train.py 10.7 KB
Newer Older
Louis Martin's avatar
Louis Martin committed
1
#!/usr/bin/env python3
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
#

import collections
import os
import torch
import math

15
from fairseq import data, options, utils
Sergey Edunov's avatar
Sergey Edunov committed
16
17
18
19
20
21
22
23
24
from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter
from fairseq.multiprocessing_trainer import MultiprocessingTrainer


def main():
    parser = options.get_parser('Trainer')
    dataset_args = options.add_dataset_args(parser)
    dataset_args.add_argument('--max-tokens', default=6000, type=int, metavar='N',
                              help='maximum number of tokens in a batch')
25
26
    dataset_args.add_argument('--max-sentences', type=int, metavar='N',
                              help='maximum number of sentences in a batch')
Sergey Edunov's avatar
Sergey Edunov committed
27
28
29
30
    dataset_args.add_argument('--train-subset', default='train', metavar='SPLIT',
                              choices=['train', 'valid', 'test'],
                              help='data subset to use for training (train, valid, test)')
    dataset_args.add_argument('--valid-subset', default='valid', metavar='SPLIT',
toothlessdragon's avatar
toothlessdragon committed
31
                              help='comma separated list of data subsets '
Sergey Edunov's avatar
Sergey Edunov committed
32
33
34
35
36
                                   ' to use for validation (train, valid, valid1,test, test1)')
    options.add_optimization_args(parser)
    options.add_checkpoint_args(parser)
    options.add_model_args(parser)

37
    args = utils.parse_args_and_arch(parser)
Sergey Edunov's avatar
Sergey Edunov committed
38

39
    if args.no_progress_bar and args.log_format is None:
40
        args.log_format = 'simple'
Sergey Edunov's avatar
Sergey Edunov committed
41
42
43
44
45
46

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)
    torch.manual_seed(args.seed)

    # Load dataset
47
48
49
50
51
    splits = ['train', 'valid']
    if data.has_binary_files(args.data, splits):
        dataset = data.load_dataset(args.data, splits, args.source_lang, args.target_lang)
    else:
        dataset = data.load_raw_text_dataset(args.data, splits, args.source_lang, args.target_lang)
Sergey Edunov's avatar
Sergey Edunov committed
52
53
54
55
    if args.source_lang is None or args.target_lang is None:
        # record inferred languages in args, so that it's saved in checkpoints
        args.source_lang, args.target_lang = dataset.src, dataset.dst

56
57
58
59
    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    args.num_gpus = torch.cuda.device_count()

Myle Ott's avatar
Myle Ott committed
60
    print(args)
Sergey Edunov's avatar
Sergey Edunov committed
61
62
    print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
63
    for split in splits:
Sergey Edunov's avatar
Sergey Edunov committed
64
65
        print('| {} {} {} examples'.format(args.data, split, len(dataset.splits[split])))

66
    print('| using {} GPUs (with max tokens per GPU = {} and max sentences per GPU = {})'.format(
67
        args.num_gpus, args.max_tokens, args.max_sentences))
Sergey Edunov's avatar
Sergey Edunov committed
68

69
    # Build model and criterion
70
71
    model = utils.build_model(args, dataset.src_dict, dataset.dst_dict)
    criterion = utils.build_criterion(args, dataset.src_dict, dataset.dst_dict)
72
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
73
    print('| num. model params: {}'.format(sum(p.data.numel() for p in model.parameters())))
Sergey Edunov's avatar
Sergey Edunov committed
74

75
76
77
    # The max number of positions can be different for train and valid
    # e.g., RNNs may support more positions at test time than seen in training
    max_positions_train = (args.max_source_positions, args.max_target_positions)
Myle Ott's avatar
Myle Ott committed
78
79
80
81
    max_positions_valid = (
        min(args.max_source_positions, model.max_encoder_positions()),
        min(args.max_target_positions, model.max_decoder_positions())
    )
82

Sergey Edunov's avatar
Sergey Edunov committed
83
    # Start multiprocessing
84
    trainer = MultiprocessingTrainer(args, model, criterion)
Sergey Edunov's avatar
Sergey Edunov committed
85
86

    # Load the latest checkpoint if one is available
87
88
89
90
91
92
93
94
95
96
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
    extra_state = trainer.load_checkpoint(checkpoint_path)
    if extra_state is not None:
        epoch = extra_state['epoch']
        batch_offset = extra_state['batch_offset']
        print('| loaded checkpoint {} (epoch {})'.format(checkpoint_path, epoch))
        if batch_offset == 0:
            epoch += 1
    else:
        epoch, batch_offset = 1, 0
Sergey Edunov's avatar
Sergey Edunov committed
97
98
99
100
101
102
103
104
105

    # Train until the learning rate gets too small
    val_loss = None
    max_epoch = args.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    while lr > args.min_lr and epoch <= max_epoch:
        # train for one epoch
106
        train(args, epoch, batch_offset, trainer, dataset, max_positions_train)
Sergey Edunov's avatar
Sergey Edunov committed
107
108
109

        # evaluate on validate set
        for k, subset in enumerate(args.valid_subset.split(',')):
110
            val_loss = validate(args, epoch, trainer, dataset, max_positions_valid, subset)
Sergey Edunov's avatar
Sergey Edunov committed
111
112
113
            if k == 0:
                if not args.no_save:
                    # save checkpoint
114
                    save_checkpoint(trainer, args, epoch, 0, val_loss)
Sergey Edunov's avatar
Sergey Edunov committed
115
116
117
118
119
120
121
122
123
124
125
126
                # only use first validation loss to update the learning schedule
                lr = trainer.lr_step(val_loss, epoch)

        epoch += 1
        batch_offset = 0
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))

    # Stop multiprocessing
    trainer.stop()


127
128
def get_perplexity(loss):
    try:
129
        return round(math.pow(2, loss), 2)
130
131
132
133
    except OverflowError:
        return float('inf')


134
def train(args, epoch, batch_offset, trainer, dataset, max_positions):
Sergey Edunov's avatar
Sergey Edunov committed
135
136
    """Train the model for one epoch."""

137
138
139
    seed = args.seed + epoch
    torch.manual_seed(seed)
    trainer.set_seed(seed)
Myle Ott's avatar
Myle Ott committed
140

Myle Ott's avatar
Myle Ott committed
141
    itr = dataset.train_dataloader(
142
143
        args.train_subset, num_workers=args.workers,
        max_tokens=args.max_tokens, max_sentences=args.max_sentences,
Myle Ott's avatar
Myle Ott committed
144
        max_positions=max_positions, seed=seed, epoch=epoch,
145
146
        sample_without_replacement=args.sample_without_replacement,
        sort_by_source_size=(epoch <= args.curriculum))
Sergey Edunov's avatar
Sergey Edunov committed
147
148
149
150
151
    loss_meter = AverageMeter()
    bsz_meter = AverageMeter()    # sentences per batch
    wpb_meter = AverageMeter()    # words per batch
    wps_meter = TimeMeter()       # words per second
    clip_meter = AverageMeter()   # % of updates clipped
Myle Ott's avatar
Myle Ott committed
152
    extra_meters = collections.defaultdict(lambda: AverageMeter())
Sergey Edunov's avatar
Sergey Edunov committed
153
154

    lr = trainer.get_lr()
155
    with utils.build_progress_bar(args, itr, epoch) as t:
156
        for i, sample in data.skip_group_enumerator(t, args.num_gpus, batch_offset):
Myle Ott's avatar
Myle Ott committed
157
158
159
            loss_dict = trainer.train_step(sample)
            loss = loss_dict['loss']
            del loss_dict['loss']  # don't include in extra_meters or extra_postfix
Sergey Edunov's avatar
Sergey Edunov committed
160
161

            ntokens = sum(s['ntokens'] for s in sample)
Myle Ott's avatar
Myle Ott committed
162
            nsentences = sum(s['net_input']['src_tokens'].size(0) for s in sample)
163
164
            loss_meter.update(loss, nsentences if args.sentence_avg else ntokens)
            bsz_meter.update(nsentences)
Sergey Edunov's avatar
Sergey Edunov committed
165
166
            wpb_meter.update(ntokens)
            wps_meter.update(ntokens)
Myle Ott's avatar
Myle Ott committed
167
168
169
170
171
            clip_meter.update(1 if loss_dict['gnorm'] > args.clip_norm else 0)

            extra_postfix = []
            for k, v in loss_dict.items():
                extra_meters[k].update(v)
172
                extra_postfix.append((k, extra_meters[k].avg))
Sergey Edunov's avatar
Sergey Edunov committed
173

174
175
176
177
178
            t.log(collections.OrderedDict([
                ('loss', loss_meter),
                ('wps', round(wps_meter.avg)),
                ('wpb', round(wpb_meter.avg)),
                ('bsz', round(bsz_meter.avg)),
Sergey Edunov's avatar
Sergey Edunov committed
179
                ('lr', lr),
180
181
                ('clip', '{:.0%}'.format(clip_meter.avg)),
            ] + extra_postfix))
Sergey Edunov's avatar
Sergey Edunov committed
182
183
184
185
186

            if i == 0:
                # ignore the first mini-batch in words-per-second calculation
                wps_meter.reset()
            if args.save_interval > 0 and (i + 1) % args.save_interval == 0:
187
                save_checkpoint(trainer, args, epoch, i + 1)
Sergey Edunov's avatar
Sergey Edunov committed
188

189
190
191
192
193
194
195
196
197
198
199
        t.print(collections.OrderedDict([
            ('train loss', round(loss_meter.avg, 2)),
            ('train ppl', get_perplexity(loss_meter.avg)),
            ('s/checkpoint', round(wps_meter.elapsed_time)),
            ('words/s', round(wps_meter.avg)),
            ('words/batch', round(wpb_meter.avg)),
            ('bsz', round(bsz_meter.avg)),
            ('lr', lr),
            ('clip', '{:3.0f}%'.format(clip_meter.avg * 100)),
        ] + [
            (k, meter.avg)
Myle Ott's avatar
Myle Ott committed
200
            for k, meter in extra_meters.items()
201
        ]))
Sergey Edunov's avatar
Sergey Edunov committed
202
203


204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
def save_checkpoint(trainer, args, epoch, batch_offset, val_loss):
    extra_state = {
        'epoch': epoch,
        'batch_offset': batch_offset,
        'val_loss': val_loss,
    }

    if batch_offset == 0:
        if not args.no_epoch_checkpoints:
            epoch_filename = os.path.join(args.save_dir, 'checkpoint{}.pt'.format(epoch))
            trainer.save_checkpoint(epoch_filename, extra_state)

        assert val_loss is not None
        if not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best:
            save_checkpoint.best = val_loss
            best_filename = os.path.join(args.save_dir, 'checkpoint_best.pt')
            trainer.save_checkpoint(best_filename, extra_state)

    last_filename = os.path.join(args.save_dir, 'checkpoint_last.pt')
    trainer.save_checkpoint(last_filename, extra_state)


226
def validate(args, epoch, trainer, dataset, max_positions, subset):
Sergey Edunov's avatar
Sergey Edunov committed
227
228
    """Evaluate the model on the validation set and return the average loss."""

Myle Ott's avatar
Myle Ott committed
229
    itr = dataset.eval_dataloader(
230
231
        subset, max_tokens=args.max_tokens, max_sentences=args.max_sentences,
        max_positions=max_positions,
232
233
234
        skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test,
        descending=True,  # largest batch first to warm the caching allocator
    )
Sergey Edunov's avatar
Sergey Edunov committed
235
    loss_meter = AverageMeter()
Myle Ott's avatar
Myle Ott committed
236
    extra_meters = collections.defaultdict(lambda: AverageMeter())
Sergey Edunov's avatar
Sergey Edunov committed
237

238
239
    prefix = 'valid on \'{}\' subset'.format(subset)
    with utils.build_progress_bar(args, itr, epoch, prefix) as t:
240
        for _, sample in data.skip_group_enumerator(t, args.num_gpus):
Myle Ott's avatar
Myle Ott committed
241
242
243
244
            loss_dict = trainer.valid_step(sample)
            loss = loss_dict['loss']
            del loss_dict['loss']  # don't include in extra_meters or extra_postfix

Sergey Edunov's avatar
Sergey Edunov committed
245
246
            ntokens = sum(s['ntokens'] for s in sample)
            loss_meter.update(loss, ntokens)
Myle Ott's avatar
Myle Ott committed
247
248
249
250

            extra_postfix = []
            for k, v in loss_dict.items():
                extra_meters[k].update(v)
251
                extra_postfix.append((k, extra_meters[k].avg))
Myle Ott's avatar
Myle Ott committed
252

253
254
255
            t.log(collections.OrderedDict([
                ('valid loss', round(loss_meter.avg, 2)),
            ] + extra_postfix))
Sergey Edunov's avatar
Sergey Edunov committed
256

257
258
259
260
261
        t.print(collections.OrderedDict([
            ('valid loss', round(loss_meter.avg, 2)),
            ('valid ppl', get_perplexity(loss_meter.avg)),
        ] + [
            (k, meter.avg)
Myle Ott's avatar
Myle Ott committed
262
            for k, meter in extra_meters.items()
263
        ]))
Sergey Edunov's avatar
Sergey Edunov committed
264
265

    # update and return the learning rate
266
    return loss_meter.avg
Sergey Edunov's avatar
Sergey Edunov committed
267
268
269
270


if __name__ == '__main__':
    main()