train.py 10.6 KB
Newer Older
Louis Martin's avatar
Louis Martin committed
1
#!/usr/bin/env python3
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
#

import collections
import os
import torch
import math

15
from fairseq import data, options, utils
Sergey Edunov's avatar
Sergey Edunov committed
16
17
18
19
20
21
22
23
24
from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter
from fairseq.multiprocessing_trainer import MultiprocessingTrainer


def main():
    parser = options.get_parser('Trainer')
    dataset_args = options.add_dataset_args(parser)
    dataset_args.add_argument('--max-tokens', default=6000, type=int, metavar='N',
                              help='maximum number of tokens in a batch')
25
26
    dataset_args.add_argument('--max-sentences', type=int, metavar='N',
                              help='maximum number of sentences in a batch')
Sergey Edunov's avatar
Sergey Edunov committed
27
28
29
30
31
32
33
34
35
36
    dataset_args.add_argument('--train-subset', default='train', metavar='SPLIT',
                              choices=['train', 'valid', 'test'],
                              help='data subset to use for training (train, valid, test)')
    dataset_args.add_argument('--valid-subset', default='valid', metavar='SPLIT',
                              help='comma separated list ofdata subsets '
                                   ' to use for validation (train, valid, valid1,test, test1)')
    options.add_optimization_args(parser)
    options.add_checkpoint_args(parser)
    options.add_model_args(parser)

37
    args = utils.parse_args_and_arch(parser)
Sergey Edunov's avatar
Sergey Edunov committed
38

39
    if args.no_progress_bar and args.log_format is None:
40
        args.log_format = 'simple'
Sergey Edunov's avatar
Sergey Edunov committed
41
42
43
44
45
46

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)
    torch.manual_seed(args.seed)

    # Load dataset
47
48
49
50
51
    splits = ['train', 'valid']
    if data.has_binary_files(args.data, splits):
        dataset = data.load_dataset(args.data, splits, args.source_lang, args.target_lang)
    else:
        dataset = data.load_raw_text_dataset(args.data, splits, args.source_lang, args.target_lang)
Sergey Edunov's avatar
Sergey Edunov committed
52
53
54
55
    if args.source_lang is None or args.target_lang is None:
        # record inferred languages in args, so that it's saved in checkpoints
        args.source_lang, args.target_lang = dataset.src, dataset.dst

Myle Ott's avatar
Myle Ott committed
56
    print(args)
Sergey Edunov's avatar
Sergey Edunov committed
57
58
    print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
59
    for split in splits:
Sergey Edunov's avatar
Sergey Edunov committed
60
61
62
63
64
65
        print('| {} {} {} examples'.format(args.data, split, len(dataset.splits[split])))

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    num_gpus = torch.cuda.device_count()

66
67
    print('| using {} GPUs (with max tokens per GPU = {} and max sentences per GPU = {})'.format(
        num_gpus, args.max_tokens, args.max_sentences))
Sergey Edunov's avatar
Sergey Edunov committed
68

69
    # Build model and criterion
70
71
    model = utils.build_model(args, dataset.src_dict, dataset.dst_dict)
    criterion = utils.build_criterion(args, dataset.src_dict, dataset.dst_dict)
72
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
Sergey Edunov's avatar
Sergey Edunov committed
73

74
75
76
    # The max number of positions can be different for train and valid
    # e.g., RNNs may support more positions at test time than seen in training
    max_positions_train = (args.max_source_positions, args.max_target_positions)
Myle Ott's avatar
Myle Ott committed
77
78
79
80
    max_positions_valid = (
        min(args.max_source_positions, model.max_encoder_positions()),
        min(args.max_target_positions, model.max_decoder_positions())
    )
81

Sergey Edunov's avatar
Sergey Edunov committed
82
    # Start multiprocessing
83
    trainer = MultiprocessingTrainer(args, model, criterion)
Sergey Edunov's avatar
Sergey Edunov committed
84
85

    # Load the latest checkpoint if one is available
86
87
88
89
90
91
92
93
94
95
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
    extra_state = trainer.load_checkpoint(checkpoint_path)
    if extra_state is not None:
        epoch = extra_state['epoch']
        batch_offset = extra_state['batch_offset']
        print('| loaded checkpoint {} (epoch {})'.format(checkpoint_path, epoch))
        if batch_offset == 0:
            epoch += 1
    else:
        epoch, batch_offset = 1, 0
Sergey Edunov's avatar
Sergey Edunov committed
96
97
98
99
100
101
102
103
104

    # Train until the learning rate gets too small
    val_loss = None
    max_epoch = args.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    while lr > args.min_lr and epoch <= max_epoch:
        # train for one epoch
105
        train(args, epoch, batch_offset, trainer, dataset, max_positions_train, num_gpus)
Sergey Edunov's avatar
Sergey Edunov committed
106
107
108

        # evaluate on validate set
        for k, subset in enumerate(args.valid_subset.split(',')):
109
            val_loss = validate(args, epoch, trainer, dataset, max_positions_valid, subset, num_gpus)
Sergey Edunov's avatar
Sergey Edunov committed
110
111
112
            if k == 0:
                if not args.no_save:
                    # save checkpoint
113
                    save_checkpoint(trainer, args, epoch, 0, val_loss)
Sergey Edunov's avatar
Sergey Edunov committed
114
115
116
117
118
119
120
121
122
123
124
125
                # only use first validation loss to update the learning schedule
                lr = trainer.lr_step(val_loss, epoch)

        epoch += 1
        batch_offset = 0
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))

    # Stop multiprocessing
    trainer.stop()


126
127
def get_perplexity(loss):
    try:
128
        return round(math.pow(2, loss), 2)
129
130
131
132
    except OverflowError:
        return float('inf')


133
def train(args, epoch, batch_offset, trainer, dataset, max_positions, num_gpus):
Sergey Edunov's avatar
Sergey Edunov committed
134
135
    """Train the model for one epoch."""

136
137
138
    seed = args.seed + epoch
    torch.manual_seed(seed)
    trainer.set_seed(seed)
Myle Ott's avatar
Myle Ott committed
139

Myle Ott's avatar
Myle Ott committed
140
    itr = dataset.train_dataloader(
141
142
        args.train_subset, num_workers=args.workers,
        max_tokens=args.max_tokens, max_sentences=args.max_sentences,
Myle Ott's avatar
Myle Ott committed
143
        max_positions=max_positions, seed=seed, epoch=epoch,
144
145
        sample_without_replacement=args.sample_without_replacement,
        sort_by_source_size=(epoch <= args.curriculum))
Sergey Edunov's avatar
Sergey Edunov committed
146
147
148
149
150
    loss_meter = AverageMeter()
    bsz_meter = AverageMeter()    # sentences per batch
    wpb_meter = AverageMeter()    # words per batch
    wps_meter = TimeMeter()       # words per second
    clip_meter = AverageMeter()   # % of updates clipped
Myle Ott's avatar
Myle Ott committed
151
    extra_meters = collections.defaultdict(lambda: AverageMeter())
Sergey Edunov's avatar
Sergey Edunov committed
152
153

    lr = trainer.get_lr()
154
    with utils.build_progress_bar(args, itr, epoch) as t:
Sergey Edunov's avatar
Sergey Edunov committed
155
        for i, sample in data.skip_group_enumerator(t, num_gpus, batch_offset):
Myle Ott's avatar
Myle Ott committed
156
157
158
            loss_dict = trainer.train_step(sample)
            loss = loss_dict['loss']
            del loss_dict['loss']  # don't include in extra_meters or extra_postfix
Sergey Edunov's avatar
Sergey Edunov committed
159
160

            ntokens = sum(s['ntokens'] for s in sample)
161
162
163
            nsentences = sum(s['src_tokens'].size(0) for s in sample)
            loss_meter.update(loss, nsentences if args.sentence_avg else ntokens)
            bsz_meter.update(nsentences)
Sergey Edunov's avatar
Sergey Edunov committed
164
165
            wpb_meter.update(ntokens)
            wps_meter.update(ntokens)
Myle Ott's avatar
Myle Ott committed
166
167
168
169
170
            clip_meter.update(1 if loss_dict['gnorm'] > args.clip_norm else 0)

            extra_postfix = []
            for k, v in loss_dict.items():
                extra_meters[k].update(v)
171
                extra_postfix.append((k, extra_meters[k].avg))
Sergey Edunov's avatar
Sergey Edunov committed
172

173
174
175
176
177
            t.log(collections.OrderedDict([
                ('loss', loss_meter),
                ('wps', round(wps_meter.avg)),
                ('wpb', round(wpb_meter.avg)),
                ('bsz', round(bsz_meter.avg)),
Sergey Edunov's avatar
Sergey Edunov committed
178
                ('lr', lr),
179
180
                ('clip', '{:.0%}'.format(clip_meter.avg)),
            ] + extra_postfix))
Sergey Edunov's avatar
Sergey Edunov committed
181
182
183
184
185

            if i == 0:
                # ignore the first mini-batch in words-per-second calculation
                wps_meter.reset()
            if args.save_interval > 0 and (i + 1) % args.save_interval == 0:
186
                save_checkpoint(trainer, args, epoch, i + 1)
Sergey Edunov's avatar
Sergey Edunov committed
187

188
189
190
191
192
193
194
195
196
197
198
        t.print(collections.OrderedDict([
            ('train loss', round(loss_meter.avg, 2)),
            ('train ppl', get_perplexity(loss_meter.avg)),
            ('s/checkpoint', round(wps_meter.elapsed_time)),
            ('words/s', round(wps_meter.avg)),
            ('words/batch', round(wpb_meter.avg)),
            ('bsz', round(bsz_meter.avg)),
            ('lr', lr),
            ('clip', '{:3.0f}%'.format(clip_meter.avg * 100)),
        ] + [
            (k, meter.avg)
Myle Ott's avatar
Myle Ott committed
199
            for k, meter in extra_meters.items()
200
        ]))
Sergey Edunov's avatar
Sergey Edunov committed
201
202


203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
def save_checkpoint(trainer, args, epoch, batch_offset, val_loss):
    extra_state = {
        'epoch': epoch,
        'batch_offset': batch_offset,
        'val_loss': val_loss,
    }

    if batch_offset == 0:
        if not args.no_epoch_checkpoints:
            epoch_filename = os.path.join(args.save_dir, 'checkpoint{}.pt'.format(epoch))
            trainer.save_checkpoint(epoch_filename, extra_state)

        assert val_loss is not None
        if not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best:
            save_checkpoint.best = val_loss
            best_filename = os.path.join(args.save_dir, 'checkpoint_best.pt')
            trainer.save_checkpoint(best_filename, extra_state)

    last_filename = os.path.join(args.save_dir, 'checkpoint_last.pt')
    trainer.save_checkpoint(last_filename, extra_state)


225
def validate(args, epoch, trainer, dataset, max_positions, subset, ngpus):
Sergey Edunov's avatar
Sergey Edunov committed
226
227
    """Evaluate the model on the validation set and return the average loss."""

Myle Ott's avatar
Myle Ott committed
228
    itr = dataset.eval_dataloader(
229
230
        subset, max_tokens=args.max_tokens, max_sentences=args.max_sentences,
        max_positions=max_positions,
231
232
233
        skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test,
        descending=True,  # largest batch first to warm the caching allocator
    )
Sergey Edunov's avatar
Sergey Edunov committed
234
    loss_meter = AverageMeter()
Myle Ott's avatar
Myle Ott committed
235
    extra_meters = collections.defaultdict(lambda: AverageMeter())
Sergey Edunov's avatar
Sergey Edunov committed
236

237
238
    prefix = 'valid on \'{}\' subset'.format(subset)
    with utils.build_progress_bar(args, itr, epoch, prefix) as t:
Sergey Edunov's avatar
Sergey Edunov committed
239
        for _, sample in data.skip_group_enumerator(t, ngpus):
Myle Ott's avatar
Myle Ott committed
240
241
242
243
            loss_dict = trainer.valid_step(sample)
            loss = loss_dict['loss']
            del loss_dict['loss']  # don't include in extra_meters or extra_postfix

Sergey Edunov's avatar
Sergey Edunov committed
244
245
            ntokens = sum(s['ntokens'] for s in sample)
            loss_meter.update(loss, ntokens)
Myle Ott's avatar
Myle Ott committed
246
247
248
249

            extra_postfix = []
            for k, v in loss_dict.items():
                extra_meters[k].update(v)
250
                extra_postfix.append((k, extra_meters[k].avg))
Myle Ott's avatar
Myle Ott committed
251

252
253
254
            t.log(collections.OrderedDict([
                ('valid loss', round(loss_meter.avg, 2)),
            ] + extra_postfix))
Sergey Edunov's avatar
Sergey Edunov committed
255

256
257
258
259
260
        t.print(collections.OrderedDict([
            ('valid loss', round(loss_meter.avg, 2)),
            ('valid ppl', get_perplexity(loss_meter.avg)),
        ] + [
            (k, meter.avg)
Myle Ott's avatar
Myle Ott committed
261
            for k, meter in extra_meters.items()
262
        ]))
Sergey Edunov's avatar
Sergey Edunov committed
263
264

    # update and return the learning rate
265
    return loss_meter.avg
Sergey Edunov's avatar
Sergey Edunov committed
266
267
268
269


if __name__ == '__main__':
    main()