schedules.py 29.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
from contextlib import contextmanager
17
import torch
18
from torch.autograd.variable import Variable
19
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
20
21

from megatron import get_args
22
from megatron import get_num_microbatches
23
24
from megatron import get_timers
from megatron import mpu
25
from megatron import p2p_communication
26
27
28
from megatron.utils import unwrap_model
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module
29
30
from megatron.model import ModelType

31

Jared Casper's avatar
Jared Casper committed
32
33
34
35
36
def get_forward_backward_func():
    args = get_args()
    if mpu.get_pipeline_model_parallel_world_size() > 1:
        if args.virtual_pipeline_model_parallel_size is not None:
            forward_backward_func = forward_backward_pipelining_with_interleaving
Lawrence McAfee's avatar
Lawrence McAfee committed
37
38
39
40
41
42
43
            assert get_num_microbatches() % \
                args.pipeline_model_parallel_size == 0, \
                'number of microbatches (%d) is not divisible by pipeline-' \
                'model-parallel-size (%d) when using interleaved schedule' % (
                    get_num_microbatches(),
                    args.pipeline_model_parallel_size,
                )
Jared Casper's avatar
Jared Casper committed
44
45
46
47
48
49
        else:
            forward_backward_func = forward_backward_pipelining_without_interleaving
    else:
        forward_backward_func = forward_backward_no_pipelining
    return forward_backward_func

50
51
def deallocate_output_tensor(out):
    '''Pseudo-deallocate (i.e., set to scalar) the output tensor's '.data' field.
52
53
54
55
56

    This method should be called right after the output tensor has been
    sent to the next pipeline stage. At this point, the output tensor is
    only useful for its '.grad_fn' field, and not its '.data'.
    '''
Lawrence McAfee's avatar
Lawrence McAfee committed
57
58
    if out is None:
        return
59
60
61
62
63
64
65
66
67
    assert isinstance(out, torch.Tensor), \
        "expected Tensor, found %s." % type(out).__name__
    assert out._base is None, \
        "counter-productive to free a view of another tensor."
    out.data = torch.empty(
        (1,),
        device = out.device,
        dtype = out.dtype,
    )
68
        
69
def custom_backward(output, grad_output):
70
71
    '''Directly call C++ autograd engine.

72
    To make the 'deallocate_output_tensor' (above) optimization work, the C++
73
74
75
76
    autograd engine must be called directly, bypassing Pytorch's
    torch.autograd.backward. Pytorch's 'backward' checks that the output and
    grad have the same shape, while C++'s 'backward' does not.
    '''
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    assert output.numel() == 1, \
        "output should be pseudo-'freed' in schedule, to optimize memory"
    assert isinstance(output, torch.Tensor), \
        "output == '%s'." % type(output).__name__
    assert isinstance(grad_output, (torch.Tensor, type(None))), \
        "grad_output == '%s'." % type(grad_output).__name__

    # Handle scalar output
    if grad_output is None:
        assert output.numel() == 1, "implicit grad requires scalar output."
        grad_output = torch.ones_like(
            output,
            memory_format = torch.preserve_format,
        )

    # Call c++ engine [ see torch/csrc/autograd/python_engine.cpp ]
Lawrence McAfee's avatar
Lawrence McAfee committed
94
95
96
97
98
99
100
101
102
    Variable._execution_engine.run_backward(
        tensors = (output,),
        grad_tensors = (grad_output,),
        keep_graph = False,
        create_graph = False,
        inputs = tuple(),
        allow_unreachable=True,
        accumulate_grad=True,
    )
103
        
Jared Casper's avatar
Jared Casper committed
104

105
106
107
108
109
110
def forward_step(forward_step_func,
                 data_iterator,
                 model,
                 input_tensor,
                 forward_data_store,
                 collect_non_loss_data=False):
111
112
113
114
115
116
    """Forward step for passed-in model.

    If first stage, input tensor is obtained from data_iterator, otherwise
    passed-in input_tensor is used.

    Returns output tensor."""
117
    args = get_args()
118
119
120
    timers = get_timers()

    timers('forward-compute').start()
121
122
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
123
124
125
126
127
128

    unwrap_output_tensor = False
    if not isinstance(input_tensor, list):
        input_tensor = [input_tensor]
        unwrap_output_tensor = True

129
    unwrapped_model.set_input_tensor(input_tensor)
130
    output_tensor, loss_func = forward_step_func(data_iterator, model)
131
    if mpu.is_pipeline_last_stage():
132
133
134
135
136
137
138
139
140
        if not collect_non_loss_data:
            output_tensor = loss_func(output_tensor)
            loss, loss_reduced = output_tensor
            output_tensor = loss / get_num_microbatches()
            forward_data_store.append(loss_reduced)
        else:
            data = loss_func(output_tensor, non_loss_data=True)
            forward_data_store.append(data)

141
142
    timers('forward-compute').stop()

143
144
145
    # If T5 model (or other model with encoder and decoder)
    # and in decoder stack, then send encoder_hidden_state
    # downstream as well.
146
147
148
149
150
151
    if mpu.is_pipeline_stage_after_split() and \
            args.model_type == ModelType.encoder_and_decoder:
        return [output_tensor, input_tensor[-1]]
    if unwrap_output_tensor:
        return output_tensor
    return [output_tensor]
152
153
154


def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad):
155
156
157
158
159
160
161
    """Backward step through passed-in output tensor.

    If last stage, output_tensor_grad is None, otherwise gradient of loss
    with respect to stage's output tensor.

    Returns gradient of loss with respect to input tensor (None if first
    stage)."""
162
163
164
165

    # NOTE: This code currently can handle at most one skip connection. It
    # needs to be modified slightly to support arbitrary numbers of skip
    # connections.
166
167
168
169
170
171
    args = get_args()

    timers = get_timers()
    timers('backward-compute').start()

    # Retain the grad on the input_tensor.
172
173
174
175
176
177
178
179
180
181
182
183
    unwrap_input_tensor_grad = False
    if not isinstance(input_tensor, list):
        input_tensor = [input_tensor]
        unwrap_input_tensor_grad = True
    for x in input_tensor:
        if x is not None:
            x.retain_grad()

    if not isinstance(output_tensor, list):
        output_tensor = [output_tensor]
    if not isinstance(output_tensor_grad, list):
        output_tensor_grad = [output_tensor_grad]
184
185

    # Backward pass.
186
187
    if output_tensor_grad[0] is None:
        output_tensor = optimizer.scale_loss(output_tensor[0])
188
    custom_backward(output_tensor[0], output_tensor_grad[0])
189
190

    # Collect the grad of the input_tensor.
191
    input_tensor_grad = [None]
192
    if input_tensor is not None:
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
        input_tensor_grad = []
        for x in input_tensor:
            if x is None:
                input_tensor_grad.append(None)
            else:
                input_tensor_grad.append(x.grad)

    # Handle single skip connection if it exists (encoder_hidden_state in
    # model with encoder and decoder).
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
            mpu.is_pipeline_stage_after_split() and \
            args.model_type == ModelType.encoder_and_decoder:
        if output_tensor_grad[1] is not None:
            input_tensor_grad[-1].add_(output_tensor_grad[1])
    if unwrap_input_tensor_grad:
        input_tensor_grad = input_tensor_grad[0]
209
210
211
212
213
214

    timers('backward-compute').stop()

    return input_tensor_grad


215
216
217
218
219
220
221
222
@contextmanager
def dummy_handler():
    try:
        yield
    finally:
        pass


223
224
225
226
227
228
def forward_backward_no_pipelining(forward_step_func,
                                   data_iterator, model,
                                   optimizer,
                                   timers,
                                   forward_only,
                                   collect_non_loss_data=False):
229
230
231
232
    """Run forward and backward passes with no pipeline parallelism
    (no inter-stage communication).

    Returns dictionary with losses."""
233
234
235
    assert len(model) == 1
    model = model[0]

236
237
238
239
    context_handler = dummy_handler
    if isinstance(model, torchDDP):
        context_handler = model.no_sync

240
    forward_data_store = []
241
242
243
    input_tensor, output_tensor_grad = None, None
    with context_handler():
        for i in range(get_num_microbatches() - 1):
244
245
246
            output_tensor = forward_step(forward_step_func, data_iterator,
                                         model, input_tensor, forward_data_store,
                                         collect_non_loss_data)
247
248
249
250
251
252
            if not forward_only:
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

    # Run computation for last microbatch out of context handler (want to
    # synchronize gradients).
253
254
255
    output_tensor = forward_step(forward_step_func, data_iterator,
                                 model, input_tensor, forward_data_store,
                                 collect_non_loss_data)
256
257
    if not forward_only:
        backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad)
258

259
    return forward_data_store
260
261


262
263
264
265
266
267
def forward_backward_pipelining_with_interleaving(forward_step_func,
                                                  data_iterator, model,
                                                  optimizer,
                                                  timers,
                                                  forward_only, 
                                                  collect_non_loss_data=False):
268
269
270
271
    """Run interleaved 1F1B schedule (model split into model chunks), with
    communication between pipeline stages as needed.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
272
273
    input_tensors = [[] for _ in range(len(model))]
    output_tensors = [[] for _ in range(len(model))]
274
    forward_data_store = []
275
276
277
278
    if not forward_only:
        output_tensor_grads = [[] for _ in range(len(model))]

    pipeline_parallel_size = mpu.get_pipeline_model_parallel_world_size()
279
    pipeline_parallel_rank = mpu.get_pipeline_model_parallel_rank()
280

281
282
283
    args = get_args()
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)

284
285
286
287
288
289
290
    # Compute number of warmup and remaining microbatches.
    num_model_chunks = len(model)
    num_microbatches = get_num_microbatches() * num_model_chunks
    all_warmup_microbatches = False
    if forward_only:
        num_warmup_microbatches = num_microbatches
    else:
291
292
293
294
295
296
        # Run all forward passes and then all backward passes if number of
        # microbatches is just the number of pipeline stages.
        # Otherwise, perform (num_model_chunks-1)*pipeline_parallel_size on
        # all workers, followed by more microbatches after depending on
        # stage ID (more forward passes for earlier stages, later stages can
        # immediately start with 1F1B).
297
298
299
300
301
        if get_num_microbatches() == pipeline_parallel_size:
            num_warmup_microbatches = num_microbatches
            all_warmup_microbatches = True
        else:
            num_warmup_microbatches = \
302
                (pipeline_parallel_size - pipeline_parallel_rank - 1) * 2
303
304
305
306
            num_warmup_microbatches += (
                num_model_chunks - 1) * pipeline_parallel_size
            num_warmup_microbatches = min(num_warmup_microbatches,
                                          num_microbatches)
307
308
309
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

310
    def get_model_chunk_id(microbatch_id, forward):
311
        """Helper method to get the model chunk ID given the iteration number."""
312
313
        microbatch_id_in_group = microbatch_id % (pipeline_parallel_size * num_model_chunks)
        model_chunk_id = microbatch_id_in_group // pipeline_parallel_size
314
        if not forward:
315
316
            model_chunk_id = (num_model_chunks - model_chunk_id - 1)
        return model_chunk_id
317

318
    def forward_step_helper(microbatch_id):
319
320
321
        """Helper method to run forward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        forward_step())."""
322
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=True)
323
324
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

325
        # forward step
326
        if mpu.is_pipeline_first_stage():
327
328
            if len(input_tensors[model_chunk_id]) == \
                    len(output_tensors[model_chunk_id]):
329
330
                input_tensors[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id][-1]
331
332
        output_tensor = forward_step(forward_step_func,
                                     data_iterator[model_chunk_id],
333
                                     model[model_chunk_id],
334
335
336
                                     input_tensor, 
                                     forward_data_store,
                                     collect_non_loss_data)
337
338
        output_tensors[model_chunk_id].append(output_tensor)

339
340
341
342
343
        # if forward-only, no need to save tensors for a backward pass
        if forward_only:
            input_tensors[model_chunk_id].pop()
            output_tensors[model_chunk_id].pop()

344
345
        return output_tensor

346
    def backward_step_helper(microbatch_id):
347
348
349
        """Helper method to run backward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        backward_step())."""
350
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=False)
351
352
353
354
355
356
357
358
359
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        if mpu.is_pipeline_last_stage():
            if len(output_tensor_grads[model_chunk_id]) == 0:
                output_tensor_grads[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id].pop(0)
        output_tensor = output_tensors[model_chunk_id].pop(0)
        output_tensor_grad = output_tensor_grads[model_chunk_id].pop(0)
        input_tensor_grad = \
360
361
362
363
            backward_step(optimizer,
                          input_tensor,
                          output_tensor,
                          output_tensor_grad)
364
365
366
367
368

        return input_tensor_grad

    # Run warmup forward passes.
    mpu.set_virtual_pipeline_model_parallel_rank(0)
369
    input_tensors[0].append(
370
        p2p_communication.recv_forward(tensor_shape, timers=timers))
371
372
    for k in range(num_warmup_microbatches):
        output_tensor = forward_step_helper(k)
373
374

        # Determine if tensor should be received from previous stage.
375
376
377
378
379
380
381
        next_forward_model_chunk_id = get_model_chunk_id(k+1, forward=True)
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            if next_forward_model_chunk_id == 0:
                recv_prev = False
        if k == (num_microbatches - 1):
            recv_prev = False
382
383

        # Don't send tensor downstream if on last stage.
384
385
        if mpu.is_pipeline_last_stage():
            output_tensor = None
386
387
388

        # Send and receive tensors as appropriate (send tensors computed
        # in this iteration; receive tensors for next iteration).
389
390
391
392
393
394
395
        if k == (num_warmup_microbatches - 1) and not forward_only and \
                not all_warmup_microbatches:
            input_tensor_grad = None
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                recv_next = False
            input_tensor, output_tensor_grad = \
396
                p2p_communication.send_forward_backward_recv_forward_backward(
397
398
                        output_tensor, input_tensor_grad,
                        recv_prev=recv_prev, recv_next=recv_next,
399
                        tensor_shape=tensor_shape,
400
401
402
                        timers=timers)
            output_tensor_grads[num_model_chunks-1].append(output_tensor_grad)
        else:
403
            input_tensor = \
404
                p2p_communication.send_forward_recv_forward(
405
406
407
                    output_tensor, recv_prev=recv_prev,
                    tensor_shape=tensor_shape,
                    timers=timers)
408
        input_tensors[next_forward_model_chunk_id].append(input_tensor)
409
        deallocate_output_tensor(output_tensor)
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

    # Run 1F1B in steady state.
    for k in range(num_microbatches_remaining):
        # Forward pass.
        forward_k = k + num_warmup_microbatches
        output_tensor = forward_step_helper(forward_k)

        # Backward pass.
        backward_k = k
        input_tensor_grad = backward_step_helper(backward_k)

        # Send output_tensor and input_tensor_grad, receive input_tensor
        # and output_tensor_grad.

        # Determine if current stage has anything to send in either direction,
        # otherwise set tensor to None.
        forward_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
        mpu.set_virtual_pipeline_model_parallel_rank(forward_model_chunk_id)
        if mpu.is_pipeline_last_stage():
            output_tensor = None

        backward_model_chunk_id = get_model_chunk_id(backward_k, forward=False)
        mpu.set_virtual_pipeline_model_parallel_rank(backward_model_chunk_id)
        if mpu.is_pipeline_first_stage():
            input_tensor_grad = None

        # Determine if peers are sending, and where in data structure to put
        # received tensors.
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            # First stage is ahead of last stage by (pipeline_parallel_size - 1).
            next_forward_model_chunk_id = get_model_chunk_id(
                forward_k - (pipeline_parallel_size - 1), forward=True)
            if next_forward_model_chunk_id == (num_model_chunks - 1):
                recv_prev = False
            next_forward_model_chunk_id += 1
        else:
447
448
            next_forward_model_chunk_id = get_model_chunk_id(forward_k + 1,
                                                             forward=True)
449
450
451
452
453
454
455
456
457
458

        recv_next = True
        if mpu.is_pipeline_last_stage(ignore_virtual=True):
            # Last stage is ahead of first stage by (pipeline_parallel_size - 1).
            next_backward_model_chunk_id = get_model_chunk_id(
                backward_k - (pipeline_parallel_size - 1), forward=False)
            if next_backward_model_chunk_id == 0:
                recv_next = False
            next_backward_model_chunk_id -= 1
        else:
459
460
            next_backward_model_chunk_id = get_model_chunk_id(backward_k + 1,
                                                              forward=False)
461

462
463
        # If last iteration, don't receive; we already received one extra
        # before the start of the for loop.
464
465
466
467
468
        if k == (num_microbatches_remaining - 1):
            recv_prev = False

        # Communicate tensors.
        input_tensor, output_tensor_grad = \
469
            p2p_communication.send_forward_backward_recv_forward_backward(
470
471
                    output_tensor, input_tensor_grad,
                    recv_prev=recv_prev, recv_next=recv_next,
472
                    tensor_shape=tensor_shape, timers=timers)
473
        deallocate_output_tensor(output_tensor)
474

475
476
        # Put input_tensor and output_tensor_grad in data structures in the
        # right location.
477
478
479
        if recv_prev:
            input_tensors[next_forward_model_chunk_id].append(input_tensor)
        if recv_next:
480
481
            output_tensor_grads[next_backward_model_chunk_id].append(
                output_tensor_grad)
482

483
    # Run cooldown backward passes (flush out pipeline).
484
485
486
    if not forward_only:
        if all_warmup_microbatches:
            output_tensor_grads[num_model_chunks-1].append(
487
                p2p_communication.recv_backward(tensor_shape, timers=timers))
488
489
490
491
492
493
494
495
496
497
        for k in range(num_microbatches_remaining, num_microbatches):
            input_tensor_grad = backward_step_helper(k)
            next_backward_model_chunk_id = get_model_chunk_id(k+1, forward=False)
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                if next_backward_model_chunk_id == (num_model_chunks - 1):
                    recv_next = False
            if k == (num_microbatches - 1):
                recv_next = False
            output_tensor_grads[next_backward_model_chunk_id].append(
498
                p2p_communication.send_backward_recv_backward(
499
500
501
                    input_tensor_grad, recv_next=recv_next,
                    tensor_shape=tensor_shape,
                    timers=timers))
502

503
    return forward_data_store
504
505


506
507
508
509
510
511
512
513
514
515
516
def get_tensor_shapes(rank, model_type):
    # Determine right tensor sizes (based on position of rank with respect to split
    # rank) and model size.
    # Send two tensors if model is T5 and rank is in decoder stage:
    #     first tensor is decoder (pre-transpose),
    #     second tensor is encoder (post-transpose).
    # If model is T5 and rank is at the boundary:
    #     send one tensor (post-transpose from encoder).
    # Otherwise, send one tensor (pre-transpose).
    args = get_args()
    tensor_shapes = []
517
518
519

    if args.model_parallel_memory_opt:
        seq_length = args.seq_length // mpu.get_tensor_model_parallel_world_size()
520
521
522
523
524
    else:
        seq_length = args.seq_length

    if model_type == ModelType.encoder_and_decoder:
        if args.model_parallel_memory_opt:
525
526
            decoder_seq_length = args.decoder_seq_length // mpu.get_tensor_model_parallel_world_size()
        else:
527
            decoder_seq_length = args.decoder_seq_length
528

529
        if mpu.is_pipeline_stage_before_split(rank):
530
            tensor_shapes.append((seq_length, args.micro_batch_size, args.hidden_size))
531
        else:
532
533
            tensor_shapes.append((decoder_seq_length, args.micro_batch_size, args.hidden_size))
            tensor_shapes.append((seq_length, args.micro_batch_size, args.hidden_size))
534
    else:
535
        tensor_shapes.append((seq_length, args.micro_batch_size, args.hidden_size))
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
    return tensor_shapes


def recv_forward(tensor_shapes, timers):
    input_tensors = []
    for tensor_shape in tensor_shapes:
        if tensor_shape is None:
            input_tensors.append(None)
        else:
            input_tensors.append(p2p_communication.recv_forward(tensor_shape,
                                                                timers=timers))
    return input_tensors


def recv_backward(tensor_shapes, timers):
    output_tensor_grads = []
    for tensor_shape in tensor_shapes:
        if tensor_shape is None:
            output_tensor_grads.append(None)
        else:
            output_tensor_grads.append(p2p_communication.recv_backward(tensor_shape,
                                                                       timers=timers))
    return output_tensor_grads


def send_forward(output_tensors, tensor_shapes, timers):
    if not isinstance(output_tensors, list):
        output_tensors = [output_tensors]
    for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
        if tensor_shape is None:
            continue
        p2p_communication.send_forward(output_tensor, tensor_shape, timers=timers)


def send_backward(input_tensor_grads, tensor_shapes, timers):
    if not isinstance(input_tensor_grads, list):
        input_tensor_grads = [input_tensor_grads]
    for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
        if tensor_shape is None:
            continue
        p2p_communication.send_backward(input_tensor_grad, tensor_shape, timers=timers)


def send_forward_recv_backward(output_tensors, tensor_shapes, timers):
    if not isinstance(output_tensors, list):
        output_tensors = [output_tensors]
    output_tensor_grads = []
    for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
        if tensor_shape is None:
            output_tensor_grads.append(None)
            continue
        output_tensor_grad = p2p_communication.send_forward_recv_backward(
                output_tensor, tensor_shape, timers=timers)
        output_tensor_grads.append(output_tensor_grad)
    return output_tensor_grads


def send_backward_recv_forward(input_tensor_grads, tensor_shapes, timers):
    if not isinstance(input_tensor_grads, list):
        input_tensor_grads = [input_tensor_grads]
    input_tensors = []
    for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
        if tensor_shape is None:
            input_tensors.append(None)
            continue
        input_tensor = p2p_communication.send_backward_recv_forward(
                input_tensor_grad, tensor_shape, timers=timers)
        input_tensors.append(input_tensor)
    return input_tensors


607
608
609
610
611
612
613
def forward_backward_pipelining_without_interleaving(forward_step_func,
                                                     data_iterator,
                                                     model,
                                                     optimizer,
                                                     timers,
                                                     forward_only,
                                                     collect_non_loss_data=False):
614
615
616
617
    """Run non-interleaved 1F1B schedule, with communication between pipeline
    stages.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
618
    args = get_args()
619
620
    timers = get_timers()

621
622
623
624
625
626
627
628
629
630
631
632
633
634
    assert len(model) == 1
    model = model[0]

    # Compute number of warmup microbatches.
    num_microbatches = get_num_microbatches()
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

635
636
637
638
639
640
641
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
    model_type = unwrapped_model.model_type
    rank = mpu.get_pipeline_model_parallel_rank()
    recv_tensor_shapes = get_tensor_shapes(rank-1, model_type)
    send_tensor_shapes = get_tensor_shapes(rank, model_type)

642
643
644
645
646
647
    # Input, output tensors only need to be saved when doing backward passes
    input_tensors = None
    output_tensors = None
    if not forward_only:
        input_tensors = []
        output_tensors = []
648
    forward_data_store = []
649
650
651

    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
652
        input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
653
        output_tensor = forward_step(forward_step_func, data_iterator, model,
654
655
                                     input_tensor, forward_data_store,
                                     collect_non_loss_data)
656
        send_forward(output_tensor, send_tensor_shapes, timers=timers)
657

658
659
660
        if not forward_only:
            input_tensors.append(input_tensor)
            output_tensors.append(output_tensor)
661
            deallocate_output_tensor(output_tensor[0])
662
663
664
665
666

    # Before running 1F1B, need to receive first forward tensor.
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
    if num_microbatches_remaining > 0:
667
        input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
668
669
670
671
672
673

    # Run 1F1B in steady state.
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))

        output_tensor = forward_step(forward_step_func, data_iterator, model,
674
675
                                     input_tensor, forward_data_store,
                                     collect_non_loss_data)
676
        if forward_only:
677
            send_forward(output_tensor, send_tensor_shapes, timers=timers)
678
679

            if not last_iteration:
680
                input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
681

682
        else:
683
            output_tensor_grad = \
684
685
686
                send_forward_recv_backward(output_tensor,
                                           send_tensor_shapes,
                                           timers=timers)
687

688
689
690
            # Add input_tensor and output_tensor to end of list.
            input_tensors.append(input_tensor)
            output_tensors.append(output_tensor)
691
            deallocate_output_tensor(output_tensor[0])
692

693
694
695
696
            # Pop input_tensor and output_tensor from the start of the list for
            # the backward pass.
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)
697
698
699
700
701
702
703

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

            if last_iteration:
                input_tensor = None
704
                send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
705
            else:
706
                input_tensor = \
707
708
                    send_backward_recv_forward(
                        input_tensor_grad, recv_tensor_shapes, timers=timers)
709
710
711
712
713
714
715

    # Run cooldown backward passes.
    if not forward_only:
        for i in range(num_warmup_microbatches):
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)

716
            output_tensor_grad = recv_backward(send_tensor_shapes, timers=timers)
717
718
719
720
721

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

722
            send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
723

724
    return forward_data_store