schedules.py 24.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
from contextlib import contextmanager
17
import torch
18
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
19
20

from megatron import get_args
21
from megatron import get_num_microbatches
22
23
from megatron import get_timers
from megatron import mpu
24
from megatron import p2p_communication
25
26
27
from megatron.utils import unwrap_model
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module
28
29
from megatron.model import ModelType

30

Jared Casper's avatar
Jared Casper committed
31
32
33
34
35
def get_forward_backward_func():
    args = get_args()
    if mpu.get_pipeline_model_parallel_world_size() > 1:
        if args.virtual_pipeline_model_parallel_size is not None:
            forward_backward_func = forward_backward_pipelining_with_interleaving
36
37
38
            assert get_num_microbatches() % args.pipeline_model_parallel_size == 0, \
                'number of microbatches is not divisible by pipeline-parallel ' \
                'size when using interleaved schedule'
Jared Casper's avatar
Jared Casper committed
39
40
41
42
43
44
45
        else:
            forward_backward_func = forward_backward_pipelining_without_interleaving
    else:
        forward_backward_func = forward_backward_no_pipelining
    return forward_backward_func


46
def forward_step(forward_step_func, data_iterator, model, input_tensor, losses_reduced):
47
48
49
50
51
52
    """Forward step for passed-in model.

    If first stage, input tensor is obtained from data_iterator, otherwise
    passed-in input_tensor is used.

    Returns output tensor."""
53
    args = get_args()
54
55
56
    timers = get_timers()

    timers('forward-compute').start()
57
58
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
59
60
61
62
63
64

    unwrap_output_tensor = False
    if not isinstance(input_tensor, list):
        input_tensor = [input_tensor]
        unwrap_output_tensor = True

65
    unwrapped_model.set_input_tensor(input_tensor)
66
    output_tensor, loss_func = forward_step_func(data_iterator, model)
67
    if mpu.is_pipeline_last_stage():
68
        output_tensor = loss_func(output_tensor)
69
70
71
72
73
        loss, loss_reduced = output_tensor
        output_tensor = loss / get_num_microbatches()
        losses_reduced.append(loss_reduced)
    timers('forward-compute').stop()

74
75
76
    # If T5 model (or other model with encoder and decoder)
    # and in decoder stack, then send encoder_hidden_state
    # downstream as well.
77
78
79
80
81
82
    if mpu.is_pipeline_stage_after_split() and \
            args.model_type == ModelType.encoder_and_decoder:
        return [output_tensor, input_tensor[-1]]
    if unwrap_output_tensor:
        return output_tensor
    return [output_tensor]
83
84
85


def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad):
86
87
88
89
90
91
92
    """Backward step through passed-in output tensor.

    If last stage, output_tensor_grad is None, otherwise gradient of loss
    with respect to stage's output tensor.

    Returns gradient of loss with respect to input tensor (None if first
    stage)."""
93
94
95
96

    # NOTE: This code currently can handle at most one skip connection. It
    # needs to be modified slightly to support arbitrary numbers of skip
    # connections.
97
98
99
100
101
102
    args = get_args()

    timers = get_timers()
    timers('backward-compute').start()

    # Retain the grad on the input_tensor.
103
104
105
106
107
108
109
110
111
112
113
114
    unwrap_input_tensor_grad = False
    if not isinstance(input_tensor, list):
        input_tensor = [input_tensor]
        unwrap_input_tensor_grad = True
    for x in input_tensor:
        if x is not None:
            x.retain_grad()

    if not isinstance(output_tensor, list):
        output_tensor = [output_tensor]
    if not isinstance(output_tensor_grad, list):
        output_tensor_grad = [output_tensor_grad]
115
116

    # Backward pass.
117
118
119
    if output_tensor_grad[0] is None:
        output_tensor = optimizer.scale_loss(output_tensor[0])
    torch.autograd.backward(output_tensor[0], grad_tensors=output_tensor_grad[0])
120
121

    # Collect the grad of the input_tensor.
122
    input_tensor_grad = [None]
123
    if input_tensor is not None:
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
        input_tensor_grad = []
        for x in input_tensor:
            if x is None:
                input_tensor_grad.append(None)
            else:
                input_tensor_grad.append(x.grad)

    # Handle single skip connection if it exists (encoder_hidden_state in
    # model with encoder and decoder).
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
            mpu.is_pipeline_stage_after_split() and \
            args.model_type == ModelType.encoder_and_decoder:
        if output_tensor_grad[1] is not None:
            input_tensor_grad[-1].add_(output_tensor_grad[1])
    if unwrap_input_tensor_grad:
        input_tensor_grad = input_tensor_grad[0]
140
141
142
143
144
145

    timers('backward-compute').stop()

    return input_tensor_grad


146
147
148
149
150
151
152
153
@contextmanager
def dummy_handler():
    try:
        yield
    finally:
        pass


154
155
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers, forward_only):
156
157
158
159
    """Run forward and backward passes with no pipeline parallelism
    (no inter-stage communication).

    Returns dictionary with losses."""
160
161
162
    assert len(model) == 1
    model = model[0]

163
164
165
166
    context_handler = dummy_handler
    if isinstance(model, torchDDP):
        context_handler = model.no_sync

167
    losses_reduced = []
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
    input_tensor, output_tensor_grad = None, None
    with context_handler():
        for i in range(get_num_microbatches() - 1):
            output_tensor = forward_step(forward_step_func, data_iterator, model,
                                         input_tensor, losses_reduced)
            if not forward_only:
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

    # Run computation for last microbatch out of context handler (want to
    # synchronize gradients).
    output_tensor = forward_step(forward_step_func, data_iterator, model,
                                 input_tensor, losses_reduced)
    if not forward_only:
        backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad)
183
184
185
186
187
188

    return losses_reduced


def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterator, model,
                                                  optimizer, timers, forward_only):
189
190
191
192
    """Run interleaved 1F1B schedule (model split into model chunks), with
    communication between pipeline stages as needed.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
193
194
195
196
197
198
199
    input_tensors = [[] for _ in range(len(model))]
    output_tensors = [[] for _ in range(len(model))]
    losses_reduced = []
    if not forward_only:
        output_tensor_grads = [[] for _ in range(len(model))]

    pipeline_parallel_size = mpu.get_pipeline_model_parallel_world_size()
200
    pipeline_parallel_rank = mpu.get_pipeline_model_parallel_rank()
201

202
203
204
    args = get_args()
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)

205
206
207
208
209
210
211
    # Compute number of warmup and remaining microbatches.
    num_model_chunks = len(model)
    num_microbatches = get_num_microbatches() * num_model_chunks
    all_warmup_microbatches = False
    if forward_only:
        num_warmup_microbatches = num_microbatches
    else:
212
213
214
215
216
217
        # Run all forward passes and then all backward passes if number of
        # microbatches is just the number of pipeline stages.
        # Otherwise, perform (num_model_chunks-1)*pipeline_parallel_size on
        # all workers, followed by more microbatches after depending on
        # stage ID (more forward passes for earlier stages, later stages can
        # immediately start with 1F1B).
218
219
220
221
222
        if get_num_microbatches() == pipeline_parallel_size:
            num_warmup_microbatches = num_microbatches
            all_warmup_microbatches = True
        else:
            num_warmup_microbatches = \
223
                (pipeline_parallel_size - pipeline_parallel_rank - 1) * 2
224
225
226
227
            num_warmup_microbatches += (
                num_model_chunks - 1) * pipeline_parallel_size
            num_warmup_microbatches = min(num_warmup_microbatches,
                                          num_microbatches)
228
229
230
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

231
    def get_model_chunk_id(microbatch_id, forward):
232
        """Helper method to get the model chunk ID given the iteration number."""
233
234
        microbatch_id_in_group = microbatch_id % (pipeline_parallel_size * num_model_chunks)
        model_chunk_id = microbatch_id_in_group // pipeline_parallel_size
235
        if not forward:
236
237
            model_chunk_id = (num_model_chunks - model_chunk_id - 1)
        return model_chunk_id
238

239
    def forward_step_helper(microbatch_id):
240
241
242
        """Helper method to run forward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        forward_step())."""
243
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=True)
244
245
246
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        if mpu.is_pipeline_first_stage():
247
248
            if len(input_tensors[model_chunk_id]) == \
                    len(output_tensors[model_chunk_id]):
249
250
                input_tensors[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id][-1]
251
252
        output_tensor = forward_step(forward_step_func,
                                     data_iterator[model_chunk_id],
253
254
255
256
257
258
                                     model[model_chunk_id],
                                     input_tensor, losses_reduced)
        output_tensors[model_chunk_id].append(output_tensor)

        return output_tensor

259
    def backward_step_helper(microbatch_id):
260
261
262
        """Helper method to run backward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        backward_step())."""
263
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=False)
264
265
266
267
268
269
270
271
272
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        if mpu.is_pipeline_last_stage():
            if len(output_tensor_grads[model_chunk_id]) == 0:
                output_tensor_grads[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id].pop(0)
        output_tensor = output_tensors[model_chunk_id].pop(0)
        output_tensor_grad = output_tensor_grads[model_chunk_id].pop(0)
        input_tensor_grad = \
273
274
275
276
            backward_step(optimizer,
                          input_tensor,
                          output_tensor,
                          output_tensor_grad)
277
278
279
280
281

        return input_tensor_grad

    # Run warmup forward passes.
    mpu.set_virtual_pipeline_model_parallel_rank(0)
282
    input_tensors[0].append(
283
        p2p_communication.recv_forward(tensor_shape, timers=timers))
284
285
    for k in range(num_warmup_microbatches):
        output_tensor = forward_step_helper(k)
286
287

        # Determine if tensor should be received from previous stage.
288
289
290
291
292
293
294
        next_forward_model_chunk_id = get_model_chunk_id(k+1, forward=True)
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            if next_forward_model_chunk_id == 0:
                recv_prev = False
        if k == (num_microbatches - 1):
            recv_prev = False
295
296

        # Don't send tensor downstream if on last stage.
297
298
        if mpu.is_pipeline_last_stage():
            output_tensor = None
299
300
301

        # Send and receive tensors as appropriate (send tensors computed
        # in this iteration; receive tensors for next iteration).
302
303
304
305
306
307
308
        if k == (num_warmup_microbatches - 1) and not forward_only and \
                not all_warmup_microbatches:
            input_tensor_grad = None
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                recv_next = False
            input_tensor, output_tensor_grad = \
309
                p2p_communication.send_forward_backward_recv_forward_backward(
310
311
                        output_tensor, input_tensor_grad,
                        recv_prev=recv_prev, recv_next=recv_next,
312
                        tensor_shape=tensor_shape,
313
314
315
                        timers=timers)
            output_tensor_grads[num_model_chunks-1].append(output_tensor_grad)
        else:
316
            input_tensor = \
317
                p2p_communication.send_forward_recv_forward(
318
319
320
                    output_tensor, recv_prev=recv_prev,
                    tensor_shape=tensor_shape,
                    timers=timers)
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
        input_tensors[next_forward_model_chunk_id].append(input_tensor)

    # Run 1F1B in steady state.
    for k in range(num_microbatches_remaining):
        # Forward pass.
        forward_k = k + num_warmup_microbatches
        output_tensor = forward_step_helper(forward_k)

        # Backward pass.
        backward_k = k
        input_tensor_grad = backward_step_helper(backward_k)

        # Send output_tensor and input_tensor_grad, receive input_tensor
        # and output_tensor_grad.

        # Determine if current stage has anything to send in either direction,
        # otherwise set tensor to None.
        forward_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
        mpu.set_virtual_pipeline_model_parallel_rank(forward_model_chunk_id)
        if mpu.is_pipeline_last_stage():
            output_tensor = None

        backward_model_chunk_id = get_model_chunk_id(backward_k, forward=False)
        mpu.set_virtual_pipeline_model_parallel_rank(backward_model_chunk_id)
        if mpu.is_pipeline_first_stage():
            input_tensor_grad = None

        # Determine if peers are sending, and where in data structure to put
        # received tensors.
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            # First stage is ahead of last stage by (pipeline_parallel_size - 1).
            next_forward_model_chunk_id = get_model_chunk_id(
                forward_k - (pipeline_parallel_size - 1), forward=True)
            if next_forward_model_chunk_id == (num_model_chunks - 1):
                recv_prev = False
            next_forward_model_chunk_id += 1
        else:
359
360
            next_forward_model_chunk_id = get_model_chunk_id(forward_k + 1,
                                                             forward=True)
361
362
363
364
365
366
367
368
369
370

        recv_next = True
        if mpu.is_pipeline_last_stage(ignore_virtual=True):
            # Last stage is ahead of first stage by (pipeline_parallel_size - 1).
            next_backward_model_chunk_id = get_model_chunk_id(
                backward_k - (pipeline_parallel_size - 1), forward=False)
            if next_backward_model_chunk_id == 0:
                recv_next = False
            next_backward_model_chunk_id -= 1
        else:
371
372
            next_backward_model_chunk_id = get_model_chunk_id(backward_k + 1,
                                                              forward=False)
373

374
375
        # If last iteration, don't receive; we already received one extra
        # before the start of the for loop.
376
377
378
379
380
        if k == (num_microbatches_remaining - 1):
            recv_prev = False

        # Communicate tensors.
        input_tensor, output_tensor_grad = \
381
            p2p_communication.send_forward_backward_recv_forward_backward(
382
383
                    output_tensor, input_tensor_grad,
                    recv_prev=recv_prev, recv_next=recv_next,
384
                    tensor_shape=tensor_shape, timers=timers)
385

386
387
        # Put input_tensor and output_tensor_grad in data structures in the
        # right location.
388
389
390
        if recv_prev:
            input_tensors[next_forward_model_chunk_id].append(input_tensor)
        if recv_next:
391
392
            output_tensor_grads[next_backward_model_chunk_id].append(
                output_tensor_grad)
393

394
    # Run cooldown backward passes (flush out pipeline).
395
396
397
    if not forward_only:
        if all_warmup_microbatches:
            output_tensor_grads[num_model_chunks-1].append(
398
                p2p_communication.recv_backward(tensor_shape, timers=timers))
399
400
401
402
403
404
405
406
407
408
        for k in range(num_microbatches_remaining, num_microbatches):
            input_tensor_grad = backward_step_helper(k)
            next_backward_model_chunk_id = get_model_chunk_id(k+1, forward=False)
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                if next_backward_model_chunk_id == (num_model_chunks - 1):
                    recv_next = False
            if k == (num_microbatches - 1):
                recv_next = False
            output_tensor_grads[next_backward_model_chunk_id].append(
409
                p2p_communication.send_backward_recv_backward(
410
411
412
                    input_tensor_grad, recv_next=recv_next,
                    tensor_shape=tensor_shape,
                    timers=timers))
413
414
415
416

    return losses_reduced


417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
def get_tensor_shapes(rank, model_type):
    # Determine right tensor sizes (based on position of rank with respect to split
    # rank) and model size.
    # Send two tensors if model is T5 and rank is in decoder stage:
    #     first tensor is decoder (pre-transpose),
    #     second tensor is encoder (post-transpose).
    # If model is T5 and rank is at the boundary:
    #     send one tensor (post-transpose from encoder).
    # Otherwise, send one tensor (pre-transpose).
    args = get_args()
    tensor_shapes = []
    if model_type == ModelType.encoder_and_decoder:
        if mpu.is_pipeline_stage_before_split(rank):
            # If next rank is after split, then need transpose for encoder_hidden_state.
            if mpu.is_pipeline_stage_before_split(rank+1):
                tensor_shapes.append((args.seq_length, args.micro_batch_size, args.hidden_size))
            else:
                tensor_shapes.append((args.micro_batch_size, args.seq_length, args.hidden_size))
        else:
            tensor_shapes.append((args.decoder_seq_length, args.micro_batch_size, args.hidden_size))
            tensor_shapes.append((args.micro_batch_size, args.seq_length, args.hidden_size))
    else:
        tensor_shapes.append((args.seq_length, args.micro_batch_size, args.hidden_size))
    return tensor_shapes


def recv_forward(tensor_shapes, timers):
    input_tensors = []
    for tensor_shape in tensor_shapes:
        if tensor_shape is None:
            input_tensors.append(None)
        else:
            input_tensors.append(p2p_communication.recv_forward(tensor_shape,
                                                                timers=timers))
    return input_tensors


def recv_backward(tensor_shapes, timers):
    output_tensor_grads = []
    for tensor_shape in tensor_shapes:
        if tensor_shape is None:
            output_tensor_grads.append(None)
        else:
            output_tensor_grads.append(p2p_communication.recv_backward(tensor_shape,
                                                                       timers=timers))
    return output_tensor_grads


def send_forward(output_tensors, tensor_shapes, timers):
    if not isinstance(output_tensors, list):
        output_tensors = [output_tensors]
    for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
        if tensor_shape is None:
            continue
        p2p_communication.send_forward(output_tensor, tensor_shape, timers=timers)


def send_backward(input_tensor_grads, tensor_shapes, timers):
    if not isinstance(input_tensor_grads, list):
        input_tensor_grads = [input_tensor_grads]
    for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
        if tensor_shape is None:
            continue
        p2p_communication.send_backward(input_tensor_grad, tensor_shape, timers=timers)


def send_forward_recv_backward(output_tensors, tensor_shapes, timers):
    if not isinstance(output_tensors, list):
        output_tensors = [output_tensors]
    output_tensor_grads = []
    for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
        if tensor_shape is None:
            output_tensor_grads.append(None)
            continue
        output_tensor_grad = p2p_communication.send_forward_recv_backward(
                output_tensor, tensor_shape, timers=timers)
        output_tensor_grads.append(output_tensor_grad)
    return output_tensor_grads


def send_backward_recv_forward(input_tensor_grads, tensor_shapes, timers):
    if not isinstance(input_tensor_grads, list):
        input_tensor_grads = [input_tensor_grads]
    input_tensors = []
    for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
        if tensor_shape is None:
            input_tensors.append(None)
            continue
        input_tensor = p2p_communication.send_backward_recv_forward(
                input_tensor_grad, tensor_shape, timers=timers)
        input_tensors.append(input_tensor)
    return input_tensors


511
512
513
def forward_backward_pipelining_without_interleaving(forward_step_func, data_iterator,
                                                     model, optimizer, timers,
                                                     forward_only):
514
515
516
517
    """Run non-interleaved 1F1B schedule, with communication between pipeline
    stages.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
518
519
    timers = get_timers()

520
521
522
523
524
525
526
527
528
529
530
531
532
533
    assert len(model) == 1
    model = model[0]

    # Compute number of warmup microbatches.
    num_microbatches = get_num_microbatches()
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

534
535
536
537
538
539
540
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
    model_type = unwrapped_model.model_type
    rank = mpu.get_pipeline_model_parallel_rank()
    recv_tensor_shapes = get_tensor_shapes(rank-1, model_type)
    send_tensor_shapes = get_tensor_shapes(rank, model_type)

541
542
543
544
545
546
    input_tensors = []
    output_tensors = []
    losses_reduced = []

    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
547
        input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
548
549
        output_tensor = forward_step(forward_step_func, data_iterator, model,
                                     input_tensor, losses_reduced)
550
        send_forward(output_tensor, send_tensor_shapes, timers=timers)
551
552
553
554
555
556
557
558

        input_tensors.append(input_tensor)
        output_tensors.append(output_tensor)

    # Before running 1F1B, need to receive first forward tensor.
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
    if num_microbatches_remaining > 0:
559
        input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
560
561
562
563
564
565
566
567

    # Run 1F1B in steady state.
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))

        output_tensor = forward_step(forward_step_func, data_iterator, model,
                                     input_tensor, losses_reduced)
        if forward_only:
568
            send_forward(output_tensor, send_tensor_shapes, timers=timers)
569
        else:
570
            output_tensor_grad = \
571
572
573
                send_forward_recv_backward(output_tensor,
                                           send_tensor_shapes,
                                           timers=timers)
574
575
576
577
578
579
580
        # Add input_tensor and output_tensor to end of list, then pop from the
        # start of the list for backward pass.
        input_tensors.append(input_tensor)
        output_tensors.append(output_tensor)

        if forward_only:
            if not last_iteration:
581
                input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
582
583
584
585
586
587
588
589
590
        else:
            input_tensor, output_tensor = input_tensors.pop(0), output_tensors.pop(0)

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

            if last_iteration:
                input_tensor = None
591
                send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
592
            else:
593
                input_tensor = \
594
595
                    send_backward_recv_forward(
                        input_tensor_grad, recv_tensor_shapes, timers=timers)
596
597
598
599
600
601
602

    # Run cooldown backward passes.
    if not forward_only:
        for i in range(num_warmup_microbatches):
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)

603
            output_tensor_grad = recv_backward(send_tensor_shapes, timers=timers)
604
605
606
607
608

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

609
            send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
610
611

    return losses_reduced