schedules.py 17.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
from contextlib import contextmanager
17
import torch
18
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
19
20

from megatron import get_args
21
from megatron import get_num_microbatches
22
23
from megatron import get_timers
from megatron import mpu
24
from megatron import p2p_communication
25
26
27


def forward_step(forward_step_func, data_iterator, model, input_tensor, losses_reduced):
28
29
30
31
32
33
    """Forward step for passed-in model.

    If first stage, input tensor is obtained from data_iterator, otherwise
    passed-in input_tensor is used.

    Returns output tensor."""
34
35
36
    timers = get_timers()

    timers('forward-compute').start()
37
38
    model.module.module.set_input_tensor(input_tensor)
    output_tensor, loss_func = forward_step_func(data_iterator, model)
39
    if mpu.is_pipeline_last_stage():
40
        output_tensor = loss_func(output_tensor)
41
42
43
44
45
46
47
48
49
        loss, loss_reduced = output_tensor
        output_tensor = loss / get_num_microbatches()
        losses_reduced.append(loss_reduced)
    timers('forward-compute').stop()

    return output_tensor


def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad):
50
51
52
53
54
55
56
    """Backward step through passed-in output tensor.

    If last stage, output_tensor_grad is None, otherwise gradient of loss
    with respect to stage's output tensor.

    Returns gradient of loss with respect to input tensor (None if first
    stage)."""
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    args = get_args()

    timers = get_timers()
    timers('backward-compute').start()

    # Retain the grad on the input_tensor.
    if input_tensor is not None:
        input_tensor.retain_grad()

    # Backward pass.
    if output_tensor_grad is None:
        output_tensor = optimizer.scale_loss(output_tensor)
    torch.autograd.backward(output_tensor, grad_tensors=output_tensor_grad)

    # Collect the grad of the input_tensor.
    input_tensor_grad = None
    if input_tensor is not None:
        input_tensor_grad = input_tensor.grad

    timers('backward-compute').stop()

    return input_tensor_grad


81
82
83
84
85
86
87
88
@contextmanager
def dummy_handler():
    try:
        yield
    finally:
        pass


89
90
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers, forward_only):
91
92
93
94
    """Run forward and backward passes with no pipeline parallelism
    (no inter-stage communication).

    Returns dictionary with losses."""
95
96
97
    assert len(model) == 1
    model = model[0]

98
99
100
101
    context_handler = dummy_handler
    if isinstance(model, torchDDP):
        context_handler = model.no_sync

102
    losses_reduced = []
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    input_tensor, output_tensor_grad = None, None
    with context_handler():
        for i in range(get_num_microbatches() - 1):
            output_tensor = forward_step(forward_step_func, data_iterator, model,
                                         input_tensor, losses_reduced)
            if not forward_only:
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

    # Run computation for last microbatch out of context handler (want to
    # synchronize gradients).
    output_tensor = forward_step(forward_step_func, data_iterator, model,
                                 input_tensor, losses_reduced)
    if not forward_only:
        backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad)
118
119
120
121
122
123

    return losses_reduced


def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterator, model,
                                                  optimizer, timers, forward_only):
124
125
126
127
    """Run interleaved 1F1B schedule (model split into model chunks), with
    communication between pipeline stages as needed.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
128
129
130
131
132
133
134
    input_tensors = [[] for _ in range(len(model))]
    output_tensors = [[] for _ in range(len(model))]
    losses_reduced = []
    if not forward_only:
        output_tensor_grads = [[] for _ in range(len(model))]

    pipeline_parallel_size = mpu.get_pipeline_model_parallel_world_size()
135
    pipeline_parallel_rank = mpu.get_pipeline_model_parallel_rank()
136
137
138
139
140
141
142
143

    # Compute number of warmup and remaining microbatches.
    num_model_chunks = len(model)
    num_microbatches = get_num_microbatches() * num_model_chunks
    all_warmup_microbatches = False
    if forward_only:
        num_warmup_microbatches = num_microbatches
    else:
144
145
146
147
148
149
        # Run all forward passes and then all backward passes if number of
        # microbatches is just the number of pipeline stages.
        # Otherwise, perform (num_model_chunks-1)*pipeline_parallel_size on
        # all workers, followed by more microbatches after depending on
        # stage ID (more forward passes for earlier stages, later stages can
        # immediately start with 1F1B).
150
151
152
153
154
        if get_num_microbatches() == pipeline_parallel_size:
            num_warmup_microbatches = num_microbatches
            all_warmup_microbatches = True
        else:
            num_warmup_microbatches = \
155
                (pipeline_parallel_size - pipeline_parallel_rank - 1) * 2
156
157
158
159
            num_warmup_microbatches += (
                num_model_chunks - 1) * pipeline_parallel_size
            num_warmup_microbatches = min(num_warmup_microbatches,
                                          num_microbatches)
160
161
162
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

163
    def get_model_chunk_id(microbatch_id, forward):
164
        """Helper method to get the model chunk ID given the iteration number."""
165
166
        microbatch_id_in_group = microbatch_id % (pipeline_parallel_size * num_model_chunks)
        model_chunk_id = microbatch_id_in_group // pipeline_parallel_size
167
        if not forward:
168
169
            model_chunk_id = (num_model_chunks - model_chunk_id - 1)
        return model_chunk_id
170

171
    def forward_step_helper(microbatch_id):
172
173
174
        """Helper method to run forward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        forward_step())."""
175
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=True)
176
177
178
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        if mpu.is_pipeline_first_stage():
179
180
            if len(input_tensors[model_chunk_id]) == \
                    len(output_tensors[model_chunk_id]):
181
182
                input_tensors[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id][-1]
183
184
        output_tensor = forward_step(forward_step_func,
                                     data_iterator[model_chunk_id],
185
186
187
188
189
190
                                     model[model_chunk_id],
                                     input_tensor, losses_reduced)
        output_tensors[model_chunk_id].append(output_tensor)

        return output_tensor

191
    def backward_step_helper(microbatch_id):
192
193
194
        """Helper method to run backward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        backward_step())."""
195
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=False)
196
197
198
199
200
201
202
203
204
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        if mpu.is_pipeline_last_stage():
            if len(output_tensor_grads[model_chunk_id]) == 0:
                output_tensor_grads[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id].pop(0)
        output_tensor = output_tensors[model_chunk_id].pop(0)
        output_tensor_grad = output_tensor_grads[model_chunk_id].pop(0)
        input_tensor_grad = \
205
206
207
208
            backward_step(optimizer,
                          input_tensor,
                          output_tensor,
                          output_tensor_grad)
209
210
211
212
213

        return input_tensor_grad

    # Run warmup forward passes.
    mpu.set_virtual_pipeline_model_parallel_rank(0)
214
    input_tensors[0].append(
215
        p2p_communication.recv_forward(timers))
216
217
    for k in range(num_warmup_microbatches):
        output_tensor = forward_step_helper(k)
218
219

        # Determine if tensor should be received from previous stage.
220
221
222
223
224
225
226
        next_forward_model_chunk_id = get_model_chunk_id(k+1, forward=True)
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            if next_forward_model_chunk_id == 0:
                recv_prev = False
        if k == (num_microbatches - 1):
            recv_prev = False
227
228

        # Don't send tensor downstream if on last stage.
229
230
        if mpu.is_pipeline_last_stage():
            output_tensor = None
231
232
233

        # Send and receive tensors as appropriate (send tensors computed
        # in this iteration; receive tensors for next iteration).
234
235
236
237
238
239
240
        if k == (num_warmup_microbatches - 1) and not forward_only and \
                not all_warmup_microbatches:
            input_tensor_grad = None
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                recv_next = False
            input_tensor, output_tensor_grad = \
241
                p2p_communication.send_forward_backward_recv_forward_backward(
242
243
244
245
246
                        output_tensor, input_tensor_grad,
                        recv_prev=recv_prev, recv_next=recv_next,
                        timers=timers)
            output_tensor_grads[num_model_chunks-1].append(output_tensor_grad)
        else:
247
            input_tensor = \
248
249
                p2p_communication.send_forward_recv_forward(
                    output_tensor, recv_prev, timers)
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
        input_tensors[next_forward_model_chunk_id].append(input_tensor)

    # Run 1F1B in steady state.
    for k in range(num_microbatches_remaining):
        # Forward pass.
        forward_k = k + num_warmup_microbatches
        output_tensor = forward_step_helper(forward_k)

        # Backward pass.
        backward_k = k
        input_tensor_grad = backward_step_helper(backward_k)

        # Send output_tensor and input_tensor_grad, receive input_tensor
        # and output_tensor_grad.

        # Determine if current stage has anything to send in either direction,
        # otherwise set tensor to None.
        forward_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
        mpu.set_virtual_pipeline_model_parallel_rank(forward_model_chunk_id)
        if mpu.is_pipeline_last_stage():
            output_tensor = None

        backward_model_chunk_id = get_model_chunk_id(backward_k, forward=False)
        mpu.set_virtual_pipeline_model_parallel_rank(backward_model_chunk_id)
        if mpu.is_pipeline_first_stage():
            input_tensor_grad = None

        # Determine if peers are sending, and where in data structure to put
        # received tensors.
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            # First stage is ahead of last stage by (pipeline_parallel_size - 1).
            next_forward_model_chunk_id = get_model_chunk_id(
                forward_k - (pipeline_parallel_size - 1), forward=True)
            if next_forward_model_chunk_id == (num_model_chunks - 1):
                recv_prev = False
            next_forward_model_chunk_id += 1
        else:
288
289
            next_forward_model_chunk_id = get_model_chunk_id(forward_k + 1,
                                                             forward=True)
290
291
292
293
294
295
296
297
298
299

        recv_next = True
        if mpu.is_pipeline_last_stage(ignore_virtual=True):
            # Last stage is ahead of first stage by (pipeline_parallel_size - 1).
            next_backward_model_chunk_id = get_model_chunk_id(
                backward_k - (pipeline_parallel_size - 1), forward=False)
            if next_backward_model_chunk_id == 0:
                recv_next = False
            next_backward_model_chunk_id -= 1
        else:
300
301
            next_backward_model_chunk_id = get_model_chunk_id(backward_k + 1,
                                                              forward=False)
302

303
304
        # If last iteration, don't receive; we already received one extra
        # before the start of the for loop.
305
306
307
308
309
        if k == (num_microbatches_remaining - 1):
            recv_prev = False

        # Communicate tensors.
        input_tensor, output_tensor_grad = \
310
            p2p_communication.send_forward_backward_recv_forward_backward(
311
312
313
314
                    output_tensor, input_tensor_grad,
                    recv_prev=recv_prev, recv_next=recv_next,
                    timers=timers)

315
316
        # Put input_tensor and output_tensor_grad in data structures in the
        # right location.
317
318
319
        if recv_prev:
            input_tensors[next_forward_model_chunk_id].append(input_tensor)
        if recv_next:
320
321
            output_tensor_grads[next_backward_model_chunk_id].append(
                output_tensor_grad)
322

323
    # Run cooldown backward passes (flush out pipeline).
324
325
326
    if not forward_only:
        if all_warmup_microbatches:
            output_tensor_grads[num_model_chunks-1].append(
327
                p2p_communication.recv_backward(timers))
328
329
330
331
332
333
334
335
336
337
        for k in range(num_microbatches_remaining, num_microbatches):
            input_tensor_grad = backward_step_helper(k)
            next_backward_model_chunk_id = get_model_chunk_id(k+1, forward=False)
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                if next_backward_model_chunk_id == (num_model_chunks - 1):
                    recv_next = False
            if k == (num_microbatches - 1):
                recv_next = False
            output_tensor_grads[next_backward_model_chunk_id].append(
338
339
                p2p_communication.send_backward_recv_backward(
                    input_tensor_grad, recv_next, timers))
340
341
342
343

    return losses_reduced


344
345
346
def forward_backward_pipelining_without_interleaving(forward_step_func, data_iterator,
                                                     model, optimizer, timers,
                                                     forward_only):
347
348
349
350
    """Run non-interleaved 1F1B schedule, with communication between pipeline
    stages.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
351
352
    timers = get_timers()

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
    assert len(model) == 1
    model = model[0]

    # Compute number of warmup microbatches.
    num_microbatches = get_num_microbatches()
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

    input_tensors = []
    output_tensors = []
    losses_reduced = []

    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
373
        input_tensor = p2p_communication.recv_forward(timers)
374
375
        output_tensor = forward_step(forward_step_func, data_iterator, model,
                                     input_tensor, losses_reduced)
376
        p2p_communication.send_forward(output_tensor, timers)
377
378
379
380
381
382
383
384

        input_tensors.append(input_tensor)
        output_tensors.append(output_tensor)

    # Before running 1F1B, need to receive first forward tensor.
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
    if num_microbatches_remaining > 0:
385
        input_tensor = p2p_communication.recv_forward(timers)
386
387
388
389
390
391
392
393

    # Run 1F1B in steady state.
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))

        output_tensor = forward_step(forward_step_func, data_iterator, model,
                                     input_tensor, losses_reduced)
        if forward_only:
394
            p2p_communication.send_forward(output_tensor, timers)
395
        else:
396
            output_tensor_grad = \
397
398
                p2p_communication.send_forward_recv_backward(output_tensor,
                                                             timers)
399
400
401
402
403
404
405
406

        # Add input_tensor and output_tensor to end of list, then pop from the
        # start of the list for backward pass.
        input_tensors.append(input_tensor)
        output_tensors.append(output_tensor)

        if forward_only:
            if not last_iteration:
407
                input_tensor = p2p_communication.recv_forward(timers)
408
409
410
411
412
413
414
415
416
        else:
            input_tensor, output_tensor = input_tensors.pop(0), output_tensors.pop(0)

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

            if last_iteration:
                input_tensor = None
417
                p2p_communication.send_backward(input_tensor_grad, timers)
418
            else:
419
                input_tensor = \
420
421
                    p2p_communication.send_backward_recv_forward(
                        input_tensor_grad, timers)
422
423
424
425
426
427
428

    # Run cooldown backward passes.
    if not forward_only:
        for i in range(num_warmup_microbatches):
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)

429
            output_tensor_grad = p2p_communication.recv_backward(timers)
430
431
432
433
434

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

435
            p2p_communication.send_backward(input_tensor_grad, timers)
436
437

    return losses_reduced