Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Megatron-LM
Commits
d10f81c5
Commit
d10f81c5
authored
Jan 13, 2022
by
Lawrence McAfee
Browse files
removed uses are args.deallocate_pipeline_output
parent
18846a0a
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
9 additions
and
23 deletions
+9
-23
megatron/schedules.py
megatron/schedules.py
+9
-23
No files found.
megatron/schedules.py
View file @
d10f81c5
...
@@ -76,7 +76,7 @@ def get_forward_backward_func():
...
@@ -76,7 +76,7 @@ def get_forward_backward_func():
# )
# )
# # <<<
# # <<<
# <<<
# <<<
def
free_output_tensor
(
out
,
deallocate_pipeline_outputs
):
def
free_output_tensor
(
out
):
'''Pseudo-free (i.e., set to scalar) the output tensor's '.data' field.
'''Pseudo-free (i.e., set to scalar) the output tensor's '.data' field.
This method should be called right after the output tensor has been
This method should be called right after the output tensor has been
...
@@ -216,14 +216,7 @@ def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad):
...
@@ -216,14 +216,7 @@ def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad):
# Backward pass.
# Backward pass.
if
output_tensor_grad
[
0
]
is
None
:
if
output_tensor_grad
[
0
]
is
None
:
output_tensor
=
optimizer
.
scale_loss
(
output_tensor
[
0
])
output_tensor
=
optimizer
.
scale_loss
(
output_tensor
[
0
])
if
args
.
deallocate_pipeline_outputs
:
custom_backward
(
output_tensor
[
0
],
output_tensor_grad
[
0
])
# >>>
# pax(4, {"output_tensor": output_tensor})
# <<<
custom_backward
(
output_tensor
[
0
],
output_tensor_grad
[
0
])
else
:
torch
.
autograd
.
backward
(
output_tensor
[
0
],
grad_tensors
=
output_tensor_grad
[
0
])
# Collect the grad of the input_tensor.
# Collect the grad of the input_tensor.
input_tensor_grad
=
[
None
]
input_tensor_grad
=
[
None
]
...
@@ -431,8 +424,11 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterat
...
@@ -431,8 +424,11 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterat
output_tensor
,
recv_prev
=
recv_prev
,
output_tensor
,
recv_prev
=
recv_prev
,
tensor_shape
=
tensor_shape
,
tensor_shape
=
tensor_shape
,
timers
=
timers
)
timers
=
timers
)
free_output_tensor
(
output_tensor
,
args
.
deallocate_pipeline_outputs
)
input_tensors
[
next_forward_model_chunk_id
].
append
(
input_tensor
)
input_tensors
[
next_forward_model_chunk_id
].
append
(
input_tensor
)
# >>>
pax
({
"output_tensor"
:
output_tensor
})
# <<<
free_output_tensor
(
output_tensor
)
# Run 1F1B in steady state.
# Run 1F1B in steady state.
for
k
in
range
(
num_microbatches_remaining
):
for
k
in
range
(
num_microbatches_remaining
):
...
@@ -496,7 +492,7 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterat
...
@@ -496,7 +492,7 @@ def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterat
output_tensor
,
input_tensor_grad
,
output_tensor
,
input_tensor_grad
,
recv_prev
=
recv_prev
,
recv_next
=
recv_next
,
recv_prev
=
recv_prev
,
recv_next
=
recv_next
,
tensor_shape
=
tensor_shape
,
timers
=
timers
)
tensor_shape
=
tensor_shape
,
timers
=
timers
)
free_output_tensor
(
output_tensor
,
args
.
deallocate_pipeline_outputs
)
free_output_tensor
(
output_tensor
)
# Put input_tensor and output_tensor_grad in data structures in the
# Put input_tensor and output_tensor_grad in data structures in the
# right location.
# right location.
...
@@ -672,10 +668,7 @@ def forward_backward_pipelining_without_interleaving(forward_step_func, data_ite
...
@@ -672,10 +668,7 @@ def forward_backward_pipelining_without_interleaving(forward_step_func, data_ite
if
not
forward_only
:
if
not
forward_only
:
input_tensors
.
append
(
input_tensor
)
input_tensors
.
append
(
input_tensor
)
output_tensors
.
append
(
output_tensor
)
output_tensors
.
append
(
output_tensor
)
# >>>
free_output_tensor
(
output_tensor
[
0
])
# pax(2, {"output_tensor": output_tensor})
# <<<
free_output_tensor
(
output_tensor
[
0
],
args
.
deallocate_pipeline_outputs
)
# Before running 1F1B, need to receive first forward tensor.
# Before running 1F1B, need to receive first forward tensor.
# If all microbatches are run in warmup / cooldown phase, then no need to
# If all microbatches are run in warmup / cooldown phase, then no need to
...
@@ -704,14 +697,7 @@ def forward_backward_pipelining_without_interleaving(forward_step_func, data_ite
...
@@ -704,14 +697,7 @@ def forward_backward_pipelining_without_interleaving(forward_step_func, data_ite
# Add input_tensor and output_tensor to end of list.
# Add input_tensor and output_tensor to end of list.
input_tensors
.
append
(
input_tensor
)
input_tensors
.
append
(
input_tensor
)
output_tensors
.
append
(
output_tensor
)
output_tensors
.
append
(
output_tensor
)
# >>>
free_output_tensor
(
output_tensor
[
0
])
# if torch.distributed.get_rank() == 3:
# pax({"output_tensor": output_tensor})
# <<<
# >>>
# free_output_tensor(output_tensor, args.deallocate_pipeline_outputs)
free_output_tensor
(
output_tensor
[
0
],
args
.
deallocate_pipeline_outputs
)
# <<<
# Pop input_tensor and output_tensor from the start of the list for
# Pop input_tensor and output_tensor from the start of the list for
# the backward pass.
# the backward pass.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment