train.py 9.95 KB
Newer Older
Louis Martin's avatar
Louis Martin committed
1
#!/usr/bin/env python3
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
#

import collections
import os
import torch
import math

15
from fairseq import data, options, utils
Sergey Edunov's avatar
Sergey Edunov committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter
from fairseq.multiprocessing_trainer import MultiprocessingTrainer
from fairseq.progress_bar import progress_bar


def main():
    parser = options.get_parser('Trainer')
    dataset_args = options.add_dataset_args(parser)
    dataset_args.add_argument('--max-tokens', default=6000, type=int, metavar='N',
                              help='maximum number of tokens in a batch')
    dataset_args.add_argument('--train-subset', default='train', metavar='SPLIT',
                              choices=['train', 'valid', 'test'],
                              help='data subset to use for training (train, valid, test)')
    dataset_args.add_argument('--valid-subset', default='valid', metavar='SPLIT',
                              help='comma separated list ofdata subsets '
                                   ' to use for validation (train, valid, valid1,test, test1)')
    options.add_optimization_args(parser)
    options.add_checkpoint_args(parser)
    options.add_model_args(parser)

36
    args = utils.parse_args_and_arch(parser)
Sergey Edunov's avatar
Sergey Edunov committed
37
38
39
40
41
42
43
44
45
46
47
    print(args)

    if args.no_progress_bar:
        progress_bar.enabled = False
        progress_bar.print_interval = args.log_interval

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)
    torch.manual_seed(args.seed)

    # Load dataset
48
    dataset = data.load_with_check(args.data, ['train', 'valid'], args.source_lang, args.target_lang)
Sergey Edunov's avatar
Sergey Edunov committed
49
50
51
52
53
54
    if args.source_lang is None or args.target_lang is None:
        # record inferred languages in args, so that it's saved in checkpoints
        args.source_lang, args.target_lang = dataset.src, dataset.dst

    print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
55
    for split in ['train', 'valid']:
Sergey Edunov's avatar
Sergey Edunov committed
56
57
58
59
60
61
62
63
        print('| {} {} {} examples'.format(args.data, split, len(dataset.splits[split])))

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    num_gpus = torch.cuda.device_count()

    print('| using {} GPUs (with max tokens per GPU = {})'.format(num_gpus, args.max_tokens))

64
    # Build model and criterion
65
66
    model = utils.build_model(args, dataset.src_dict, dataset.dst_dict)
    criterion = utils.build_criterion(args, dataset.src_dict, dataset.dst_dict)
67
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
Sergey Edunov's avatar
Sergey Edunov committed
68
69

    # Start multiprocessing
70
    trainer = MultiprocessingTrainer(args, model, criterion)
Sergey Edunov's avatar
Sergey Edunov committed
71
72

    # Load the latest checkpoint if one is available
73
74
75
76
77
78
79
80
81
82
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
    extra_state = trainer.load_checkpoint(checkpoint_path)
    if extra_state is not None:
        epoch = extra_state['epoch']
        batch_offset = extra_state['batch_offset']
        print('| loaded checkpoint {} (epoch {})'.format(checkpoint_path, epoch))
        if batch_offset == 0:
            epoch += 1
    else:
        epoch, batch_offset = 1, 0
Sergey Edunov's avatar
Sergey Edunov committed
83
84
85
86
87
88
89
90
91

    # Train until the learning rate gets too small
    val_loss = None
    max_epoch = args.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    while lr > args.min_lr and epoch <= max_epoch:
        # train for one epoch
92
        train(args, epoch, batch_offset, trainer, dataset, num_gpus)
Sergey Edunov's avatar
Sergey Edunov committed
93
94
95

        # evaluate on validate set
        for k, subset in enumerate(args.valid_subset.split(',')):
96
            val_loss = validate(args, epoch, trainer, dataset, subset, num_gpus)
Sergey Edunov's avatar
Sergey Edunov committed
97
98
99
            if k == 0:
                if not args.no_save:
                    # save checkpoint
100
                    save_checkpoint(trainer, args, epoch, 0, val_loss)
Sergey Edunov's avatar
Sergey Edunov committed
101
102
103
104
105
106
107
108
109
110
111
112
                # only use first validation loss to update the learning schedule
                lr = trainer.lr_step(val_loss, epoch)

        epoch += 1
        batch_offset = 0
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))

    # Stop multiprocessing
    trainer.stop()


113
def train(args, epoch, batch_offset, trainer, dataset, num_gpus):
Sergey Edunov's avatar
Sergey Edunov committed
114
115
116
117
118
    """Train the model for one epoch."""

    itr = dataset.dataloader(args.train_subset, num_workers=args.workers,
                             max_tokens=args.max_tokens, seed=args.seed, epoch=epoch,
                             max_positions=args.max_positions,
119
120
                             sample_without_replacement=args.sample_without_replacement,
                             skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test)
Sergey Edunov's avatar
Sergey Edunov committed
121
122
123
124
125
    loss_meter = AverageMeter()
    bsz_meter = AverageMeter()    # sentences per batch
    wpb_meter = AverageMeter()    # words per batch
    wps_meter = TimeMeter()       # words per second
    clip_meter = AverageMeter()   # % of updates clipped
Myle Ott's avatar
Myle Ott committed
126
    extra_meters = collections.defaultdict(lambda: AverageMeter())
Sergey Edunov's avatar
Sergey Edunov committed
127
128
129
130
131

    desc = '| epoch {:03d}'.format(epoch)
    lr = trainer.get_lr()
    with progress_bar(itr, desc, leave=False) as t:
        for i, sample in data.skip_group_enumerator(t, num_gpus, batch_offset):
Myle Ott's avatar
Myle Ott committed
132
133
134
            loss_dict = trainer.train_step(sample)
            loss = loss_dict['loss']
            del loss_dict['loss']  # don't include in extra_meters or extra_postfix
Sergey Edunov's avatar
Sergey Edunov committed
135
136
137
138
139
140
141

            ntokens = sum(s['ntokens'] for s in sample)
            src_size = sum(s['src_tokens'].size(0) for s in sample)
            loss_meter.update(loss, ntokens)
            bsz_meter.update(src_size)
            wpb_meter.update(ntokens)
            wps_meter.update(ntokens)
Myle Ott's avatar
Myle Ott committed
142
143
144
145
146
147
            clip_meter.update(1 if loss_dict['gnorm'] > args.clip_norm else 0)

            extra_postfix = []
            for k, v in loss_dict.items():
                extra_meters[k].update(v)
                extra_postfix.append((k, '{:.4f}'.format(extra_meters[k].avg)))
Sergey Edunov's avatar
Sergey Edunov committed
148
149
150
151
152
153
154
155

            t.set_postfix(collections.OrderedDict([
                ('loss', '{:.2f} ({:.2f})'.format(loss, loss_meter.avg)),
                ('wps', '{:5d}'.format(round(wps_meter.avg))),
                ('wpb', '{:5d}'.format(round(wpb_meter.avg))),
                ('bsz', '{:5d}'.format(round(bsz_meter.avg))),
                ('lr', lr),
                ('clip', '{:3.0f}%'.format(clip_meter.avg * 100)),
Myle Ott's avatar
Myle Ott committed
156
            ] + extra_postfix), refresh=False)
Sergey Edunov's avatar
Sergey Edunov committed
157
158
159
160
161

            if i == 0:
                # ignore the first mini-batch in words-per-second calculation
                wps_meter.reset()
            if args.save_interval > 0 and (i + 1) % args.save_interval == 0:
162
                save_checkpoint(trainer, args, epoch, i + 1)
Sergey Edunov's avatar
Sergey Edunov committed
163

Myle Ott's avatar
Myle Ott committed
164
165
166
167
168
169
170
171
172
173
174
        fmt = desc + ' | train loss {:2.2f} | train ppl {:3.2f}'.format(
            loss_meter.avg, math.pow(2, loss_meter.avg))
        fmt += ' | s/checkpoint {:7d} | words/s {:6d} | words/batch {:6d}'.format(
            round(wps_meter.elapsed_time), round(wps_meter.avg), round(wpb_meter.avg))
        fmt += ' | bsz {:5d} | lr {:0.6f} | clip {:3.0f}%'.format(
            round(bsz_meter.avg), lr, clip_meter.avg * 100)
        fmt += ''.join(
            ' | {} {:.4f}'.format(k, meter.avg)
            for k, meter in extra_meters.items()
        )
        t.write(fmt)
Sergey Edunov's avatar
Sergey Edunov committed
175
176


177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
def save_checkpoint(trainer, args, epoch, batch_offset, val_loss):
    extra_state = {
        'epoch': epoch,
        'batch_offset': batch_offset,
        'val_loss': val_loss,
    }

    if batch_offset == 0:
        if not args.no_epoch_checkpoints:
            epoch_filename = os.path.join(args.save_dir, 'checkpoint{}.pt'.format(epoch))
            trainer.save_checkpoint(epoch_filename, extra_state)

        assert val_loss is not None
        if not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best:
            save_checkpoint.best = val_loss
            best_filename = os.path.join(args.save_dir, 'checkpoint_best.pt')
            trainer.save_checkpoint(best_filename, extra_state)

    last_filename = os.path.join(args.save_dir, 'checkpoint_last.pt')
    trainer.save_checkpoint(last_filename, extra_state)


199
def validate(args, epoch, trainer, dataset, subset, ngpus):
Sergey Edunov's avatar
Sergey Edunov committed
200
201
202
203
    """Evaluate the model on the validation set and return the average loss."""

    itr = dataset.dataloader(subset, batch_size=None,
                             max_tokens=args.max_tokens,
204
205
                             max_positions=args.max_positions,
                             skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test)
Sergey Edunov's avatar
Sergey Edunov committed
206
    loss_meter = AverageMeter()
Myle Ott's avatar
Myle Ott committed
207
    extra_meters = collections.defaultdict(lambda: AverageMeter())
Sergey Edunov's avatar
Sergey Edunov committed
208
209
210
211

    desc = '| epoch {:03d} | valid on \'{}\' subset'.format(epoch, subset)
    with progress_bar(itr, desc, leave=False) as t:
        for _, sample in data.skip_group_enumerator(t, ngpus):
Myle Ott's avatar
Myle Ott committed
212
213
214
215
            loss_dict = trainer.valid_step(sample)
            loss = loss_dict['loss']
            del loss_dict['loss']  # don't include in extra_meters or extra_postfix

Sergey Edunov's avatar
Sergey Edunov committed
216
217
            ntokens = sum(s['ntokens'] for s in sample)
            loss_meter.update(loss, ntokens)
Myle Ott's avatar
Myle Ott committed
218
219
220
221
222
223
224
225
226

            extra_postfix = []
            for k, v in loss_dict.items():
                extra_meters[k].update(v)
                extra_postfix.append((k, '{:.4f}'.format(extra_meters[k].avg)))

            t.set_postfix(collections.OrderedDict([
                ('loss', '{:.2f}'.format(loss_meter.avg)),
            ] + extra_postfix), refresh=False)
Sergey Edunov's avatar
Sergey Edunov committed
227
228

        val_loss = loss_meter.avg
Myle Ott's avatar
Myle Ott committed
229
230
231
232
233
234
235
        fmt = desc + ' | valid loss {:2.2f} | valid ppl {:3.2f}'.format(
            val_loss, math.pow(2, val_loss))
        fmt += ''.join(
            ' | {} {:.4f}'.format(k, meter.avg)
            for k, meter in extra_meters.items()
        )
        t.write(fmt)
Sergey Edunov's avatar
Sergey Edunov committed
236
237
238
239
240
241
242

    # update and return the learning rate
    return val_loss


if __name__ == '__main__':
    main()