train.py 10.4 KB
Newer Older
Louis Martin's avatar
Louis Martin committed
1
#!/usr/bin/env python3
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
#

import collections
import os
import torch
import math

15
from fairseq import data, options, utils
Sergey Edunov's avatar
Sergey Edunov committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter
from fairseq.multiprocessing_trainer import MultiprocessingTrainer
from fairseq.progress_bar import progress_bar


def main():
    parser = options.get_parser('Trainer')
    dataset_args = options.add_dataset_args(parser)
    dataset_args.add_argument('--max-tokens', default=6000, type=int, metavar='N',
                              help='maximum number of tokens in a batch')
    dataset_args.add_argument('--train-subset', default='train', metavar='SPLIT',
                              choices=['train', 'valid', 'test'],
                              help='data subset to use for training (train, valid, test)')
    dataset_args.add_argument('--valid-subset', default='valid', metavar='SPLIT',
                              help='comma separated list ofdata subsets '
                                   ' to use for validation (train, valid, valid1,test, test1)')
    options.add_optimization_args(parser)
    options.add_checkpoint_args(parser)
    options.add_model_args(parser)

36
    args = utils.parse_args_and_arch(parser)
Sergey Edunov's avatar
Sergey Edunov committed
37
38
39
40
41
42
43
44
45
46

    if args.no_progress_bar:
        progress_bar.enabled = False
        progress_bar.print_interval = args.log_interval

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)
    torch.manual_seed(args.seed)

    # Load dataset
Myle Ott's avatar
Myle Ott committed
47
    dataset = data.load_dataset(args.data, ['train', 'valid'], args.source_lang, args.target_lang)
Sergey Edunov's avatar
Sergey Edunov committed
48
49
50
51
    if args.source_lang is None or args.target_lang is None:
        # record inferred languages in args, so that it's saved in checkpoints
        args.source_lang, args.target_lang = dataset.src, dataset.dst

Myle Ott's avatar
Myle Ott committed
52
    print(args)
Sergey Edunov's avatar
Sergey Edunov committed
53
54
    print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
55
    for split in ['train', 'valid']:
Sergey Edunov's avatar
Sergey Edunov committed
56
57
58
59
60
61
62
63
        print('| {} {} {} examples'.format(args.data, split, len(dataset.splits[split])))

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    num_gpus = torch.cuda.device_count()

    print('| using {} GPUs (with max tokens per GPU = {})'.format(num_gpus, args.max_tokens))

64
    # Build model and criterion
65
66
    model = utils.build_model(args, dataset.src_dict, dataset.dst_dict)
    criterion = utils.build_criterion(args, dataset.src_dict, dataset.dst_dict)
67
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
Sergey Edunov's avatar
Sergey Edunov committed
68

69
70
71
72
73
    # The max number of positions can be different for train and valid
    # e.g., RNNs may support more positions at test time than seen in training
    max_positions_train = (args.max_source_positions, args.max_target_positions)
    max_positions_valid = (model.max_encoder_positions(), model.max_decoder_positions())

Sergey Edunov's avatar
Sergey Edunov committed
74
    # Start multiprocessing
75
    trainer = MultiprocessingTrainer(args, model, criterion)
Sergey Edunov's avatar
Sergey Edunov committed
76
77

    # Load the latest checkpoint if one is available
78
79
80
81
82
83
84
85
86
87
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
    extra_state = trainer.load_checkpoint(checkpoint_path)
    if extra_state is not None:
        epoch = extra_state['epoch']
        batch_offset = extra_state['batch_offset']
        print('| loaded checkpoint {} (epoch {})'.format(checkpoint_path, epoch))
        if batch_offset == 0:
            epoch += 1
    else:
        epoch, batch_offset = 1, 0
Sergey Edunov's avatar
Sergey Edunov committed
88
89
90
91
92
93
94
95
96

    # Train until the learning rate gets too small
    val_loss = None
    max_epoch = args.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    while lr > args.min_lr and epoch <= max_epoch:
        # train for one epoch
97
        train(args, epoch, batch_offset, trainer, dataset, max_positions_train, num_gpus)
Sergey Edunov's avatar
Sergey Edunov committed
98
99
100

        # evaluate on validate set
        for k, subset in enumerate(args.valid_subset.split(',')):
101
            val_loss = validate(args, epoch, trainer, dataset, max_positions_valid, subset, num_gpus)
Sergey Edunov's avatar
Sergey Edunov committed
102
103
104
            if k == 0:
                if not args.no_save:
                    # save checkpoint
105
                    save_checkpoint(trainer, args, epoch, 0, val_loss)
Sergey Edunov's avatar
Sergey Edunov committed
106
107
108
109
110
111
112
113
114
115
116
117
                # only use first validation loss to update the learning schedule
                lr = trainer.lr_step(val_loss, epoch)

        epoch += 1
        batch_offset = 0
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))

    # Stop multiprocessing
    trainer.stop()


118
119
120
121
122
123
124
def get_perplexity(loss):
    try:
        return math.pow(2, loss)
    except OverflowError:
        return float('inf')


125
def train(args, epoch, batch_offset, trainer, dataset, max_positions, num_gpus):
Sergey Edunov's avatar
Sergey Edunov committed
126
127
    """Train the model for one epoch."""

128
129
130
    seed = args.seed + epoch
    torch.manual_seed(seed)
    trainer.set_seed(seed)
Myle Ott's avatar
Myle Ott committed
131

Myle Ott's avatar
Myle Ott committed
132
    itr = dataset.train_dataloader(
133
        args.train_subset, num_workers=args.workers, max_tokens=args.max_tokens,
Myle Ott's avatar
Myle Ott committed
134
        max_positions=max_positions, seed=seed, epoch=epoch,
135
136
        sample_without_replacement=args.sample_without_replacement,
        sort_by_source_size=(epoch <= args.curriculum))
Sergey Edunov's avatar
Sergey Edunov committed
137
138
139
140
141
    loss_meter = AverageMeter()
    bsz_meter = AverageMeter()    # sentences per batch
    wpb_meter = AverageMeter()    # words per batch
    wps_meter = TimeMeter()       # words per second
    clip_meter = AverageMeter()   # % of updates clipped
Myle Ott's avatar
Myle Ott committed
142
    extra_meters = collections.defaultdict(lambda: AverageMeter())
Sergey Edunov's avatar
Sergey Edunov committed
143
144
145
146
147

    desc = '| epoch {:03d}'.format(epoch)
    lr = trainer.get_lr()
    with progress_bar(itr, desc, leave=False) as t:
        for i, sample in data.skip_group_enumerator(t, num_gpus, batch_offset):
Myle Ott's avatar
Myle Ott committed
148
149
150
            loss_dict = trainer.train_step(sample)
            loss = loss_dict['loss']
            del loss_dict['loss']  # don't include in extra_meters or extra_postfix
Sergey Edunov's avatar
Sergey Edunov committed
151
152
153
154
155
156
157

            ntokens = sum(s['ntokens'] for s in sample)
            src_size = sum(s['src_tokens'].size(0) for s in sample)
            loss_meter.update(loss, ntokens)
            bsz_meter.update(src_size)
            wpb_meter.update(ntokens)
            wps_meter.update(ntokens)
Myle Ott's avatar
Myle Ott committed
158
159
160
161
162
163
            clip_meter.update(1 if loss_dict['gnorm'] > args.clip_norm else 0)

            extra_postfix = []
            for k, v in loss_dict.items():
                extra_meters[k].update(v)
                extra_postfix.append((k, '{:.4f}'.format(extra_meters[k].avg)))
Sergey Edunov's avatar
Sergey Edunov committed
164
165
166
167
168
169
170
171

            t.set_postfix(collections.OrderedDict([
                ('loss', '{:.2f} ({:.2f})'.format(loss, loss_meter.avg)),
                ('wps', '{:5d}'.format(round(wps_meter.avg))),
                ('wpb', '{:5d}'.format(round(wpb_meter.avg))),
                ('bsz', '{:5d}'.format(round(bsz_meter.avg))),
                ('lr', lr),
                ('clip', '{:3.0f}%'.format(clip_meter.avg * 100)),
Myle Ott's avatar
Myle Ott committed
172
            ] + extra_postfix), refresh=False)
Sergey Edunov's avatar
Sergey Edunov committed
173
174
175
176
177

            if i == 0:
                # ignore the first mini-batch in words-per-second calculation
                wps_meter.reset()
            if args.save_interval > 0 and (i + 1) % args.save_interval == 0:
178
                save_checkpoint(trainer, args, epoch, i + 1)
Sergey Edunov's avatar
Sergey Edunov committed
179

Myle Ott's avatar
Myle Ott committed
180
        fmt = desc + ' | train loss {:2.2f} | train ppl {:3.2f}'.format(
181
            loss_meter.avg, get_perplexity(loss_meter.avg))
Myle Ott's avatar
Myle Ott committed
182
183
184
185
186
187
188
189
190
        fmt += ' | s/checkpoint {:7d} | words/s {:6d} | words/batch {:6d}'.format(
            round(wps_meter.elapsed_time), round(wps_meter.avg), round(wpb_meter.avg))
        fmt += ' | bsz {:5d} | lr {:0.6f} | clip {:3.0f}%'.format(
            round(bsz_meter.avg), lr, clip_meter.avg * 100)
        fmt += ''.join(
            ' | {} {:.4f}'.format(k, meter.avg)
            for k, meter in extra_meters.items()
        )
        t.write(fmt)
Sergey Edunov's avatar
Sergey Edunov committed
191
192


193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
def save_checkpoint(trainer, args, epoch, batch_offset, val_loss):
    extra_state = {
        'epoch': epoch,
        'batch_offset': batch_offset,
        'val_loss': val_loss,
    }

    if batch_offset == 0:
        if not args.no_epoch_checkpoints:
            epoch_filename = os.path.join(args.save_dir, 'checkpoint{}.pt'.format(epoch))
            trainer.save_checkpoint(epoch_filename, extra_state)

        assert val_loss is not None
        if not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best:
            save_checkpoint.best = val_loss
            best_filename = os.path.join(args.save_dir, 'checkpoint_best.pt')
            trainer.save_checkpoint(best_filename, extra_state)

    last_filename = os.path.join(args.save_dir, 'checkpoint_last.pt')
    trainer.save_checkpoint(last_filename, extra_state)


215
def validate(args, epoch, trainer, dataset, max_positions, subset, ngpus):
Sergey Edunov's avatar
Sergey Edunov committed
216
217
    """Evaluate the model on the validation set and return the average loss."""

Myle Ott's avatar
Myle Ott committed
218
    itr = dataset.eval_dataloader(
219
220
        subset, batch_size=None, max_tokens=args.max_tokens, max_positions=max_positions,
        skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test)
Sergey Edunov's avatar
Sergey Edunov committed
221
    loss_meter = AverageMeter()
Myle Ott's avatar
Myle Ott committed
222
    extra_meters = collections.defaultdict(lambda: AverageMeter())
Sergey Edunov's avatar
Sergey Edunov committed
223
224
225
226

    desc = '| epoch {:03d} | valid on \'{}\' subset'.format(epoch, subset)
    with progress_bar(itr, desc, leave=False) as t:
        for _, sample in data.skip_group_enumerator(t, ngpus):
Myle Ott's avatar
Myle Ott committed
227
228
229
230
            loss_dict = trainer.valid_step(sample)
            loss = loss_dict['loss']
            del loss_dict['loss']  # don't include in extra_meters or extra_postfix

Sergey Edunov's avatar
Sergey Edunov committed
231
232
            ntokens = sum(s['ntokens'] for s in sample)
            loss_meter.update(loss, ntokens)
Myle Ott's avatar
Myle Ott committed
233
234
235
236
237
238
239
240
241

            extra_postfix = []
            for k, v in loss_dict.items():
                extra_meters[k].update(v)
                extra_postfix.append((k, '{:.4f}'.format(extra_meters[k].avg)))

            t.set_postfix(collections.OrderedDict([
                ('loss', '{:.2f}'.format(loss_meter.avg)),
            ] + extra_postfix), refresh=False)
Sergey Edunov's avatar
Sergey Edunov committed
242
243

        val_loss = loss_meter.avg
Myle Ott's avatar
Myle Ott committed
244
        fmt = desc + ' | valid loss {:2.2f} | valid ppl {:3.2f}'.format(
245
            val_loss, get_perplexity(val_loss))
Myle Ott's avatar
Myle Ott committed
246
247
248
249
250
        fmt += ''.join(
            ' | {} {:.4f}'.format(k, meter.avg)
            for k, meter in extra_meters.items()
        )
        t.write(fmt)
Sergey Edunov's avatar
Sergey Edunov committed
251
252
253
254
255
256
257

    # update and return the learning rate
    return val_loss


if __name__ == '__main__':
    main()