' field.
52
53
54
55
56

    This method should be called right after the output tensor has been
    sent to the next pipeline stage. At this point, the output tensor is
    only useful for its '.grad_fn' field, and not its '.data'.
    '''
Lawrence McAfee's avatar
Lawrence McAfee committed
57
58
    if out is None:
        return
59
60
61
62
63
64
65
66
67
    assert isinstance(out, torch.Tensor), \
        "expected Tensor, found %s." % type(out).__name__
    assert out._base is None, \
        "counter-productive to free a view of another tensor."
    out.data = torch.empty(
        (1,),
        device = out.device,
        dtype = out.dtype,
    )
68
        
69
def custom_backward(output, grad_output):
70
71
    '''Directly call C++ autograd engine.

72
    To make the 'deallocate_output_tensor' (above) optimization work, the C++
73
74
75
76
    autograd engine must be called directly, bypassing Pytorch's
    torch.autograd.backward. Pytorch's 'backward' checks that the output and
    grad have the same shape, while C++'s 'backward' does not.
    '''
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    assert output.numel() == 1, \
        "output should be pseudo-'freed' in schedule, to optimize memory"
    assert isinstance(output, torch.Tensor), \
        "output == '%s'." % type(output).__name__
    assert isinstance(grad_output, (torch.Tensor, type(None))), \
        "grad_output == '%s'." % type(grad_output).__name__

    # Handle scalar output
    if grad_output is None:
        assert output.numel() == 1, "implicit grad requires scalar output."
        grad_output = torch.ones_like(
            output,
            memory_format = torch.preserve_format,
        )

    # Call c++ engine [ see torch/csrc/autograd/python_engine.cpp ]
Lawrence McAfee's avatar
Lawrence McAfee committed
94
95
96
97
98
99
100
101
102
    Variable._execution_engine.run_backward(
        tensors = (output,),
        grad_tensors = (grad_output,),
        keep_graph = False,
        create_graph = False,
        inputs = tuple(),
        allow_unreachable=True,
        accumulate_grad=True,
    )
103
        
Jared Casper's avatar
Jared Casper committed
104

105
106
107
108
109
110
def forward_step(forward_step_func,
                 data_iterator,
                 model,
                 input_tensor,
                 forward_data_store,
                 collect_non_loss_data=False):
111
112
113
114
115
116
    """Forward step for passed-in model.

    If first stage, input tensor is obtained from data_iterator, otherwise
    passed-in input_tensor is used.

    Returns output tensor."""
117
    args = get_args()
118
119
120
    timers = get_timers()

    timers('forward-compute').start()
121
122
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
123
124
125
126
127
128

    unwrap_output_tensor = False
    if not isinstance(input_tensor, list):
        input_tensor = [input_tensor]
        unwrap_output_tensor = True

129
    unwrapped_model.set_input_tensor(input_tensor)
130
    output_tensor, loss_func = forward_step_func(data_iterator, model)
131
    if mpu.is_pipeline_last_stage():
132
133
134
135
136
137
138
139
140
        if not collect_non_loss_data:
            output_tensor = loss_func(output_tensor)
            loss, loss_reduced = output_tensor
            output_tensor = loss / get_num_microbatches()
            forward_data_store.append(loss_reduced)
        else:
            data = loss_func(output_tensor, non_loss_data=True)
            forward_data_store.append(data)

141
142
    timers('forward-compute').stop()

143
144
145
    # If T5 model (or other model with encoder and decoder)
    # and in decoder stack, then send encoder_hidden_state
    # downstream as well.
146
147
148
149
150
151
    if mpu.is_pipeline_stage_after_split() and \
            args.model_type == ModelType.encoder_and_decoder:
        return [output_tensor, input_tensor[-1]]
    if unwrap_output_tensor:
        return output_tensor
    return [output_tensor]
152
153
154


def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad):
155
156
157
158
159
160
161
    """Backward step through passed-in output tensor.

    If last stage, output_tensor_grad is None, otherwise gradient of loss
    with respect to stage's output tensor.

    Returns gradient of loss with respect to input tensor (None if first
    stage)."""
162
163
164
165

    # NOTE: This code currently can handle at most one skip connection. It
    # needs to be modified slightly to support arbitrary numbers of skip
    # connections.
166
167
168
169
170
171
    args = get_args()

    timers = get_timers()
    timers('backward-compute').start()

    # Retain the grad on the input_tensor.
172
173
174
175
176
177
178
179
180
181
182
183
    unwrap_input_tensor_grad = False
    if not isinstance(input_tensor, list):
        input_tensor = [input_tensor]
        unwrap_input_tensor_grad = True
    for x in input_tensor:
        if x is not None:
            x.retain_grad()

    if not isinstance(output_tensor, list):
        output_tensor = [output_tensor]
    if not isinstance(output_tensor_grad, list):
        output_tensor_grad = [output_tensor_grad]
184
185

    # Backward pass.
186
187
    if output_tensor_grad[0] is None:
        output_tensor = optimizer.scale_loss(output_tensor[0])
188
    custom_backward(output_tensor[0], output_tensor_grad[0])
189
190

    # Collect the grad of the input_tensor.
191
    input_tensor_grad = [None]
192
    if input_tensor is not None:
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        input_tensor_grad = []
        for x in input_tensor:
            if x is None:
                input_tensor_grad.append(None)
            else:
                input_tensor_grad.append(x.grad)

    # Handle single skip connection if it exists (encoder_hidden_state in
    # model with encoder and decoder).
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
            mpu.is_pipeline_stage_after_split() and \
            args.model_type == ModelType.encoder_and_decoder:
        if output_tensor_grad[1] is not None:
            input_tensor_grad[-1].add_(output_tensor_grad[1])
    if unwrap_input_tensor_grad:
        input_tensor_grad = input_tensor_grad[0]
209
210
211
212
213
214

    timers('backward-compute').stop()

    return input_tensor_grad


215
216
217
218
219
220
221
222
@contextmanager
def dummy_handler():
    try:
        yield
    finally:
        pass


223
224
225
226
227
228
def forward_backward_no_pipelining(forward_step_func,
                                   data_iterator, model,
                                   optimizer,
                                   timers,
                                   forward_only,
                                   collect_non_loss_data=False):
229
230
231
232
    """Run forward and backward passes with no pipeline parallelism
    (no inter-stage communication).

    Returns dictionary with losses."""
233
234
235
    assert len(model) == 1
    model = model[0]

236
237
238
239
    context_handler = dummy_handler
    if isinstance(model, torchDDP):
        context_handler = model.no_sync

240
    forward_data_store = []
241
242
243
    input_tensor, output_tensor_grad = None, None
    with context_handler():
        for i in range(get_num_microbatches() - 1):
244
245
246
            output_tensor = forward_step(forward_step_func, data_iterator,
                                         model, input_tensor, forward_data_store,
                                         collect_non_loss_data)
247
248
249
250
251
252
            if not forward_only:
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

    # Run computation for last microbatch out of context handler (want to
    # synchronize gradients).
253
254
255
    output_tensor = forward_step(forward_step_func, data_iterator,
                                 model, input_tensor, forward_data_store,
                                 collect_non_loss_data)
256
257
    if not forward_only:
        backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad)
258

259
    return forward_data_store
260
261


262
263
264
265
266
267
def forward_backward_pipelining_with_interleaving(forward_step_func,
                                                  data_iterator, model,
                                                  optimizer,
                                                  timers,
                                                  forward_only, 
                                                  collect_non_loss_data=False):
268
269
270
271
    """Run interleaved 1F1B schedule (model split into model chunks), with
    communication between pipeline stages as needed.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
272
273
    input_tensors = [[] for _ in range(len(model))]
    output_tensors = [[] for _ in range(len(model))]
274
    forward_data_store = []
275
276
277
278
    if not forward_only:
        output_tensor_grads = [[] for _ in range(len(model))]

    pipeline_parallel_size = mpu.get_pipeline_model_parallel_world_size()
279
    pipeline_parallel_rank = mpu.get_pipeline_model_parallel_rank()
280

281
    args = get_args()
282
283
284
285
286
287
    if args.model_parallel_memory_opt:
        seq_length = args.seq_length // mpu.get_tensor_model_parallel_world_size()
    else:
        seq_length = args.seq_length
    tensor_shape = (seq_length, args.micro_batch_size, args.hidden_size)
    
288
289
290
291
292
293
294
    # Compute number of warmup and remaining microbatches.
    num_model_chunks = len(model)
    num_microbatches = get_num_microbatches() * num_model_chunks
    all_warmup_microbatches = False
    if forward_only:
        num_warmup_microbatches = num_microbatches
    else:
295
296
297
298
299
300
        # Run all forward passes and then all backward passes if number of
        # microbatches is just the number of pipeline stages.
        # Otherwise, perform (num_model_chunks-1)*pipeline_parallel_size on
        # all workers, followed by more microbatches after depending on
        # stage ID (more forward passes for earlier stages, later stages can
        # immediately start with 1F1B).
301
302
303
304
305
        if get_num_microbatches() == pipeline_parallel_size:
            num_warmup_microbatches = num_microbatches
            all_warmup_microbatches = True
        else:
            num_warmup_microbatches = \
306
                (pipeline_parallel_size - pipeline_parallel_rank - 1) * 2
307
308
309
310
            num_warmup_microbatches += (
                num_model_chunks - 1) * pipeline_parallel_size
            num_warmup_microbatches = min(num_warmup_microbatches,
                                          num_microbatches)
311
312
313
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

314
    def get_model_chunk_id(microbatch_id, forward):
315
        """Helper method to get the model chunk ID given the iteration number."""
316
317
        microbatch_id_in_group = microbatch_id % (pipeline_parallel_size * num_model_chunks)
        model_chunk_id = microbatch_id_in_group // pipeline_parallel_size
318
        if not forward:
319
320
            model_chunk_id = (num_model_chunks - model_chunk_id - 1)
        return model_chunk_id
321

322
    def forward_step_helper(microbatch_id):
323
324
325
        """Helper method to run forward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        forward_step())."""
326
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=True)
327
328
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

329
        # forward step
330
        if mpu.is_pipeline_first_stage():
331
332
            if len(input_tensors[model_chunk_id]) == \
                    len(output_tensors[model_chunk_id]):
333
334
                input_tensors[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id][-1]
335
336
        output_tensor = forward_step(forward_step_func,
                                     data_iterator[model_chunk_id],
337
                                     model[model_chunk_id],
338
339
340
                                     input_tensor, 
                                     forward_data_store,
                                     collect_non_loss_data)
341
342
        output_tensors[model_chunk_id].append(output_tensor)

343
344
345
346
347
        # if forward-only, no need to save tensors for a backward pass
        if forward_only:
            input_tensors[model_chunk_id].pop()
            output_tensors[model_chunk_id].pop()

348
349
        return output_tensor

350
    def backward_step_helper(microbatch_id):
351
352
353
        """Helper method to run backward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        backward_step())."""
354
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=False)
355
356
357
358
359
360
361
362
363
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        if mpu.is_pipeline_last_stage():
            if len(output_tensor_grads[model_chunk_id]) == 0:
                output_tensor_grads[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id].pop(0)
        output_tensor = output_tensors[model_chunk_id].pop(0)
        output_tensor_grad = output_tensor_grads[model_chunk_id].pop(0)
        input_tensor_grad = \
364
365
366
367
            backward_step(optimizer,
                          input_tensor,
                          output_tensor,
                          output_tensor_grad)
368
369
370
371
372

        return input_tensor_grad

    # Run warmup forward passes.
    mpu.set_virtual_pipeline_model_parallel_rank(0)
373
    input_tensors[0].append(
374
        p2p_communication.recv_forward(tensor_shape, timers=timers))
375
376
    for k in range(num_warmup_microbatches):
        output_tensor = forward_step_helper(k)
377
378

        # Determine if tensor should be received from previous stage.
379
380
381
382
383
384
385
        next_forward_model_chunk_id = get_model_chunk_id(k+1, forward=True)
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            if next_forward_model_chunk_id == 0:
                recv_prev = False
        if k == (num_microbatches - 1):
            recv_prev = False
386
387

        # Don't send tensor downstream if on last stage.
388
389
        if mpu.is_pipeline_last_stage():
            output_tensor = None
390
391
392

        # Send and receive tensors as appropriate (send tensors computed
        # in this iteration; receive tensors for next iteration).
393
394
395
396
397
398
399
        if k == (num_warmup_microbatches - 1) and not forward_only and \
                not all_warmup_microbatches:
            input_tensor_grad = None
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                recv_next = False
            input_tensor, output_tensor_grad = \
400
                p2p_communication.send_forward_backward_recv_forward_backward(
401
402
                        output_tensor, input_tensor_grad,
                        recv_prev=recv_prev, recv_next=recv_next,
403
                        tensor_shape=tensor_shape,
404
405
406
                        timers=timers)
            output_tensor_grads[num_model_chunks-1].append(output_tensor_grad)
        else:
407
            input_tensor = \
408
                p2p_communication.send_forward_recv_forward(
409
410
411
                    output_tensor, recv_prev=recv_prev,
                    tensor_shape=tensor_shape,
                    timers=timers)
412
        input_tensors[next_forward_model_chunk_id].append(input_tensor)
413
        deallocate_output_tensor(output_tensor)
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

    # Run 1F1B in steady state.
    for k in range(num_microbatches_remaining):
        # Forward pass.
        forward_k = k + num_warmup_microbatches
        output_tensor = forward_step_helper(forward_k)

        # Backward pass.
        backward_k = k
        input_tensor_grad = backward_step_helper(backward_k)

        # Send output_tensor and input_tensor_grad, receive input_tensor
        # and output_tensor_grad.

        # Determine if current stage has anything to send in either direction,
        # otherwise set tensor to None.
        forward_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
        mpu.set_virtual_pipeline_model_parallel_rank(forward_model_chunk_id)
        if mpu.is_pipeline_last_stage():
            output_tensor = None

        backward_model_chunk_id = get_model_chunk_id(backward_k, forward=False)
        mpu.set_virtual_pipeline_model_parallel_rank(backward_model_chunk_id)
        if mpu.is_pipeline_first_stage():
            input_tensor_grad = None

        # Determine if peers are sending, and where in data structure to put
        # received tensors.
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            # First stage is ahead of last stage by (pipeline_parallel_size - 1).
            next_forward_model_chunk_id = get_model_chunk_id(
                forward_k - (pipeline_parallel_size - 1), forward=True)
            if next_forward_model_chunk_id == (num_model_chunks - 1):
                recv_prev = False
            next_forward_model_chunk_id += 1
        else:
451
452
            next_forward_model_chunk_id = get_model_chunk_id(forward_k + 1,
                                                             forward=True)
453
454
455
456
457
458
459
460
461
462

        recv_next = True
        if mpu.is_pipeline_last_stage(ignore_virtual=True):
            # Last stage is ahead of first stage by (pipeline_parallel_size - 1).
            next_backward_model_chunk_id = get_model_chunk_id(
                backward_k - (pipeline_parallel_size - 1), forward=False)
            if next_backward_model_chunk_id == 0:
                recv_next = False
            next_backward_model_chunk_id -= 1
        else:
463
464
            next_backward_model_chunk_id = get_model_chunk_id(backward_k + 1,
                                                              forward=False)
465

466
467
        # If last iteration, don't receive; we already received one extra
        # before the start of the for loop.
468
469
470
471
472
        if k == (num_microbatches_remaining - 1):
            recv_prev = False

        # Communicate tensors.
        input_tensor, output_tensor_grad = \
473
            p2p_communication.send_forward_backward_recv_forward_backward(
474
475
                    output_tensor, input_tensor_grad,
                    recv_prev=recv_prev, recv_next=recv_next,
476
                    tensor_shape=tensor_shape, timers=timers)
477
        deallocate_output_tensor(output_tensor)
478

479
480
        # Put input_tensor and output_tensor_grad in data structures in the
        # right location.
481
482
483
        if recv_prev:
            input_tensors[next_forward_model_chunk_id].append(input_tensor)
        if recv_next:
484
485
            output_tensor_grads[next_backward_model_chunk_id].append(
                output_tensor_grad)
486

487
    # Run cooldown backward passes (flush out pipeline).
488
489
490
    if not forward_only:
        if all_warmup_microbatches:
            output_tensor_grads[num_model_chunks-1].append(
491
                p2p_communication.recv_backward(tensor_shape, timers=timers))
492
493
494
495
496
497
498
499
500
501
        for k in range(num_microbatches_remaining, num_microbatches):
            input_tensor_grad = backward_step_helper(k)
            next_backward_model_chunk_id = get_model_chunk_id(k+1, forward=False)
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                if next_backward_model_chunk_id == (num_model_chunks - 1):
                    recv_next = False
            if k == (num_microbatches - 1):
                recv_next = False
            output_tensor_grads[next_backward_model_chunk_id].append(
502
                p2p_communication.send_backward_recv_backward(
503
504
505
                    input_tensor_grad, recv_next=recv_next,
                    tensor_shape=tensor_shape,
                    timers=timers))
506

507
    return forward_data_store
508
509


510
511
512
513
514
515
516
517
518
519
520
def get_tensor_shapes(rank, model_type):
    # Determine right tensor sizes (based on position of rank with respect to split
    # rank) and model size.
    # Send two tensors if model is T5 and rank is in decoder stage:
    #     first tensor is decoder (pre-transpose),
    #     second tensor is encoder (post-transpose).
    # If model is T5 and rank is at the boundary:
    #     send one tensor (post-transpose from encoder).
    # Otherwise, send one tensor (pre-transpose).
    args = get_args()
    tensor_shapes = []
521
522
523

    if args.model_parallel_memory_opt:
        seq_length = args.seq_length // mpu.get_tensor_model_parallel_world_size()
524
525
526
527
528
    else:
        seq_length = args.seq_length

    if model_type == ModelType.encoder_and_decoder:
        if args.model_parallel_memory_opt:
529
530
            decoder_seq_length = args.decoder_seq_length // mpu.get_tensor_model_parallel_world_size()
        else:
531
            decoder_seq_length = args.decoder_seq_length
532

533
        if mpu.is_pipeline_stage_before_split(rank):
534
            tensor_shapes.append((seq_length, args.micro_batch_size, args.hidden_size))
535
        else:
536
537
            tensor_shapes.append((decoder_seq_length, args.micro_batch_size, args.hidden_size))
            tensor_shapes.append((seq_length, args.micro_batch_size, args.hidden_size))
538
    else:
539
        tensor_shapes.append((seq_length, args.micro_batch_size, args.hidden_size))
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
    return tensor_shapes


def recv_forward(tensor_shapes, timers):
    input_tensors = []
    for tensor_shape in tensor_shapes:
        if tensor_shape is None:
            input_tensors.append(None)
        else:
            input_tensors.append(p2p_communication.recv_forward(tensor_shape,
                                                                timers=timers))
    return input_tensors


def recv_backward(tensor_shapes, timers):
    output_tensor_grads = []
    for tensor_shape in tensor_shapes:
        if tensor_shape is None:
            output_tensor_grads.append(None)
        else:
            output_tensor_grads.append(p2p_communication.recv_backward(tensor_shape,
                                                                       timers=timers))
    return output_tensor_grads


def send_forward(output_tensors, tensor_shapes, timers):
    if not isinstance(output_tensors, list):
        output_tensors = [output_tensors]
    for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
        if tensor_shape is None:
            continue
        p2p_communication.send_forward(output_tensor, tensor_shape, timers=timers)


def send_backward(input_tensor_grads, tensor_shapes, timers):
    if not isinstance(input_tensor_grads, list):
        input_tensor_grads = [input_tensor_grads]
    for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
        if tensor_shape is None:
            continue
        p2p_communication.send_backward(input_tensor_grad, tensor_shape, timers=timers)


def send_forward_recv_backward(output_tensors, tensor_shapes, timers):
    if not isinstance(output_tensors, list):
        output_tensors = [output_tensors]
    output_tensor_grads = []
    for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
        if tensor_shape is None:
            output_tensor_grads.append(None)
            continue
        output_tensor_grad = p2p_communication.send_forward_recv_backward(
                output_tensor, tensor_shape, timers=timers)
        output_tensor_grads.append(output_tensor_grad)
    return output_tensor_grads


def send_backward_recv_forward(input_tensor_grads, tensor_shapes, timers):
    if not isinstance(input_tensor_grads, list):
        input_tensor_grads = [input_tensor_grads]
    input_tensors = []
    for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
        if tensor_shape is None:
            input_tensors.append(None)
            continue
        input_tensor = p2p_communication.send_backward_recv_forward(
                input_tensor_grad, tensor_shape, timers=timers)
        input_tensors.append(input_tensor)
    return input_tensors


611
612
613
614
615
616
617
def forward_backward_pipelining_without_interleaving(forward_step_func,
                                                     data_iterator,
                                                     model,
                                                     optimizer,
                                                     timers,
                                                     forward_only,
                                                     collect_non_loss_data=False):
618
619
620
621
    """Run non-interleaved 1F1B schedule, with communication between pipeline
    stages.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
622
    args = get_args()
623
624
    timers = get_timers()

625
626
627
628
629
630
631
632
633
634
635
636
637
638
    assert len(model) == 1
    model = model[0]

    # Compute number of warmup microbatches.
    num_microbatches = get_num_microbatches()
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

639
640
641
642
643
644
645
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
    model_type = unwrapped_model.model_type
    rank = mpu.get_pipeline_model_parallel_rank()
    recv_tensor_shapes = get_tensor_shapes(rank-1, model_type)
    send_tensor_shapes = get_tensor_shapes(rank, model_type)

646
647
648
649
650
651
    # Input, output tensors only need to be saved when doing backward passes
    input_tensors = None
    output_tensors = None
    if not forward_only:
        input_tensors = []
        output_tensors = []
652
    forward_data_store = []
653
654
655

    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
656
        input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
657
        output_tensor = forward_step(forward_step_func, data_iterator, model,
658
659
                                     input_tensor, forward_data_store,
                                     collect_non_loss_data)
660
        send_forward(output_tensor, send_tensor_shapes, timers=timers)
661

662
663
664
        if not forward_only:
            input_tensors.append(input_tensor)
            output_tensors.append(output_tensor)
665
            deallocate_output_tensor(output_tensor[0])
666
667
668
669
670

    # Before running 1F1B, need to receive first forward tensor.
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
    if num_microbatches_remaining > 0:
671
        input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
672
673
674
675
676
677

    # Run 1F1B in steady state.
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))

        output_tensor = forward_step(forward_step_func, data_iterator, model,
678
679
                                     input_tensor, forward_data_store,
                                     collect_non_loss_data)
680
        if forward_only:
681
            send_forward(output_tensor, send_tensor_shapes, timers=timers)
682
683

            if not last_iteration:
684
                input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
685

686
        else:
687
            output_tensor_grad = \
688
689
690
                send_forward_recv_backward(output_tensor,
                                           send_tensor_shapes,
                                           timers=timers)
691

692
693
694
            # Add input_tensor and output_tensor to end of list.
            input_tensors.append(input_tensor)
            output_tensors.append(output_tensor)
695
            deallocate_output_tensor(output_tensor[0])
696

697
698
699
700
            # Pop input_tensor and output_tensor from the start of the list for
            # the backward pass.
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)
701
702
703
704
705
706
707

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

            if last_iteration:
                input_tensor = None
708
                send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
709
            else:
710
                input_tensor = \
711
712
                    send_backward_recv_forward(
                        input_tensor_grad, recv_tensor_shapes, timers=timers)
713
714
715
716
717
718
719

    # Run cooldown backward passes.
    if not forward_only:
        for i in range(num_warmup_microbatches):
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)

720
            output_tensor_grad = recv_backward(send_tensor_shapes, timers=timers)
721
722
723
724
725

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

726
            send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
727

728
    return forward_data_store