schedules.py 29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
from contextlib import contextmanager
17
import torch
18
from torch.autograd.variable import Variable
19
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
20
21

from megatron import get_args
22
from megatron import get_num_microbatches
23
24
from megatron import get_timers
from megatron import mpu
25
from megatron import p2p_communication
26
27
28
from megatron.utils import unwrap_model
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module
29
30
from megatron.model import ModelType

31
32
33
34
# >>>
from lutil import pax, tp, KEY_RANK
# <<<

Jared Casper's avatar
Jared Casper committed
35
36
37
38
39
def get_forward_backward_func():
    args = get_args()
    if mpu.get_pipeline_model_parallel_world_size() > 1:
        if args.virtual_pipeline_model_parallel_size is not None:
            forward_backward_func = forward_backward_pipelining_with_interleaving
40
41
42
            assert get_num_microbatches() % args.pipeline_model_parallel_size == 0, \
                'number of microbatches is not divisible by pipeline-parallel ' \
                'size when using interleaved schedule'
Jared Casper's avatar
Jared Casper committed
43
44
45
46
47
48
        else:
            forward_backward_func = forward_backward_pipelining_without_interleaving
    else:
        forward_backward_func = forward_backward_no_pipelining
    return forward_backward_func

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# >>>
# def free_output_tensor(output_tensors, deallocate_pipeline_outputs):
#     '''Pseudo-free (i.e., set to scalar) the output tensor's '.data' field.

#     This method should be called right after the output tensor has been
#     sent to the next pipeline stage. At this point, the output tensor is
#     only useful for its '.grad_fn' field, and not its '.data'.
#     '''
#     # >>>
#     # raise Exception("hi.")
#     # <<<
#     if not deallocate_pipeline_outputs or output_tensors is None:
#         return
#     if isinstance(output_tensors, torch.Tensor):
#         output_tensors = [output_tensors]
#     for output_tensor in output_tensors:
#         # >>>
#         # if output_tensor.nelement() < 10:
#         #     # raise Exception("interesting.")
#         #     continue
#         # <<<
#         # >>>
#         # output_tensor.data = torch.cuda.FloatTensor([0])
#         output_tensor.data = torch.empty(
#             (1,),
#             device = torch.cuda.current_device(),
#             dtype = output_tensor.dtype,
#         )
#         # <<<
# <<<
79
def free_output_tensor(out):
80
81
82
83
84
85
    '''Pseudo-free (i.e., set to scalar) the output tensor's '.data' field.

    This method should be called right after the output tensor has been
    sent to the next pipeline stage. At this point, the output tensor is
    only useful for its '.grad_fn' field, and not its '.data'.
    '''
86
87
88
89
90
91
92
93
94
    assert isinstance(out, torch.Tensor), \
        "expected Tensor, found %s." % type(out).__name__
    assert out._base is None, \
        "counter-productive to free a view of another tensor."
    out.data = torch.empty(
        (1,),
        device = out.device,
        dtype = out.dtype,
    )
95
        
96
def custom_backward(output, grad_output):
97
98
99
100
101
102
103
    '''Directly call C++ autograd engine.

    To make the 'free_output_tensor' (above) optimization work, the C++
    autograd engine must be called directly, bypassing Pytorch's
    torch.autograd.backward. Pytorch's 'backward' checks that the output and
    grad have the same shape, while C++'s 'backward' does not.
    '''
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

    assert output.numel() == 1, \
        "output should be pseudo-'freed' in schedule, to optimize memory"
    assert isinstance(output, torch.Tensor), \
        "output == '%s'." % type(output).__name__
    assert isinstance(grad_output, (torch.Tensor, type(None))), \
        "grad_output == '%s'." % type(grad_output).__name__

    # Handle scalar output
    if grad_output is None:
        assert output.numel() == 1, "implicit grad requires scalar output."
        grad_output = torch.ones_like(
            output,
            memory_format = torch.preserve_format,
        )

    # Call c++ engine [ see torch/csrc/autograd/python_engine.cpp ]
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
    # >>>
    try:
        Variable._execution_engine.run_backward(
            tensors = (output,),
            grad_tensors = (grad_output,),
            keep_graph = False,
            create_graph = False,
            inputs = tuple(),
            allow_unreachable=True,
            accumulate_grad=True,
        )
    except Exception as e:
        print(">>>> rank = %d. <<<<" % torch.distributed.get_rank())
        raise e
    # <<<
        
Jared Casper's avatar
Jared Casper committed
137

138
def forward_step(forward_step_func, data_iterator, model, input_tensor, losses_reduced):
139
140
141
142
143
144
    """Forward step for passed-in model.

    If first stage, input tensor is obtained from data_iterator, otherwise
    passed-in input_tensor is used.

    Returns output tensor."""
145
    args = get_args()
146
147
148
    timers = get_timers()

    timers('forward-compute').start()
149
150
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
151
152
153
154
155
156

    unwrap_output_tensor = False
    if not isinstance(input_tensor, list):
        input_tensor = [input_tensor]
        unwrap_output_tensor = True

157
    unwrapped_model.set_input_tensor(input_tensor)
158
    output_tensor, loss_func = forward_step_func(data_iterator, model)
159
    if mpu.is_pipeline_last_stage():
160
        output_tensor = loss_func(output_tensor)
161
162
163
164
165
        loss, loss_reduced = output_tensor
        output_tensor = loss / get_num_microbatches()
        losses_reduced.append(loss_reduced)
    timers('forward-compute').stop()

166
167
168
169
170
171
172
173
    # >>>
    # if torch.distributed.get_rank() == 4:
    #     pax(4, {
    #         "output_tensor" : tp(output_tensor),
    #         "input_tensor[-1]" : tp(input_tensor[-1]),
    #     })
    # <<<

174
175
176
    # If T5 model (or other model with encoder and decoder)
    # and in decoder stack, then send encoder_hidden_state
    # downstream as well.
177
178
179
180
181
182
    if mpu.is_pipeline_stage_after_split() and \
            args.model_type == ModelType.encoder_and_decoder:
        return [output_tensor, input_tensor[-1]]
    if unwrap_output_tensor:
        return output_tensor
    return [output_tensor]
183
184
185


def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad):
186
187
188
189
190
191
192
    """Backward step through passed-in output tensor.

    If last stage, output_tensor_grad is None, otherwise gradient of loss
    with respect to stage's output tensor.

    Returns gradient of loss with respect to input tensor (None if first
    stage)."""
193
194
195
196

    # NOTE: This code currently can handle at most one skip connection. It
    # needs to be modified slightly to support arbitrary numbers of skip
    # connections.
197
198
199
200
201
202
    args = get_args()

    timers = get_timers()
    timers('backward-compute').start()

    # Retain the grad on the input_tensor.
203
204
205
206
207
208
209
210
211
212
213
214
    unwrap_input_tensor_grad = False
    if not isinstance(input_tensor, list):
        input_tensor = [input_tensor]
        unwrap_input_tensor_grad = True
    for x in input_tensor:
        if x is not None:
            x.retain_grad()

    if not isinstance(output_tensor, list):
        output_tensor = [output_tensor]
    if not isinstance(output_tensor_grad, list):
        output_tensor_grad = [output_tensor_grad]
215
216

    # Backward pass.
217
218
    if output_tensor_grad[0] is None:
        output_tensor = optimizer.scale_loss(output_tensor[0])
219
    custom_backward(output_tensor[0], output_tensor_grad[0])
220
221

    # Collect the grad of the input_tensor.
222
    input_tensor_grad = [None]
223
    if input_tensor is not None:
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        input_tensor_grad = []
        for x in input_tensor:
            if x is None:
                input_tensor_grad.append(None)
            else:
                input_tensor_grad.append(x.grad)

    # Handle single skip connection if it exists (encoder_hidden_state in
    # model with encoder and decoder).
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
            mpu.is_pipeline_stage_after_split() and \
            args.model_type == ModelType.encoder_and_decoder:
        if output_tensor_grad[1] is not None:
            input_tensor_grad[-1].add_(output_tensor_grad[1])
    if unwrap_input_tensor_grad:
        input_tensor_grad = input_tensor_grad[0]
240
241
242
243
244
245

    timers('backward-compute').stop()

    return input_tensor_grad


246
247
248
249
250
251
252
253
@contextmanager
def dummy_handler():
    try:
        yield
    finally:
        pass


254
255
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers, forward_only):
256
257
258
259
    """Run forward and backward passes with no pipeline parallelism
    (no inter-stage communication).

    Returns dictionary with losses."""
260
261
262
    assert len(model) == 1
    model = model[0]

263
264
265
266
    context_handler = dummy_handler
    if isinstance(model, torchDDP):
        context_handler = model.no_sync

267
    losses_reduced = []
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
    input_tensor, output_tensor_grad = None, None
    with context_handler():
        for i in range(get_num_microbatches() - 1):
            output_tensor = forward_step(forward_step_func, data_iterator, model,
                                         input_tensor, losses_reduced)
            if not forward_only:
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

    # Run computation for last microbatch out of context handler (want to
    # synchronize gradients).
    output_tensor = forward_step(forward_step_func, data_iterator, model,
                                 input_tensor, losses_reduced)
    if not forward_only:
        backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad)
283
284
285
286
287
288

    return losses_reduced


def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterator, model,
                                                  optimizer, timers, forward_only):
289
290
291
292
    """Run interleaved 1F1B schedule (model split into model chunks), with
    communication between pipeline stages as needed.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
293
294
295
296
297
298
299
    input_tensors = [[] for _ in range(len(model))]
    output_tensors = [[] for _ in range(len(model))]
    losses_reduced = []
    if not forward_only:
        output_tensor_grads = [[] for _ in range(len(model))]

    pipeline_parallel_size = mpu.get_pipeline_model_parallel_world_size()
300
    pipeline_parallel_rank = mpu.get_pipeline_model_parallel_rank()
301

302
303
304
    args = get_args()
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)

305
306
307
308
309
310
311
    # Compute number of warmup and remaining microbatches.
    num_model_chunks = len(model)
    num_microbatches = get_num_microbatches() * num_model_chunks
    all_warmup_microbatches = False
    if forward_only:
        num_warmup_microbatches = num_microbatches
    else:
312
313
314
315
316
317
        # Run all forward passes and then all backward passes if number of
        # microbatches is just the number of pipeline stages.
        # Otherwise, perform (num_model_chunks-1)*pipeline_parallel_size on
        # all workers, followed by more microbatches after depending on
        # stage ID (more forward passes for earlier stages, later stages can
        # immediately start with 1F1B).
318
319
320
321
322
        if get_num_microbatches() == pipeline_parallel_size:
            num_warmup_microbatches = num_microbatches
            all_warmup_microbatches = True
        else:
            num_warmup_microbatches = \
323
                (pipeline_parallel_size - pipeline_parallel_rank - 1) * 2
324
325
326
327
            num_warmup_microbatches += (
                num_model_chunks - 1) * pipeline_parallel_size
            num_warmup_microbatches = min(num_warmup_microbatches,
                                          num_microbatches)
328
329
330
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

331
    def get_model_chunk_id(microbatch_id, forward):
332
        """Helper method to get the model chunk ID given the iteration number."""
333
334
        microbatch_id_in_group = microbatch_id % (pipeline_parallel_size * num_model_chunks)
        model_chunk_id = microbatch_id_in_group // pipeline_parallel_size
335
        if not forward:
336
337
            model_chunk_id = (num_model_chunks - model_chunk_id - 1)
        return model_chunk_id
338

339
    def forward_step_helper(microbatch_id):
340
341
342
        """Helper method to run forward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        forward_step())."""
343
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=True)
344
345
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

346
        # forward step
347
        if mpu.is_pipeline_first_stage():
348
349
            if len(input_tensors[model_chunk_id]) == \
                    len(output_tensors[model_chunk_id]):
350
351
                input_tensors[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id][-1]
352
353
        output_tensor = forward_step(forward_step_func,
                                     data_iterator[model_chunk_id],
354
355
356
357
                                     model[model_chunk_id],
                                     input_tensor, losses_reduced)
        output_tensors[model_chunk_id].append(output_tensor)

358
359
360
361
362
        # if forward-only, no need to save tensors for a backward pass
        if forward_only:
            input_tensors[model_chunk_id].pop()
            output_tensors[model_chunk_id].pop()

363
364
        return output_tensor

365
    def backward_step_helper(microbatch_id):
366
367
368
        """Helper method to run backward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        backward_step())."""
369
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=False)
370
371
372
373
374
375
376
377
378
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        if mpu.is_pipeline_last_stage():
            if len(output_tensor_grads[model_chunk_id]) == 0:
                output_tensor_grads[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id].pop(0)
        output_tensor = output_tensors[model_chunk_id].pop(0)
        output_tensor_grad = output_tensor_grads[model_chunk_id].pop(0)
        input_tensor_grad = \
379
380
381
382
            backward_step(optimizer,
                          input_tensor,
                          output_tensor,
                          output_tensor_grad)
383
384
385
386
387

        return input_tensor_grad

    # Run warmup forward passes.
    mpu.set_virtual_pipeline_model_parallel_rank(0)
388
    input_tensors[0].append(
389
        p2p_communication.recv_forward(tensor_shape, timers=timers))
390
391
    for k in range(num_warmup_microbatches):
        output_tensor = forward_step_helper(k)
392
393

        # Determine if tensor should be received from previous stage.
394
395
396
397
398
399
400
        next_forward_model_chunk_id = get_model_chunk_id(k+1, forward=True)
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            if next_forward_model_chunk_id == 0:
                recv_prev = False
        if k == (num_microbatches - 1):
            recv_prev = False
401
402

        # Don't send tensor downstream if on last stage.
403
404
        if mpu.is_pipeline_last_stage():
            output_tensor = None
405
406
407

        # Send and receive tensors as appropriate (send tensors computed
        # in this iteration; receive tensors for next iteration).
408
409
410
411
412
413
414
        if k == (num_warmup_microbatches - 1) and not forward_only and \
                not all_warmup_microbatches:
            input_tensor_grad = None
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                recv_next = False
            input_tensor, output_tensor_grad = \
415
                p2p_communication.send_forward_backward_recv_forward_backward(
416
417
                        output_tensor, input_tensor_grad,
                        recv_prev=recv_prev, recv_next=recv_next,
418
                        tensor_shape=tensor_shape,
419
420
421
                        timers=timers)
            output_tensor_grads[num_model_chunks-1].append(output_tensor_grad)
        else:
422
            input_tensor = \
423
                p2p_communication.send_forward_recv_forward(
424
425
426
                    output_tensor, recv_prev=recv_prev,
                    tensor_shape=tensor_shape,
                    timers=timers)
427
        input_tensors[next_forward_model_chunk_id].append(input_tensor)
428
429
430
431
        # >>>
        pax({"output_tensor": output_tensor})
        # <<<
        free_output_tensor(output_tensor)
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468

    # Run 1F1B in steady state.
    for k in range(num_microbatches_remaining):
        # Forward pass.
        forward_k = k + num_warmup_microbatches
        output_tensor = forward_step_helper(forward_k)

        # Backward pass.
        backward_k = k
        input_tensor_grad = backward_step_helper(backward_k)

        # Send output_tensor and input_tensor_grad, receive input_tensor
        # and output_tensor_grad.

        # Determine if current stage has anything to send in either direction,
        # otherwise set tensor to None.
        forward_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
        mpu.set_virtual_pipeline_model_parallel_rank(forward_model_chunk_id)
        if mpu.is_pipeline_last_stage():
            output_tensor = None

        backward_model_chunk_id = get_model_chunk_id(backward_k, forward=False)
        mpu.set_virtual_pipeline_model_parallel_rank(backward_model_chunk_id)
        if mpu.is_pipeline_first_stage():
            input_tensor_grad = None

        # Determine if peers are sending, and where in data structure to put
        # received tensors.
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            # First stage is ahead of last stage by (pipeline_parallel_size - 1).
            next_forward_model_chunk_id = get_model_chunk_id(
                forward_k - (pipeline_parallel_size - 1), forward=True)
            if next_forward_model_chunk_id == (num_model_chunks - 1):
                recv_prev = False
            next_forward_model_chunk_id += 1
        else:
469
470
            next_forward_model_chunk_id = get_model_chunk_id(forward_k + 1,
                                                             forward=True)
471
472
473
474
475
476
477
478
479
480

        recv_next = True
        if mpu.is_pipeline_last_stage(ignore_virtual=True):
            # Last stage is ahead of first stage by (pipeline_parallel_size - 1).
            next_backward_model_chunk_id = get_model_chunk_id(
                backward_k - (pipeline_parallel_size - 1), forward=False)
            if next_backward_model_chunk_id == 0:
                recv_next = False
            next_backward_model_chunk_id -= 1
        else:
481
482
            next_backward_model_chunk_id = get_model_chunk_id(backward_k + 1,
                                                              forward=False)
483

484
485
        # If last iteration, don't receive; we already received one extra
        # before the start of the for loop.
486
487
488
489
490
        if k == (num_microbatches_remaining - 1):
            recv_prev = False

        # Communicate tensors.
        input_tensor, output_tensor_grad = \
491
            p2p_communication.send_forward_backward_recv_forward_backward(
492
493
                    output_tensor, input_tensor_grad,
                    recv_prev=recv_prev, recv_next=recv_next,
494
                    tensor_shape=tensor_shape, timers=timers)
495
        free_output_tensor(output_tensor)
496

497
498
        # Put input_tensor and output_tensor_grad in data structures in the
        # right location.
499
500
501
        if recv_prev:
            input_tensors[next_forward_model_chunk_id].append(input_tensor)
        if recv_next:
502
503
            output_tensor_grads[next_backward_model_chunk_id].append(
                output_tensor_grad)
504

505
    # Run cooldown backward passes (flush out pipeline).
506
507
508
    if not forward_only:
        if all_warmup_microbatches:
            output_tensor_grads[num_model_chunks-1].append(
509
                p2p_communication.recv_backward(tensor_shape, timers=timers))
510
511
512
513
514
515
516
517
518
519
        for k in range(num_microbatches_remaining, num_microbatches):
            input_tensor_grad = backward_step_helper(k)
            next_backward_model_chunk_id = get_model_chunk_id(k+1, forward=False)
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                if next_backward_model_chunk_id == (num_model_chunks - 1):
                    recv_next = False
            if k == (num_microbatches - 1):
                recv_next = False
            output_tensor_grads[next_backward_model_chunk_id].append(
520
                p2p_communication.send_backward_recv_backward(
521
522
523
                    input_tensor_grad, recv_next=recv_next,
                    tensor_shape=tensor_shape,
                    timers=timers))
524
525
526
527

    return losses_reduced


528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
def get_tensor_shapes(rank, model_type):
    # Determine right tensor sizes (based on position of rank with respect to split
    # rank) and model size.
    # Send two tensors if model is T5 and rank is in decoder stage:
    #     first tensor is decoder (pre-transpose),
    #     second tensor is encoder (post-transpose).
    # If model is T5 and rank is at the boundary:
    #     send one tensor (post-transpose from encoder).
    # Otherwise, send one tensor (pre-transpose).
    args = get_args()
    tensor_shapes = []
    if model_type == ModelType.encoder_and_decoder:
        if mpu.is_pipeline_stage_before_split(rank):
            # If next rank is after split, then need transpose for encoder_hidden_state.
            if mpu.is_pipeline_stage_before_split(rank+1):
                tensor_shapes.append((args.seq_length, args.micro_batch_size, args.hidden_size))
            else:
                tensor_shapes.append((args.micro_batch_size, args.seq_length, args.hidden_size))
        else:
            tensor_shapes.append((args.decoder_seq_length, args.micro_batch_size, args.hidden_size))
            tensor_shapes.append((args.micro_batch_size, args.seq_length, args.hidden_size))
    else:
        tensor_shapes.append((args.seq_length, args.micro_batch_size, args.hidden_size))
    return tensor_shapes


def recv_forward(tensor_shapes, timers):
    input_tensors = []
    for tensor_shape in tensor_shapes:
        if tensor_shape is None:
            input_tensors.append(None)
        else:
            input_tensors.append(p2p_communication.recv_forward(tensor_shape,
                                                                timers=timers))
    return input_tensors


def recv_backward(tensor_shapes, timers):
    output_tensor_grads = []
    for tensor_shape in tensor_shapes:
        if tensor_shape is None:
            output_tensor_grads.append(None)
        else:
            output_tensor_grads.append(p2p_communication.recv_backward(tensor_shape,
                                                                       timers=timers))
    return output_tensor_grads


def send_forward(output_tensors, tensor_shapes, timers):
    if not isinstance(output_tensors, list):
        output_tensors = [output_tensors]
    for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
        if tensor_shape is None:
            continue
        p2p_communication.send_forward(output_tensor, tensor_shape, timers=timers)


def send_backward(input_tensor_grads, tensor_shapes, timers):
    if not isinstance(input_tensor_grads, list):
        input_tensor_grads = [input_tensor_grads]
    for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
        if tensor_shape is None:
            continue
        p2p_communication.send_backward(input_tensor_grad, tensor_shape, timers=timers)


def send_forward_recv_backward(output_tensors, tensor_shapes, timers):
    if not isinstance(output_tensors, list):
        output_tensors = [output_tensors]
    output_tensor_grads = []
    for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
        if tensor_shape is None:
            output_tensor_grads.append(None)
            continue
        output_tensor_grad = p2p_communication.send_forward_recv_backward(
                output_tensor, tensor_shape, timers=timers)
        output_tensor_grads.append(output_tensor_grad)
    return output_tensor_grads


def send_backward_recv_forward(input_tensor_grads, tensor_shapes, timers):
    if not isinstance(input_tensor_grads, list):
        input_tensor_grads = [input_tensor_grads]
    input_tensors = []
    for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
        if tensor_shape is None:
            input_tensors.append(None)
            continue
        input_tensor = p2p_communication.send_backward_recv_forward(
                input_tensor_grad, tensor_shape, timers=timers)
        input_tensors.append(input_tensor)
    return input_tensors


622
623
624
def forward_backward_pipelining_without_interleaving(forward_step_func, data_iterator,
                                                     model, optimizer, timers,
                                                     forward_only):
625
626
627
628
    """Run non-interleaved 1F1B schedule, with communication between pipeline
    stages.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
629
    args = get_args()
630
631
    timers = get_timers()

632
633
634
635
636
637
638
639
640
641
642
643
644
645
    assert len(model) == 1
    model = model[0]

    # Compute number of warmup microbatches.
    num_microbatches = get_num_microbatches()
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

646
647
648
649
650
651
652
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
    model_type = unwrapped_model.model_type
    rank = mpu.get_pipeline_model_parallel_rank()
    recv_tensor_shapes = get_tensor_shapes(rank-1, model_type)
    send_tensor_shapes = get_tensor_shapes(rank, model_type)

653
654
655
656
657
658
    # Input, output tensors only need to be saved when doing backward passes
    input_tensors = None
    output_tensors = None
    if not forward_only:
        input_tensors = []
        output_tensors = []
659
660
661
662
    losses_reduced = []

    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
663
        input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
664
665
        output_tensor = forward_step(forward_step_func, data_iterator, model,
                                     input_tensor, losses_reduced)
666
        send_forward(output_tensor, send_tensor_shapes, timers=timers)
667

668
669
670
        if not forward_only:
            input_tensors.append(input_tensor)
            output_tensors.append(output_tensor)
671
            free_output_tensor(output_tensor[0])
672
673
674
675
676

    # Before running 1F1B, need to receive first forward tensor.
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
    if num_microbatches_remaining > 0:
677
        input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
678
679
680
681
682
683
684
685

    # Run 1F1B in steady state.
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))

        output_tensor = forward_step(forward_step_func, data_iterator, model,
                                     input_tensor, losses_reduced)
        if forward_only:
686
            send_forward(output_tensor, send_tensor_shapes, timers=timers)
687
688

            if not last_iteration:
689
                input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
690

691
        else:
692
            output_tensor_grad = \
693
694
695
                send_forward_recv_backward(output_tensor,
                                           send_tensor_shapes,
                                           timers=timers)
696

697
698
699
            # Add input_tensor and output_tensor to end of list.
            input_tensors.append(input_tensor)
            output_tensors.append(output_tensor)
700
            free_output_tensor(output_tensor[0])
701

702
703
704
705
            # Pop input_tensor and output_tensor from the start of the list for
            # the backward pass.
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)
706
707
708
709
710
711
712

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

            if last_iteration:
                input_tensor = None
713
                send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
714
            else:
715
                input_tensor = \
716
717
                    send_backward_recv_forward(
                        input_tensor_grad, recv_tensor_shapes, timers=timers)
718
719
720
721
722
723
724

    # Run cooldown backward passes.
    if not forward_only:
        for i in range(num_warmup_microbatches):
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)

725
            output_tensor_grad = recv_backward(send_tensor_shapes, timers=timers)
726
727
728
729
730

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

731
            send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
732
733

    return losses_reduced